用户名: 密码: 验证码:
基于非先验函数系的信号识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号分析在众多的科研领域都有运用,它涉及科学研究、生产技术领域,而且涉及医疗诊断,与人们的日常生活密切相关。对信号处理的研究和运用在不同的学科之间相互交叉,共同推进了信号处理研究的发展。
     信号分析方法多,本文尝试从运算方法的角度去分析、比较各种方法,不仅仅以基函数的不同去区分各种方法。
     实际工程信号处理中,DFT是最常用的信号处理方法,DFT分析的核心是建立正交基,但是要建立一个正交基能够准确识别任意一个频率的正余弦信号是做不到的,这样一个正交基是超现实的,因此需要“频谱校正”。DFT先验地建立正交基,同时要满足逆变换,保证能够重构信号,存在频率间隔。基函数的频率与信号频率不吻合将产生误差,先验地选取基函数是DFT分析误差的原因。基于上述分析,提出非先验策略。一个工程信号,只有有限个不同频率的信号。找到这有限个频率对应的基函数,由这些基函数组成一个函数系,就能够对这一信号进行准确分析。这个问题转化为非先验函数的寻找和函数系的建立问题。在这一想法指导下,提出了非先验的计算分析方法,对单频、非密集频谱、一般密集谱和超密集谱由简到繁的各种情况进行了研究,结果表明非先验的分析方法都能够找到一个函数系与实际存在的信号吻合,这样可消除泄露误差。目前的频谱校正方法,以解方程为主要手段,解方程适用于单频和非密集谱,对于密集谱解方程的方法复杂,如果同时考虑负频谱项,多个密集谱的情况,解方程实际难以实现。非先验函数的找寻在数学上基于优化计算。在解决负频谱影响(超低频信号识别)和密集谱的识别问题上尤其显示其优越性,而这两方面是目前频谱校正研究的关注点。非先验方法基函数的选取,依据实际信号的情况而定,没有频率间隔的限制;从非先验分析的角度看,理论上信号截断对正余弦信号的准确识别没有影响,信号截断是实际工程信号处理中的必然,在信号截断的情况下仍然能够进行准确识别具有实际工程意义。
     在完成识别的基础上,研究了用非先验方法逼近信号。在识别正余弦信号的研究中分析了减法具有消除交叉干扰的作用,由于减法非常简单,以至于它的这一作用没有得到重视。基本非先验方法有两个核心运算一个是内积运算,一个是减法运算,减法运算保证了这一方法的收敛性。一旦非先验的函数系被确定,则能够进行最佳逼近运算。与DFT方法对比,非先验方法的分析机理不是插值逼近。非先验方法的分析机理是一种逐步逼近,采用DFT分析工程信号是一种构造型的插值分析方法。本文分析了逼近展开与识别的不同,这两者有着多方面的区别,对它们的分析应该采用不同的路线,识别和逼近展开的核心区别在于信息熵不同,识别的信息量大,识别的结果在时间上可延拓,而一般逼近展开则不能够。通过算例对比了非先验分析与DFT和DCT的逼近速度,结果表明非先验方法的逼近效率高,非先验方法具有更广的基函数使用空间,能够更加灵活地适用于不同的信号。
     卷积也是信号处理中常见的运算,卷积公式Y(ω)=H(ω)X(ω)有其适用范围,只能运用于能量有限的信号,对于Y(ω)和X(ω)都受到噪声干扰时,卷积公式Y(ω)=H(ω)X(ω)和反向滤波公式X(ω)=Y(ω)/H(ω)都会带来大的误差。提出基函数卷积运算,这种卷积运算对功率信号和能量信号都适用;与噪声限值相结合,基函数卷积也能够适用于信号受到噪声污染的情况。并且将其运用于有较强噪声干扰情况下的反卷积运算,诊断结果有较高的精度。
     将非先验函数系分析方法运用于阻尼识别。实际上阻尼识别和正余弦信号识别是同一类问题,可以采用相同的技术路线,不同点仅在于基函数的选取不同。提出了非先验函数系的阻尼识别方法,理论上这一方法对信号的长度没有特定的要求,是一种准确识别方法。同时将非先验分析用于双传声器声强测量,进行了模拟计算和实验验证。结果证明这种方法可以避免泄漏误差,准确地测量出声强值。
     DFT等先验基方法在思想方面强调了理想性,但是要达到这种理想条件有很大的难度。以正、余弦信号的识别为例,不能够现实地建立一个完备的正交函数基保证对任意频率的正、余弦信号的准确识别。先验基分析中,基的建立占主导地位;非先验分析中,实际信号占主导地位,基函数的选取和确定要视信号而定。
Signal analysis is applied to various scientific research fields. It not only involves in research and production technology, but also involves in medical diagnosis. It is closely related to daily life of people. The research and application of signal analysis as well as its intercross of the difference subjects promote the development of the research in signal processing.
