用户名: 密码: 验证码:
高功率微波多管合成双波段辐射系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高功率微波技术的发展,具有多个波段输出特性和更高输出功率水平的高功率微波系统越来越受到人们的重视,发射分系统作为其中的一个关键组成部分之一,在很大程度上决定着系统的方案选择。由于目前大部分成熟的高功率微波源多工作在单频段,且输出功率都有物理极限,一种可行的方案是,利用通道合成的方法将多个不同频段的微波源输出的微波进行合成和共天线向外辐射,一方面提高微波输出总功率,另一方面扩展系统输出微波频段。基于此,本文提出了一种利用正交型通道合成器和弯曲同轴传输线单元实现多管双波段高功率微波紧凑化辐射的方案。论文对系统中的两类正交型通道合成器、弯曲同轴传输线和具有同轴馈电结构的双波段喇叭天线进行了系统的理论分析、数值仿真和关键单元的实验研究,旨在探索多管多波段一体化辐射的有效途径,以期为高功率微波的实用化奠定基础。论文的研究内容主要包括以下几个方面:
     1、为了实现两路GW级、极化方向相互正交的X波段微波合成输出,对T形通道合成器进行了仿真设计和实验研究。
     通过在T形过模矩形波导内加载金属膜片控制线极化微波传输方向的方法,设计了T形通道合成器的基本结构,它所具有的行波场结构不仅有利于设计出具有高功率容量的器件,还具有结构紧凑、可工作在同一或不同频段等优点。在对该结构初步仿真分析的基础上,设计了工作中心频率为9.5GHz的T形通道合成器,并对其进行了详细的数值仿真和实验研究,结果表明:该合成器能够有效实现两个极化方向相互正交的矩形波导模单模隔离传输,单模传输效率超过95%的工作带宽为9.4GHz~10.0GHz,能够满足窄带高功率微波源的应用需求。实验结果和数值仿真分析基本一致,单通道实验获得了35ns、1.3GW的微波输出,双通道实验验证了该器件能够有效实现两路GW级X波段微波合成输出。
     2、为了实现两路GW级、极化方向相互正交的S波段微波通道合成,同时实现同轴端口输出,对十字形通道合成器进行了仿真设计和实验研究。
     通过分析同轴波导模式和矩形波导模式之间的对应关系,利用倒圆波导设计了一种十字形通道合成器,并在此基础上提出了一种改进结构。该结构具有同轴输出的特点和结构紧凑、单模传输特性好等优点。利用数值仿真和模式匹配理论对不同结构进行了分析,得到了一些有益的结论。设计了工作中心频率为3.6GHz的通道合成器,并对其进行了详细的仿真验证,结果表明:该合成器能够有效实现两个极化方向相互正交的同轴波导TE11模(Coa.TE11模)隔离传输,中心频率处单模传输效率均达到了98%,在3.5GHz~3.7GHz的频率范围内,单模传输效率超过了90%。考虑到现有大部分成熟的高功率微波源输出模式多为圆波导TM01模(Cir.TM01模),研究设计了适用于课题所需的圆波导TM01模矩形波导TE10模(Rec.TE10模)模式转换器,设计结果表明该模式转换器在工作中心频率处转换效率大于99%,在3.36GHz~3.96GHz的频率范围内,转换效率大于90%。对由模式转换器和十字形合成器组成的S波段通道合成器进行了单通道的实验研究,结果表明器件具有GW量级的功率容量,实现了模式转换和双路微波通道合成的有机统一,实验中单通道获得了32ns、1.1GW的微波输出。
     3、为实现高功率微波波束扫描,研究了双波段弯曲同轴传输线。
     为实现双波段高功率微波的波束扫描和空间指定方向发射,利用模式耦合理论对弯曲同轴波导进行了系统的研究,在此基础上首先设计了具有不同弯曲形状的单波段、双波段同轴波导模式转换器,这些器件在中心频率上的模式转换效率均达到了99%以上,实验冷测结果和数值仿真结果吻合较好。结合课题所需,对具有过模尺寸的弯曲同轴传输线进行了系统的研究,所设计的弯曲同轴波导在中心频率3.6GHz和9.5GHz处不同极化方向的TE11模单模传输效率均达到了99%,功率容量均在GW量级,其中水平、垂直极化的Coa.TE11模分别在3.05GHz~3.85GHz和2.80GHz~4.30GHz的频率范围内单模传输效率均超过95%;水平、垂直极化的圆波导TE11模(Cir.TE11模)分别在8.50GHz~10.02GHz和8.50GHz~10.50GHz的频率范围内单模传输效率均超过95%。为了满足更多波段传输需求,论文还进行了多同轴结构传输线的设计。
     利用模式耦合理论系统研究了弯曲矩形波导和变截面矩形波导,得到了许多有益的结论,为快速设计相关类型的矩形波导器件奠定了理论基础。
     4、利用变张角结构,设计了具有同轴馈电形式的双波段喇叭天线(馈源)。
     通过将同轴馈电结构和变张角型圆锥喇叭结合,设计了一个具有高功率容量的双波段喇叭天线,其中高频段以圆波导TE11模馈电,低频段以同轴TE11模馈电。考虑到喇叭结构的特殊性,利用模式匹配理论对喇叭结构中的典型单元和级联过程进行理论分析,进而采用口径场法对辐射口面处的多模远场方向图进行了计算。在此基础上,设计了工作中心频率为3.6GHz和9.5GHz的喇叭天线,数值仿真结果和理论计算结果吻合较好。结果表明:设计的双波段喇叭天线具有GW量级的功率容量,远场方向图达到了副瓣电平低、等化性较好的设计目标,满足应用要求。
With the development of high power microwave (HPM) technologies, great effortshave been made on increasing the output power levels and the frequency spectrum ofthe HPM systems. As one of the most important sectors in the HPM system,transmission and radiation system mainly dertermines the whole structure of the HPMsystem. On the other hand, narrow-band HPM source usually operates at single bandand has limited output power at present. An alternative methd for enhancing the outputcapacity of HPM system is taking advantage of waveguide-based power combiningtechnologies, not only for increasing the output power levels, but also for the frequencyspectrum of the HPM systems. In this dissertation, detailed investigations were carriedout on multi-channel dual-band radiation system for HPM applications, and it mainlycontains two kinds of orthogonal waveguide-based power combiners, dual-band coaxialwaveguide bends and coaxial dual-band horn. The theoretical, numerical simulation andexperimental investigations shows that it is a promising method for realizingmulti-channel multi-band HPM integrative radiation, which is significant for HPM insome special applications.The detailed contents and innovative work include thefollowings:
     1. A specific T-junction waveguided-based power combiner is proposed forcombining the X/X band microwave beams.
     Two kinds of metal plates are inserted into an overmoded T-junction rectangularwaveguide, and they play an important role in controlling propagation direction oflinearly polarized microwave. The basic structure of the combiner is designed, and itstravelling wave structure is a promising merit for compact designment whilemaintaining high power handling capacity. Also, the T-junction combiner can workingat single frequency or dual-band. Moreover, based on preliminary analysis of thisstructure, a T-junction waveguided-based power combiner with the centre frequency of9.5GHz is designed. The detailed numerical simulation and experimental results showsthat, two linearly polarized microwave beams with perpendicular polarization directionshave realized power combination and transmission separately. In the range of9.4GHz~10.0GHz, its transmission efficiency exceeds95%and the corresponding bandwidthwith can meet the requirements for narrow-band HPM applications. In the experiment,the radiated microwave power is about1.3GW with pulse duration of35ns, and no pulseshortening or breakdown phenonmenon occurs.
     2. A cross-junction waveguide-based power combiner is investigated, realizingpower combination of S/S band microwave beams in coaxial waveguide.
     According to the characterstics of TE11coaxial waveguide mode (Coa.TE11mode)and TE10rectangualr waveguide mode (Rec.TE10mode), a doughnut-shaped waveguide is utilized to design cross-junction power combiner. Furthermore, a modifiedcross-junction is developed for convenience, which has coaxial output port, compactstructure and high power transmission efficiency. A prototype of this combiner isanalyzed systematically, including the mode conversion processes and the reflectioncharacteristics, achieving some valuabe conclusions. Based on the requirements, across-junction combiner with center frequency of3.6GHz is designed, and the detailednumerical simulations shows that this structure also has high power handling capacity,and two linearly polarized Coa.TE11modes with perpendicular polarization directionshave realized power combination and transmission separately. Its’ power transmissionefficiency reaches98%at3.6GHz, and exceeds90%in the range of3.5GHz~3.7GHz.In addition, HPM sources usually generate TM01circualr waveguide mode (Cir.TM01mode), a mode converter is designed to realize mode conversion from Cir.TM01mode toRec.TE10mode, which is necessary for cross-junction combiner applications. As anexample, a TM01TE10mode converter at3.6GHz is designed and simulated. It has highconversion efficiency of over99%at center frequency, and in the range of3.36GHz~3.96GHz, it is greater than90%. Experimental investigations are focused on powerhandling capacity and mode conversion effect, which shows that the combiner has highpower handling capacity with GW level, and it realizes integration of powercombination and mode conversion. In the experiment, the radiated microwave power isabout1.1GW with pulse duration of32ns.