     It is difficult to master numerous signal analysis methods. This paper attempts to grasp the different analysis methods from the perspective of calculation operation method. It is without using the different basis functions to distinguish the different analysis method.
     For practical engineering signal, DFT is the most commonly used signal processing method. The idea of orthogonal basis for DFT was widely accepted. However, we can't accurately identify any frequency of the sine or cosine signal by construction an orthogonal basis function. The reason is that such an orthogonal basis is surreal. The orthogonal prior basis of DFT is constructed; at the same time the inverse transform of DFT must be satisfied in order to reconstruct the signal. The orthogonal prior basis of DFT exist frequency separation. The origin error of the DFT analysis is produced when the frequency of the orthogonal prior basis discordance with the signal frequency. A non-prior basis strategy is proposed based on the above analysis. For an engineering signal, there are only a finite number of different frequency components. After searched the basis function of its corresponding frequencies, then the mathematic function system is formed by these basis functions. We can accurately analyze the signals by the basis function system. The problem is transformed into the issue of establishing and searching the non-prior basis function. Under the guidance of this idea, non-priori basis function strategy proposed. Single-frequency spectrum, non-dense spectrum, common dense spectrum and ultra-dense spectrum are calculated and analyzed from the simple to complex various situations. The method of non-prior basis function can find a function system coincide with the real signal, so as to eliminate leakage errors. Constructed the equation is the necessary mean for the current spectrum correction method. Solving the equations is suitable for single-frequency and non-dense spectrum. For dense spectrum, solving equations is too complicated. If taking into account the negative spectrum, solving equation is difficult to implement for multi-frequencies signal. Searching for non-prior basis function is based on optimization calculation. The method of non-prior basis function has its advantage of solving negative frequency impact (ultra-low frequency signal recognition) and dense spectrum identification. The selection of non-prior basis function of non-prior method is depended on the practical signal without limitation of frequency intervals. The truncation of the signal has no influence on precisely diagnosing the sine cosine signal in theory. However, the truncation of the signal is an inevitable process in practical engineering signal.
     After identification of a practical engineering signal, the series expansion approximation is studied. The subtraction is researched for identification of sine and cosine signal to eliminate cross-interference. Because the subtraction is too simple, so it did not get too much attention for the approximation. Non-prior basis function approach has two core operations:one is the inner product, one is subtraction. The subtraction is to ensure convergence of this method. Once the Non-prior basis function system has been identified, then we can make the best approximation operator. Compared with the DFT method, the approximation mechanism of non-prior basis method is not same as the interpolated approximation mechanism. The approach mechanism of non-prior method is a gradual approach, and DFT is a tectonic interpolation approach. This article analyzes the difference of approach and identification method. They are essentially different; the analysis should be taken on different routes. The core difference of identification and approximation is that the signal entropy is different. Identification has large semaphore and its result can be extended, while the approach method can not be extended. Approximation rate is compared between the non-prior approximation and DFT approximation by an example. The results show that the non-prior approximation has much higher approximated efficiency and extensive application fields of basis function. Therefore, it can be applied to different signals flexibly.
     Convolution is also a common signal processing operation. The convolution formula Y(ω)=H(ω)X(ω) has its application range. It can be applied for energy limited signal. When Y(ω) and X(ω) are subjected to noise interference, the convolution formula Y(ω)=H(ω)X(ω) and the inverse filter formula X(ω)=Y(ω)/H(ω) will bring back a large error. Basis function convolution operation is proposed for power signals and energy signals analysis. Combined with noise limits, basis functions convolution can be applied to the situation of noise interference. The diagnosed results demonstrated that when the deconvolution operation is applied to the strong noise pollution, high accuracy is also achieved.
     Under the guidance idea of non-priori basis function system, damping identification is solved as an application. The approximation and identification are discussed. Then we can get a conclusion that damping identification and cosine signal identification is the same kind of problem. They can use the same technology route. The only difference is the basis function selected. The damping identification method using non-prior basis function system is proposed. There is no specific need of the length of the signal for this approach in theory. So it is an accurate identification. The success of damping identification proves that the method of non-prior basis function system is reasonable. The non-prior basis analysis method is also applied in the two-microphone sound intensity measurement. Both simulation example and the experiment are carried out. The result verifies that the method can avoid leakage errors and measure the sound intensity accurately.
     The non-prior method of DFT emphasizes on its ideal situation. However, it is difficult to meet the ideal condition, even it is possibly a surreal condition. So we can't built a complete orthogonal basis function to ensure precisely diagnose any frequency sine cosine signal. In prior basis analysis, the construction of basis function plays dominant role, while in non-prior basis analysis, the practical engineering signal plays dominant role. The selection and determination of basis function is depended upon the practical signal.
引文
[1]徐伟,张帅,王克家.拉曼光谱预处理中几种小波去噪方法的分析[J].应用科技,2009,36(11):27-30.
    [2]Jutamulia S,宋菲君.傅里叶变换光学及其前沿应用.量子电子学报[J].2007,24(01):122-129
    [3]马丽萍,石炎福,余华瑞.小波分析及其在化工信号分析处理中的应用及进展[J].化工进展,2005,24(2):147-153.
    [4]温和,腾召胜,曾博等.基于泄露对消的电力系统相角高精度估计算法[J].2009,30(11):2354-2360.
    [5]里荣伟,王兴松,王群.探地雷达回波信号小波压缩方法研究[J].现代雷达,2002,24(02):39-42.
    [6]Susan D. Gardner and Ronald A. Wagstaff. A Fluctuation-Based Deconvolution Technique for enhancing signal-to-Noise Ratio and Resolution [J].IEEE JOURNAL OF OCEANIC ENGINEERING,1997,22(01):119~127.
    [7]徐红梅,郝志勇,杨陈等.基于EMD和HHT的内燃机噪声信号时频特性研究[J].内燃机工程,2008,29(06):60-64.
    [8]王成栋,张优云,夏勇.模糊函数图像在柴油机气阀故障诊断中的应用研究[J].内燃机学报,2004,22(02):162-168.
    [9]王成栋,朱永生,张优云等.时频分析与支持向量机在柴油机气阀故障诊断中的应用[J].内燃机学报,2004,22(03):245-251.
    [10]Joyce Van de Vegte, Fundamentals of digital signal processing [M]. Beijing:Publishing House of Electronics Industry,2003:667-672.
    [11]Echeverria J. C. Crowe J. A. Application of empirical mode decomposition to heart rate variability analysis. Medical & Bio logical Engineering & Computing,2001; 39:471~479.
    [12]B.P.拉兹著.刘树棠,王薇洁译.线性系统及信号[M].西安:西安交通大学出版社,2006.
    [13]Albert Boggess, Francis J. Narcowich. A first course in wavelets with Fourier analysis [M]. Beijing:Publishing House of Electronics Industry,2002.