     3. A dual-band coaxial waveguide bend is studied systematically for changingmicrowave propagation direction for certain purposes.
     To realize dual-band HPM directional transmission, coaxial waveguide bend isstudied systematically after taking advantage of mode coupling theory, obtaining thegeneral and explicit formulas of the coupling coefficients. Firstly, single-band anddual-band coaxial waveguide mode converters with different structures have beendesigned, all of them have high mode conversion efficiency of over99%at centerfrequency, and experiment and numerical simulations agree well with each other.Secondly, overmoded90°coaxial waveguide bend is proposed to meet specialrequirements. In this part, the designed overmoded90°coaxial waveguide bend notonly has high power handling capacity, but also has high pure transmission efficiency,and transmission efficiencies of TE11modes with perpendicular polarization directionsare over99%at3.6GHz and9.5GHz. In the range of3.05GHz~3.85GHz and2.80GHz~4.30GHz, respectively, their transmission efficiencies of horizontal and verticalpolarized Coa.TE11modes are greater than95%. In the range of8.50GHz~10.02GHzand8.50GHz~10.50GHz, respectively, their transmission efficiencies of horizontal andvertical polarized Cir.TE11modes are greater than95%.At the same time, multi-bandcoaxial waveguide bend with multi-coaxial structures is designed for specialapplications.
     Furthermore, rectangular waveguide bend and rectangular waveguide with variouscross sections are studied according to mode coupling theory, achieving many valuabeconclusions, which are theoretical foundation for quickly designing different passiverectangular waveguide components.
     4. Based on flare angle horn, a dual-band horn antenna with coaxial feed structureis designed for S/X band radiation.
     In this part, a new kind of dual-band horn antenna with high power handlingcapacity is proposed, which consists of coaxial feed structure and flare angle horn. Lowband microwave is fed by Coa.TE11mode, and high band microwave is fed by Cir.TE11mode. Based on the specific structure of the horn antenna, mode matching method isutilized to determine scatter matrix of each discontinuity in cross section. To obtain theoverall scatter matrix of the antenna, it is necessary to progressively cascade the scattermatrixs, and the overall scatter matrix determines the propagation properties of the hronantenna. Farfield radiation pattern of the dual-band antenna can easily get by usingmode expansion technology. Furthermore, a dual-band antenna at3.6GHz and9.5GHzis designed, and theoretical and numerical simulations agree well with each other. Itreveals that the dual-band antenna has high power handling capacity with several GWslevel, and good farfield radiation pattern at each band has been achieved.
引文
[1] R. J. Barker, E. Schamiloglu编著,《高功率微波源与技术》翻译组译.高功率微波源与技术[M].北京:清华大学出版社,2005.
    [2] J. Benford, J. A. Swegle. High-Power Microwaves [M]. Norwood, Mass:Artech House,1992.
    [3] S. H. Gold, G. S. Nusinovich. Review of high-power microwave sourceresearch [J]. Rev. Sci. Instrum.,1997,68(11):3945-3974.
    [4] W. W. Destler, B. Levush. Introduction to the third special issue on high-power microwave generation [J]. IEEE Trans. Plasma Sci.1990,18(3):257.
    [5] R. J. Barker, E. Schamiloglu. High-power microwave sources and technologies[M]. New York: The Institute of Electrical and Electronics Engineer, Inc.,2001.
    [6] D. B. McDermott, A. T. Lin, K. R. Chu. The ninth special issue on high-powermicrowave generation [J]. IEEE Trans. Plasma Sci.,2002,30(3):731.
    [7] J. Benford, J. A. Swegle, E. Schamiloglu. High-Power Microwaves (2ndedition)[M]. New York, London: Taylor&Francis Group,2007.
    [8] J.H. Booske. Plasma physics and related challenges ofmillimeter-wave-to-terahertz and high power microwave generation [J]. Physics ofPlasma,2008,15:055502.
    [9] J. Benford, J. A. Swegle, E. Schamiloglu编著,江伟华,张驰译.高功率微波(第二版)[M].北京:国防工业出版社,2009.
    [10]周传明,刘国治,刘永贵等.高功率微波源[M].北京:原子能出版社,2007.