    [14]胡广书.数字信号处理:理论、算法与实现[M].北京:清华大学出版社,1997:107-119
    [15]Bracewell R N.Disctete Hartley transform. J. Opt. Soc. Am.,1983.73(Dec); 1832~1835
    [16]Ahmed N T, Natarajan, Rao K R.Discrete consine transform.IEEE Trans Comput.,1974, 23(Jan):90~93
    [17]Jain A K.A fast Karhunen-Loeve transform for a class of stochastic processes.IEEE Trans. Commun.,1976,24(Sept):1023~1029
    [18]Zhong-De Wang.Harmonic analysis with a real frenquency function-Ⅰ.aperiodic case. Appl.Match, Comput.1981,9:53~57
    [19]Jain A K. A sinusoidal family of unitary transform. IEEE Trans. Pattern Anal. Match. Intell., 1979,1(4):356~365.
    [20]胡广书.现代信号处理教程[M].北京:清华大学出版社,2005
    [21]Gabor D. Theory of communication. [J]. IEE,1946,93:429~457.
    [22]Bastiaans M J. A sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in gaussian elementary signals. Optical Eng,1981.20 (4):594~598
    [23]许天周,李炳照.近代数学基础[M].北京:北京理工大学出版社,2009
    [24]Stromberg J. A modified Harr system and higher orderspline systems on R" as unconditional bases for hardy spaces. Conference inharmonic analysis in honor of Antoni Zygmund H,W.,Beckner et al.(Eds.),Wadsworth, Belmont,California,1981,475~493.
    [25]Morlet.J,Arens G, Fourgeau E,et al. Wave propagation and sampling theory-Part 1:Complex signal scattering in multilayered media. Geophysics,1982,47(2):203~221.
    [26]Morlet.J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory-Part 2: Sampling theory and complex waves. Geophysics,1982,47(2):222~236.
    [27]Grossmann A, Molert J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math,1984,15:723~736.
    [28]Mallet S G. Multi resolution representation and wavelet. Ph.D.Thesis, University of Pennsylvania, Philadelphia, PA,1988.
    [29]Mallat S G. Multi-frequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(12):2091~2110.
    [30]Mallat S G. A theory for multi-resolution signal decomposition:The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674~693.
    [31]Mallat S G, Multi resolution approximations and wavelet orthonormal bases of L2(R).Transactions on the American Mathematical Society,1989,315(1):68~87.
    [32]Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics,1988(8), Ⅻ:909~996.
    [33]Daubechies I. The wavelet transform time-frequency location and signal analysis. IEEE Transactions on Information Theory,1990,36(5):961~1006.
    [34]Chui C K, Wang J Z. An analysis of cardinal spline-wavelet.CAT Report # 231, Texas A&M University,1990.
    [35]Chui C K. An Introduction to wavelets. Boston:Academic Press,1992.
    [36]Chui C K. Wavelets:A tutorial in theory and applications. Boston:Academic Press,1992.
    [37]Newland D E. Harmonic wavelet analysis. Proc. R. Soc. Lond. A.,1993,443:203~225.
    [38]何正嘉,訾艳阳,孟庆丰等.机械设备非平稳信号的故障诊断原理及应用[M]北京:高等教育出版社,2000
    [39]Alpert B K. A class of basis in L2 for the sparse representation of integral operators. SIAMJ. Math. Anal,1993,24:246-262
    [40]Geronimo J S, Hardin D P and Massopust P R. Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory,1994,78:376~401
    [41]Sweden W.The lifting scheme:a construction of second generation wavelets. Technical report, Bell-Labs.,1995.
    [42]Alemeida L B. The fraction Fourier transform and time-frequency representation. IEEE Trans. SP,1994,42 (11):3084~3091
    [43]Wigner E. On the quantum correction for thermodynamic equilibrium. Phys. Rev.,1932, 40:749~759.
    [44]Cohen L. Generalized phase-space distribution function. J Math Phys,1966,7(5):781~ 786.
    [45]Mallat S, Zhang Z. Matching pursuit with time frequency-dictionaries [J]. IEEE Transaction on Signal. Processing,1993,41 (12):3397~3415.