    [11]刘盛纲.相对论电子学[M].北京:科学出版社,1987.
    [12]R. B. Miller.强流带电粒子束物理学导论[M].北京:原子能出版社,1990.
    [13]吴鸿适.微波电子学原理[M].北京:科学出版社,1987.
    [14]H. Mark, B. Chakraborty. Principles of plasma mechanics [M]. Wiley EasternLimited,1978.
    [15]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社,1981.
    [16]F. F. Chen著,林光海译.等离子体物理学导论[M].北京:人民教育出版社,1980.
    [17]S. T. Pai, Q. Zhang. Introduction to high power pulse technology [M].Singapore: World Scientific Publishing Co. Ltd,1995.
    [18]M. Gaudreau, J. Casey, M. Kempkes, et al.. Solid-state high voltage pulsemodulators for high power microwave applications [C]//Proceedings of EPAC2000,Vienna Austria,2000.
    [19]E. Schamiloglu, K. H. Schoenbach, R. J. Vidmar. On the road to compactpulsed power: adventures in materials, electromagnetic modeling, and thermalmanagement [C]//The14thinternational pulsed power conference, Dallas Texas USA,2003.
    [20]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005.
    [21]H. Mark. Beam weapons revolution-directed-energy weapons point the way forbattlefield technology [R]. Janes International Defense Review,2000,8:34.
    [22]J. Benford. Space applications of high power microwaves [C]//The16thIEEEInternational Pulsed Power Conference,2007,1:258-265.
    [23]D. Clunie. The design, construction and testing of an experimental high power,short-pulse radar, strong microwave in plasmas [M]. Novgorod University Press,Nizhny Novgorod,1997.
    [24]Y. Carmel, V. L. Granatstein, A. Gover, Demonstration of a two-stagebackward wave oscillation free-electron laser [J]. Phys. Rev. Lett.,1983,51:566.
    [25]A. L. Goldenberg, A. V. Litvak. Recent progress of high power millimeterwavelength gyrodevices [J]. Physics of Plasma,1995,2:2562.
    [26]J. A. Swegle, J. W. Poukey, G. T. Leifeste. Backward wave oscillators withrippled wall resonators: analytic theory and numerical simulation [J]. Phys. Fluids.,1985,28(9):2882-2894.
    [27]L. D. Moreland, E. Schamiloglu, R. W. Lemake, et al.. Efficient enhancementof high power vacuum BWO’s using nonuniform slow wave structure [J]. IEEE Trans.Plasma Sci.,1994,22(5):554-565.
    [28]D. Shiffler, J. A. Nation, G. S. Kerslick. A high-power traveling wave tubeamplifier [J]. IEEE Trans. Plasma Sci.1990,18(3):546.
    [29]S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Relativistic multiwaveCerenkov generators [J]. IEEE Trans. Plasma Sci.,1990,18(3):525-536.
    [30]舒挺.多波切伦柯夫振荡器的研究[D].长沙:国防科技大学,1998.
    [31]M. Friedman, V. Serlin, Y. Y. Lau, et al.. Relativistic klystron amplifier I: highpower operation [C]//Proceedings of SPIE.,1991,1407:147.
    [32]M. Friedman. Present and future development of high power RKA [C]//Proceedings of SPIE.,1992,1629:2.
    [33]J. Marcum. Interchange of energy between and electron beam and anoscillating electric field [J]. J. Appl. Phys.,1946,17(8):4-11.
    [34]J. W. Luginsland, E. Schamiluglu, R. L. Wright. Comparison of theory andsimulation for a radially-symmetric transit-time oscillator [C]//The12thIEEEInternational Pulsed Power Conference,1999,2:859-862.
    [35]Y. Cao, J. Zhang, J. He. A low-impedance transit-time oscillator without foils[J]. Physics of Plasma,2009,16:083102.
    [36]D. Price, H. Sze, D. Fittinghoff. Phase and frequency locking of a cavityvircator driven by a relativistic magnetron [J]. J. Appl. Phys.,1989,65(12):5185-5189.
    [37]J. W. Eastwood, K. C. Hawkins, M. P. Hook. The tapered MILO [J]. IEEETrans. Plasma Sci.,1998,26(3):698-713.
    [38]Y. Fan, H. Zhong, Z. Li, et al.. Recent progress of the improved magneticallyinsulated transmission line oscillator [J]. Rev. Sci. Instrum.,2008,79:034703.
    [39]J. Benford, D. Price, H. Sze, et al.. Interaction of a vircator microwavegenerator with an enclosing resonant cavity [J]. J. Appl. Phys.,1987,61(5):2098-2100.
    [40]N. S. Ginzburg, R. M. Rozental, A. S. Sergeev. Dual band operation of therelativistic BWO [C]//The4thIEEE International Conference on Vacuum Electronics,Seoul, Korea,2003,181-182.
    [41]张晓萍.新型磁绝缘线振荡器的研究[D].长沙:国防科技大学,2004.
    [42]张晓萍,王挺,李志强等.一种双波段高功率微波源的初步实验研究[C].全国第十一届粒子束会议,云南丽江:2008,268.
    [43]Y. W. Fan, H. H. Zhong, Z. Q. Li, et al.. A dual-band high-power microwavesource [J]. J. Appl. Phys.,2007,102:103304.
    [44]T. Wang, J. D. Zhang, B. L. Qian, et al.. Dual-band relativistic backwardoscillators based on a single beam and dual beams [J]. Physics of Plasma,2010,17:043107.
    [45]J. C. Ju, Y. W. Fan, H. H. Zhong, et al., A novel dual-frequency magneticallyinsulated transmission line oscillator [J]. IEEE Trans. Plasma Sci.,2009,37:2041-2047.
    [46]王挺.双波段相对论返波振荡器的研究[D].长沙:国防科技大学,2011.
    [47]D. B. Chen, D. Wang, F. B. Wang, et al.. Bifrequency magnetically insulatedtransmission line oscillator [J]. IEEE Trans. Plasma Sci.,2009,37:23-29.
    [48]宋刚永,蒙林,于新华等.双频相对论返波振荡器的数值模拟[J].强激光与粒子束,2009,21(1):103-107.
    [49]S. Yang, H. Li. Numerical modeling of8mm TM01-TE11mode converter [J].Int. J. Infrared and millimeter Waves,1996,17(11):1935-1943.
    [50]S. Yang, H. Li. Optimization of novel high-power millimeter-wave TM01-TE11mode converters [J]. IEEE Trans. Microwave Theory Tech.,1997,45(4):552-554.
    [51]C. Yuan, Q. Liu, H. Zhong, B. Qian. A novel TEM-TE11mode converter [J].IEEE Microw. Wireless. Compon. Lett.,2005,15(8):513-515.
    [52]C. Yuan, H. Zhong, Q. Liu, B. Qian. A novel TM01-TE11circularly polarized(CP) mode converter [J]. IEEE Microw. Wireless. Compon. Lett.,2006,16(8):455-457.
    [53]袁成卫.新型高功率微波共轴模式转换器及模式转换天线研究[D].长沙:国防科技大学,2006.
    [54]C. C. Courtney, C. E. Baum. The coaxial beam-rotating antenna (COBRA):Theory of operation and measured performance [J]. IEEE Trans. Antennas Propagation,2000,48(2):299-308.
    [55]C. C. Courtney. Design and numerical simulation of coaxial beam-rotatingantenna lens [J]. Electronics Lett.,2002,38(11):496-498.
    [56]S. H. Lee, J. Ahn, Y. J. Yoon, W. S. Lee, Design and numerical simulation ofminiaturised COBRA lens horn [J]. Electronics Lett.,2007,43(22).
    [57]黄立伟,金志天.反射面天线[M].陕西:西北电讯工程学院出版社,1986.
    [58]J. Flodin, P. S. Kildal, A. Kishk. Moment Method Design of a Large S/X BandCorrugated Horn [J]. Antennas and Propagation Society International Symposium,1996.AP-S. Digest,2030-2033.
    [59]W. A. Imbriale. An alternative feed design for the MRO antenna [J]. IEEETrans. Antennas Propag.,2005,5:761-764.
    [60]F. F. Dubrovka, R.F. Dubrovka, Y. A. Ovsianyk. A novel multi-band coaxialfeed system with low cross-polar radiation [J]. The Second European Conference onAntennas and Propagation (EuCAP),2007,1-4.
    [61]Williams et al., Dual-band Combiner for Horn Antenna [P]. US Patent4199764.
    [62]C. Granet, G. J. James. Optimized spline-profile smooth-walled tri-band20/30/44GHz horns [J]. IEEE Antennas and Wireless Propagation Letter.2007,6:492-494.
    [63]王俊义. S/X双频共用同轴馈源[J].无线电工程,2006,36(3):47-50.
    [64]叶云裳.航天器天线(下)——工程与新技术[M].北京:中国科学技术出版社,2007.