    [46]赵发刚,陈进,董广明.匹配追踪在齿轮故障诊断中的应用[J].上海交通大学学报,2009,43(06):910-913.
    [47]高强,张发启,孙德明等.遗传算法降低匹配追踪算法计算量的研究[J].振动、测试与诊断,2003,23(03):165-167.
    [48]Adelino R, Ferreira Da Silva. Atomic decomposition with evolutionary pursuit. Digital signal processing.2003,13:317~337
    [49]Huang N E, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non2stationary time series analysis [J]. Proc. R. Soc. London. A,1998,454:903~995
    [50]Rilling G, Flandrin P, Gonclaves P. On empiricalmode decomposition and its algorithms [A]. IEEE URAS IPWorkshop on Nonlinear Signa 1 and Image Processing[C], June 9211,2003.
    [51]王宏禹.信号处理相关理论综合与统一法[M].北京:国防工业出版社.2005
    [52]Peng Z K, PeterW T, Chu F L. An Improved Hilbert2Huang Transform and Its Application in Vibration Signal Analysis [J]. Journal of Sound and Vibration,2005,286 (1/2):187~200.
    [53]Wickerhauser M V. Lecture on wavelet packet algorithms. Math. Depart. Washington Univ., St.Lowis Missouri, U.S.,1991.
    [54]刘明才.小波分析及其应用[M].北京:清华大学出版社.2005.
    [55]Duffin R J, Schaeffer A C. A class of non-harmonic Fourier series. Trans Amer Math Soc, 1952,72:341~366.
    [56]朱启兵,赵文礼,刘杰等.基于信号匹配追踪的模态参数提取[J].振 动 与 冲击,2007,26(07):149-151.
    [57]熊国良,张龙.变工况下转子振动信号的时频分析方法比较[J].农业机械学报,2008,39(07):188-193.
    [58]吴震宇,袁惠群,李沈.基于EMD和模糊聚类的柴油机故障诊断[J].东北大学学报(自然科学版),2009,30(12):1784-1787.
    [59]徐晓刚,徐冠雷,王孝通等.经验模态分解(EMD)及其应用[J].电子学报,2009,37(03):581-585.
    [60]何正嘉,訾艳阳,陈雪峰等.内积变换原理与机械故障诊断.第九届全国振动理论及应用学术会议论文集.2007:403
    [61]冷建华.傅里叶变换[M].北京:清华大学出版社,2004.
    [62]佐藤幸男.信号处理入门[M].北京:科学出版社,2000.
    [63]胡适耕.应用泛函分析[M].北京:科学出版社,2003,35-37.
    [64]莫国端,刘开第.函数逼近近论方法[M].北京:科学出版社,2003,93-100
    [65]吴新余,周井泉,沈元隆.信号与系统——时域、频域分析及MATLAB软件的应用[M].北京:电子工业出版社,1999.
    [66]张贤达.现代信号处理[M].北京,清华大学出版社,2002,21
    [67]张德丰Matlab小波分析与工程运用[M].北京:国防工业出版社.2008:17
    [68]西蒙赫金.信号与系统[M].北京:电子工业出版社.2006
    [69]丁康,张晓飞.频谱校正理论的发展[J].2000,13(1):14-22.
    [70]D.Kang, X.Ming, Z.Xiaofei. Phase Difference Correction Method for phase and frequency in spectral analysis [J]. Mechniacl System and signal processing,1999,14(5):835~843.
    [71]Qin Shuren, Duan Huming, Mao Yongfang.Correction Method of Discrete Spectrum by Extracting Frequency.2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007).
    [72]Tomas Radill, Pedro M. Ramos and A. Cruz Serra. Frequency Estimation of Power System Signals Using a New Spectrum Leakage Correction Algorithm [J].FMTC-2008 IEEE International Instrumentation and Measurement Technology Conference.
    [73]王宏伟,赵国庆,齐飞林.一种实时精确的正弦波频率估计算法[J].数字采集与处理,2009,24(2):208-211.
    [74]谢明,张晓飞,丁康.频谱分析中用于相位和频率校正的相位差校正方法[J].振动工程学报,1999,12(4):454-459.
    [75]陈奎孚,王建立,张森文,频谱校正的复比值法[J].振动工程学报,2008,21(3):314-318.
    [76]陈奎孚,王建立,张森文.低频成分的频谱校正[J].振动工程学报,2008,21(1):38-42.
    [77]齐国清.利用FFT相位差校正信号频率和初相位的误差分析[J] Journal of Data Acquisition & Processing,2003, 01:07~11.
    [78]王平,丁力.加窗插值FFT的电网谐波分析算法研究[J].江苏电机工程,2008,27(2):46-50.
    [79]黄纯,江亚群.谐波分析的加窗插值改进算法[J].中国电机工程学报,2005,25(15):26-32.
    [80]梁小民.加窗傅里叶变换谐波检测算法及其插值改进研究[J].电力科学与技术学报,2007,22(3):36-40.
    [81]齐国清,贾欣乐.插值FFT估计正弦信号频率的精度分析[J].电子学报,2004,32(4):625-629.
    [82]徐培民,杨积东,闻梆椿.临近频率分量的频谱识别与校正[J].东北大学学报(自然科学版),2001,22(2):211-214.
    [83]方体莲,洪一.利用FFT校正两个密集信号的频率和相位[J].雷达科学与技术,2005,3(6):378-382.
    [84]徐伯勋,白旭滨,傅孝毅.信号处理中的数学变换与估计方法[M]清华大学出版社,2004:263-264 250-52
    [85]李允公,刘杰,王瑞等.频谱校正中频率—幅值估计的一种新方法[J].东北大学学报.2007,28(11):1612-1615
    [86]刘进明,应怀樵.频率在FFT谱上位置对加窗泄露的影响[J].应用力学学报,1998,12(2):25-31.
    [87]陆金桂等.遗传算法原理及其工程应用[M].中国矿业大学出版社,1997:51-58
    [88]赵晓丹,张晓杰,姜哲.三层微穿孔版的优化设计及特性分析[J].声学学报,2008,33(1):84-87
    [89]陈奎孚,张森文.利用三条谱线计算频率紧邻的两个成分的参数[J].振动工程学报.2004.17(2):153-158.
    [90]徐培民,杨积东,文邦椿.邻近频率分量的频谱识别与校正[J].东南大学学报.2001.(2):2211-2142.
    [91]方体莲,哄一.利用FFT校正两个密集信号的频率和相位.雷达科学与技术.2005.6:378-382.
    [92]于梅.低频超低频振动计量技术的研究与展望.振动与分析.第26卷第11期
    [93]陆旋.数理统计基础[M].北京:清华大学出版社,2004:28-32,272-275
    [94]聂赞坎,徐宗本.随机逼近及自适应算法[M].北京:科学出版社,2003.1
    [95]袁慰平,张令敏等.计算方法与实习[M].南京:东南大学出版社1989.1
    [96]周谋炎.反卷积和信号复原[M].国防工业出版社,2001:91-113
    [97]王延平.信号复原与重建[M].东南大学出版社,1992:100-105
    [98]M. J. E. Salami, S. N. Sidek. Parameter estimation of multicomponent transient signals using deconvoltion and ARMA modeling techniques, Mechanical Systems and Signal Processing, 2003; 17(6):1201~1218.
    [99]Zou Mou-yan, Unbehauen R. A few new algorithms of 2-D Blind deconvolution. Optical Engineering.1995,34(10):2945~2956.
    [100]Hsue Jin-Jen, Yagle A E. Blind deconvolution of symmetric noncausal impulse responses using two-sided linear prediction. IEEE Trans. Signal Processing,1994,42(6) 1509~1518
    [101]张振仁等.基于小波分析和时序分析的柴油机气缸压力识别[J].内燃机学报,1999,17(2):136-139
    [102]杜海平,张亮,史习智等.基于径向基函数神经网络的内燃机气缸压力识别[J].内燃机学报,2001,19(3):249-252
    [103]Edward W,Kamen, Bonnie S,Heck信号与系统基础教程[M].北京:电子工业出版社.2007.p56
    [104]罗平安,缭常.反卷积定理—有零点的频谱的反卷积解法[J].核电子学与探测技术.1999,19(6):454-459.