    [65]T. K. Wu. Double-square-loop FSS for multiplexing four (S-X-Ku-Ka) bands[J]. IEEE Trans. Antennas Propag.,1991,1885-1888.
    [66]G. S. Hickey, T. K. Wu. A four-frequency selective surface spacecraftsub-reflector antenna [J]. Microwave Journal,1996,240-252.
    [67]J. Huang, T. K. Wu, S. W. Lee. Tri-band frequency selective surfaces withcircular ring elements [J]. IEEE Trans. Antennas Propag.,1994,42(2):576-579.
    [68]M. Ohira, H. Deguchi, M. Tsuji, et al.. Multiband single-layer frequencyselective surface designed by combination of genetic algorithm andgeometry-refinement technique [J]. IEEE Trans. Antennas Propag.,2004,52(11):2925-2931.
    [69]M. L. Zimmerman, S. W. Lee. Analysis of reflector antenna system includingfrequency selective surfaces [J]. IEEE Trans. Antennas Propag.,1992,1264-1266.
    [70]T. K. Wu. Four-band frequency selective surface with double-square-looppatch elements [J]. IEEE Trans. Antennas Propag.,1994,42(12):1659-1663.
    [71]李庭.四频段频率选择表面副反射面天线的分析与设计[D].西安:电子科技大学,2007.
    [72]K. Ueno, T. Itanami, H. Kumazawa, et al.. Characteristics of frequencyselective surfaces for a multi-band communication satellite [C]//IEEE,1991,735-738.
    [73]袁成卫,钟辉煌,钱宝良.高功率微波弯曲圆波导设计[J].强激光与粒子束,2009,21(2):255-259.
    [74]C. W. Yuan, Q. Zhang. Design of a TM01-TE11Transmission Line forHigh-Power Microwave Applications [J]. IEEE Trans. Plasma Sci.,2009,37(10):1908–1915.
    [75]M. Yeddulla, S. G. Tantawi, J. Guo, et al.. An analytical design and analysismethod for a high-power circular to rectangular waveguide mode converter and itsapplications [J]. IEEE Trans. Microw. Theory and Techni.,2009,57(6):1516-1525.
    [76]S. G. Tantawi, C. D. Nantista, V. A. Dolgashev, et al.. High-power multimodeX-band RF pulse compression system for future linear colliders [J]. Phys. Rev. SpecialTopics-Accelerator and Beams,2005,8:042002
    [77]袁成卫.高功率双频段共用天线[R].长沙:国防科技大学光电学院,2008.
    [78]张宏伟,李亚伟,王松涛.高功率双频段共用天线[C].全国第七届高功率微波学术研讨会,四川峨眉,2008.
    [79]G. Li, C. Yuan, J. Zhang, et al.. A diplexer for gigawatt class high powermicrowaves [J]. Laser Part. Beams,2008,26:371-377.
    [80]G. Li, T. Shu, C. Yuan, et al.. Simultaneous operation of X band gigawatt levelhigh power microwaves [J]. Laser Part. Beams,2010,28:35-44.
    [81]李国林,舒挺,袁成卫. S波段高功率微波波导输出多工器研究[J].强激光与粒子束,2007,19(4):667-670.
    [82]李国林.高功率微波多路耦合输出的研究[D].长沙:国防科技大学,2010.
    [83]王文祥.微波工程技术[M].北京:国防工业出版社,2009.
    [84]M. Yeddulla, S. G. Tantawi. Analysis of a compact circular TE01–rectangularTE02waveguide mode converter [C]//Proceedings of PAC07, New Mexico, USA,2007,587-589.
    [85]黄宏嘉.微波原理(卷I)[M].北京:科学出版社,1963.
    [86]顾茂章,张克潜.微波技术[M].北京:清华大学出版社,1989.
    [87]A. A. Kirilenko, L. A. Rud, V. I. Tkachenko. Semi-inversion method for anaccurate analysis of rectangular waveguide H plane angular discontinuities [J]. RadioScience,1996,31(5):1271-1280.
    [88]A. A. Kirilenko, L. A. Rud, V. I. Tkachenko. Nonsymmetrical H-plane cornersfor TE10-TEq0mode conversion in rectangular waveguides [J]. IEEE Trans. Microw.Theory and Techni.,2006,54(6):2471-2477.
    [89]S. D. Polevin, S. D. Korovin, B. M. Kovalchuk, et al.. Pulse lengthening ofS-band resonant relativistic BWO [C]//Proceedings of13thInt. Symp. High CurrentElectron., Tomsk, Russia,2004,246-249.
    [90]J. Zhang, Z. Jin, J. H. Yang, et al., Recent advance in long-pulse HPM sourceswith repetitive operation in S-, C-, and X-bands [J]. IEEE Trans. Plasma Sci.,2011,39(6):1438-1445.
    [91]张强,袁成卫,刘列.一种T形高功率微波功率合成器[J].强激光与粒子束,2010,22(10):2369-2372.
    [92]M. Thumm, H. Kumric. TE03-TE01mode converters for use with a150GHzgyrotron [J]. Int. J. Infrared and millimeter Waves,1987,8(3):227-240.
    [93]G. S. Ling, J. J. Zhou. Converters for the TE11mode generation from TM01vircator at4GHz [J]. Chin. Phys. Lett.,2001,19(9):1285-1287.
    [94]舒挺,王勇,李继健等.高功率微波的远场测量[J].强激光与粒子束,2003,15(5):485-488.
    [95]J. L. Doane. Mode converters for generating the HE11mode from TE01in acircular waveguide [J]. Int. J. Electronics,1982,53(6):573-585.
    [96]J. Zhang, H. Zhong, T. Shu, et al.. Experimental investigation on low magneticfield operation of an overmoded slow-wave high-power microwave (HPM) generator [J].Chin. Phys. Lett.,2004,21(12):2479-2482.
    [97]张军,钟辉煌,舒挺等. X波段长脉冲高功率微波产生的实验研究[J].强激光与粒子束,2008,20(3):443-446.
    [98]张军,靳振兴,杨建华等. X波段GW级长脉冲高功率微波的设计与实验[J].强激光与粒子束,2010,22(11):2643-2647.
    [99]张军.新型过模慢波高功率微波发生器研究[D].长沙:国防科技大学,2004.
    [100]白现臣,张建德,杨建华.磁场引导双电子束传输模拟和实验研究[J].强激光与粒子束,2008,20(10):1675-1678.
    [101]白现臣.单台加速器产生同步高功率双电子束研究[D].长沙:国防科技大学,2007.
    [102]方进勇,宁辉,张世龙等.利用速调管放大器产生高功率微波拍波实验研究[J].物理学报,2003,52(4):2224-2226.
    [103]袁成卫,钟辉煌,刘庆想等.半径渐变同轴波导模式耦合系数研究[J].强激光与粒子束,2005,17(8):1251-1255.
    [104]袁成卫,钟辉煌,刘庆想等.同轴波导内金属支撑杆的散射特性研究[J].强激光与粒子束,2005,17(7):1055-1059.
    [105]张晓萍,钟辉煌,袁成卫.微波源中同轴提取区支撑杆的理论分析与设计[J].微波学报,2004,20(2):46-50.
    [106]张强.同轴馈电双波段馈源系统的研究[D].长沙:国防科技大学,2008.
    [107]赵立山,袁成卫,张建德等.低过模高功率微波方圆模式转换器设计[J].强激光与粒子束,2011,23(11):3087-3090.
    [108]靳振兴,张军,杨建华等. S波段长脉冲相对论返波振荡器实验研究[J].强激光与粒子束,2010,22(11):2648-2652.
    [109]舒挺,王勇等.高功率微波的远场测量[J].强激光与粒子束,2003,15(5):485-488.
    [110]舒挺,王勇等.轴向反馈式虚阴极振荡器辐射微波模式的远场测定[J].强激光与粒子束,2005,17(5):737-740.
    [111] H. Li, M. Thumm. Mode conversion due to curvature in corrugatedwaveguides [J]. Int. J. Electronics,1991,71:333-347.
    [112]李宏福.弯曲圆波导中模式耦合的研究[J].电子科技大学学报,1991,20(5):491-496.
    [113]李宏福, M. Thumm.弯曲波纹圆波导中模式耦合系数的研究[J].红外与毫米波学报,1992,11(6):486-491.
    [114]牛新建.高功率微波传输线及模式变换研究[D].成都:电子科技大学,2003.
    [115]张玉文,舒挺,袁成卫. TM01-TE11弯形圆波导模式转换器的优化设计[J].强激光与粒子束,2005,17(4):591-594.
    [116]张玉文,舒挺,袁成卫.组合型TM01-TE11弯形圆波导模式转换器研究[J].强激光与粒子束,2005,17(1):117-120.