    [105]刘习军,贾启芬.工程振动理论与测试技术[M].北京,高等教育出版社,2004,33-342
    [106]张强,陈奎孚,张森文.割线法估计阻尼比[J].机械强度,2006,28(4):494-497.
    [107]李中付,华宏星.用时域峰值法计算频率和阻尼[J].振动与冲击,2001,20(3):5-6.
    [108]李中付,华宏星,石银明,等.遗传算法在结构模态参数辨识中的应用[J].振动、测试与诊断,2001,21(4):245-248.
    [109]陈奎孚,张森文.半功率法估计阻尼的一种改进[J].振动工程学报,2002;15(2):151-155.
    [110]应怀樵,沈松,刘进明.ZOOMBDFT法高精度求系统阻尼比的探讨[J].振动、测试与诊断,1997;17(2):42-46.
    [111]应怀樵,李惠彬,沈松.关于用INV的频率细化与大容量数据采集分析技术提高阻尼 比计算精度的研究[J].噪声与振动控制,1997,10(2):17-20.
    [112]苏向荣,丁康,谢明.用传递函数估计小阻尼的新方法[J].机械科学与技术,2003,22(5):717-720.
    [113]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [114]Liou C Y, Chang C C. The determination of modal damping ratios and natural frequencies from bispectrum modeling[J]. Mechanical System and Signal Processing,1988,2 (4): 391~401.
    [115]Chen J, Xu Y L. Hilbert-Huang transform for damping radio identification of structures with closely spaced modes of vibration[J]. Advances in Building Technology,2002,2: 1107~1114
    [116]伊廷华,李宏男,王国新.基于小波变换的结构模态参数识别[J].振动工程学报.2006,19(1):51-56
    [117]黄应来,董大伟,闫兵.密集模态分离及其参数识别方法研究[J].机械强度,2009,31(1):008-013
    [118]马大猷著.噪声与振动控制手册[M].北京:机械工业出版社,2002.
    [119]蒋孝煜,连小珉.声强技术及其在汽车工程中的应用[M].清华大学出版社,2001,6.
    [120]Chung J Y,Pope J. Practical measurement of acoustic intensity-the two microphone cross spectral method. Proceedings of inter-noise 78,1978,893~900.
    [121]Fahy F J. Measurement of acoustic intensity using the cross spectral density of two microphone signals[J]. Acoust. Soc. Amer.1977,62(4):1057~1059.
    [122]Alfredson R J. A new technique for noise source identification on a multi-cylinder automotive engine. Proceedings of Noise-Con77,1977,307~318.
    [123]贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].浙江大学博士论文.2008
    [124]舒歌群,郝志勇,谭从民.噪声测量中的声强测量技术[J].内燃机学报,1998,16(1):69-74.
    [125]孙彪,毕传兴,陈心昭.新型三维声强虚拟测量分析仪[J].农业机械学报,2007,38(6):147-150.
    [126]Giovanni Moschioni, Bortolino Saggin, and Marco Tarabini.3-D Sound Intensity Measurements:Accuracy Enhancements WithVirtual-Instrument-Based Technology [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2008, VOL.57, NO. 9:1820~1829.
    [127]魏少华,陈效华,常思勤.声强直接测定法在发动机故障诊断中的应用[J].农业机械学报,2007,38(3):171-175.
    [128]要志斌,樊文欣,阎文兵.声强法在柴油机噪声测量中的工程应用[J].车用发动机,2007,168(2):69-72.
    [129]时岩,常思勤.基于声强和小波包分析的汽车发动机燃爆信息特征提取研究[J].拖拉机与农用运输车,2007,34(2):40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700