    [117] C. W. Yuan, H. H. Zhong, B. L. Qian. Tri-bend TM01-TE11mode converterwith input-output aligned on the same axis [J]. High Power Laser and Particle Beams,2006,18(11):1864-1868.
    [118]张强,袁成卫,刘列. TM01-TE11三弯曲圆波导模式转换器[J].强激光与粒子束,2008,20(7):1173-1176.
    [119] Q. Zhang, C. W. Yuan, L. Liu. Design of a dual-band power combiningarchitecture for high-power microwave applications [J]. Laser and Particle Beams,2010,28:377-385.
    [120]张强,袁成卫,刘列.具有同轴结构的高功率微波弯曲波导设计[J].强激光与粒子束,2011,23(11):3127-3130.
    [121]杜广星,钱宝良,王弘刚.轴向提取矩形波导TE10模虚阴极振荡器[J].强激光与粒子束,2006,18(5):253-256.
    [122] C. D. Nantista, F. Tamura. An alternate dual-moded DLDS utilizing theTE01and TE02modes [C]//XX International Linac Conference, Monterey, California,2009,757–759.
    [123] V. L. Granatstein, W. Lawson. Gyro-amplifiers as candidate RF drivers forTeV linear colliders [J]. IEEE Trans. Plasma Sci.,1996,24:648–686.
    [124] I. Spassovsky, E. S. Gouveia, S. G. Tantawi, et al.. Design and cold testingof a compact TE○01-TE□20mode converter [J]. IEEE Trans. Plasma Sci.,2002,30(3):787–793.
    [125] S. G. Tantawi, C. D. Nantista, N. Kroll, et al.. Multimoded RF delay linedistribution system for the next linear collider [J]. Phys. Rev. SpecialTopics-Accelerator and Beams,2002,5:032001.
    [126] S. G. Tantawi. A novel circular TE01-mode bend for ultra-high-powerapplications [J]. Journal of Electromagnetic waves and Applications,2004,18(12):1679-1687.
    [127] D. S. Levinson, I. Rubinstein. A technique for measuring individual modespropagating in overmoded waveguide [J]. IEEE Trans. Microw. Theory and Techni.,1966,14(7):310-322.
    [128]李浩,钟哲夫.运用模匹配法设计高功率高效率多模馈源[J].强激光与粒子束,2005,17(8):1243-1246.
    [129]李浩,钟哲夫.高斯馈源的耦合波理论与实验研究[J].强激光与粒子束,2004,16(10):1313-1316.
    [130]杨可忠.特殊波束面天线技术[M].北京:人民邮电出版社,2009.
    [131]杨可忠,杨智友,章日荣.现代面天线新技术[M].北京:人民邮电出版社,1993.
    [132] G. L.James, B. M. Thomas. TE11to HE11cylindrical waveguide modeconverters using ring-loaded slots [J]. IEEE Trans. Microw. Theory and Techni.,1982,30(3):278-285.
    [133] G. L. James. Analysis and design of TE11-to-HE11corrugated cylindricalwaveguide mode converters [J]. IEEE Trans. Microw. Theory and Techni.,1981,29(10):1059-1066.
    [134] G. L. James. Admittance of irises in coaxial and circular waveguides forTE11mode excitation [J]. IEEE Trans. Microw. Theory and Techni.,1987,35(4):430-434.
    [135] G. L. James. On the problem of applying mode-matching techniques inanalyzing conical waveguide discontinuities [J]. IEEE Trans. Microw. Theory andTechni.,1983,31(9):718-723.
    [136]任朗.天线理论基础[M].北京:人民邮电出版社,1980.
    [137] D. S. Lerner. Calculation of radiation heating in a microwave luneberg lens[J]. IEEE Trans. Antennas Propag.,1964,16-23.
    [138] P. Rozenfeld. The electromagnetic theory of three-dimensionalinhomogeneous lenses [J]. IEEE Trans. Antennas Propag.,1975,366-370.
    [139] C. A. Fernandes. Shaped dielecyric lenses for wireless millimeter-wavecommunicatioins [J]. IEEE Trans. Antennas Propag.,1999,41(5):356-365.
    [140] S. Min, H. Jung, G. Park,et al.. Mode conversion of high-power electro-magnetic microwave using coaxial-beam rotating antenna in relativistic backward-waveoscillator [J]. IEEE Trans. Plasma Sci.,2010,38(6):1391-1397.
    [141]奚定平.贝塞尔函数[M].北京:高等教育出版社;德国:施普林格出版社,1998.
    [142]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000.
    [143]王元明.数学物理方程与特殊函数(第三版)[M].北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700