用户名: 密码: 验证码:
自适应抗差UKF在卫星组合导航中的理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于各种单一的导航系统都有缺点,上世纪70年代,随着电子计算机技术特别是微机技术的迅猛发展和现代控制系统理论的进步,组合导航技术开始迅猛发展起来,成为目前导航技术发展的重要方向之一,并在航海、航空与航天等领域有着广泛的应用前景。对于各种不同形式的组合导航系统通常均具有以下功能:(1)超越功能。组合导航系统能够充分利用各个子系统的导航信息,具有单个子系统不具备的功能。(2)互补功能。由于组合导航系统综合利用了各子系统的信息,所以各子系统能够取长补短,扩大使用范围。(3)余度功能。各子系统感测同一信息源,使测量值冗余,提高系统的可靠性。
     组合导航系统信息处理的核心是Kalman滤波器,它是在两个或多个导航系统输出的基础上,利用Kalman滤波去估计系统的各种误差,再用误差状态的估计值去校正系统,达到综合的目的。Kalman滤波在卫星导航定位以及卫星组合导航定位中的应用是目前国内外研究的热点,抗差Kalman滤波、自适应Kalman滤波、以及它们的改进算法包括自适应Kalman滤波、抗差自适应Kalman滤波、自适应抗差联邦滤波都有学者进行研究和建模,但是对于抗差无迹Kalman滤波(Unscented Kalman Filter,UKF)和自适应UKF算法的研究尚且存在空缺。
     本文重点分析UKF滤波算法在GPS/SINS卫星组合导航系统中的应用现状,研究其定位精度以及滤波算法的性能指标,针对标准UKF滤波算法的主要缺点提出一种改进的抗差UKF滤波算法,即结合自适应估计理论的自适应抗差UKF滤波算法。论文的主要内容及贡献包括:
     研究卫星组合导航系统的基本原理,在组合方式的研究方面,提出了以软硬件全组合为基础的紧组合方法,并且将此组合方式应用于GPS/SINS卫星组合导航系统中,作为研究UKF滤波算法的系统平台。此方法能够简化组合系统的硬件设计要求,同时提高软件的应用范围。与此同时,详细分析GPS/INS、GPS/DR、GPS/INS/TAN等几种常用的卫星组合导航系统及其组合原理、组合结构图。
     根据卫星组合导航系统的实际应用环境,分析总结以下几种滤波算法的优缺点,包括Kalman滤波及其各种改进算法、粒子滤波、联邦滤波、Sage滤波、自适应滤波、鲁棒滤波(H∞滤波)以及智能滤波等。
     深入研究Kalman滤波的基础理论,分析几种改进型Kalman滤波方法,包括扩展Kalman滤波(EKF),无迹Kalman滤波(UKF),联邦Kalman滤波、抗差Kalman滤波以及自适应Kalman滤波。重点分析UKF算法的性能优缺点,其主要优点是直接利用非线性模型,避免引入线性化误差,从而提高了滤波精度,而且不必计算雅可比矩阵,其主要缺点是仍然应用了Kalman滤波的滤波框架,需要先验已知的系统数学模型和噪声统计信息。
     针对卫星组合导航系统的数学模型、系统噪声和观测噪声统计特性未知的情况,提出一种基于自适应因子的自适应UKF滤波算法,将新算法应用于GPS/SINS等卫星组合导航系统中,并与标准UKF和抗差UKF进行比较,从定位精度和算法冗余度上详细分析新算法的性能优势。结果显示,由于从多种误差因素进行考虑,新算法能够较大程度的提高卫星组合导航系统的定位精度。
     针对卫星组合导航系统的观测粗差引起的定位精度误差,提出一种基于抗差估计理论的抗差UKF滤波算法。标准Kalman滤波应用的是经典的估计模型,它是针对偶然误差的,粗差的存在将不可避免地对估计结果产生影响,甚至个别大粗差就会使结果产生重大偏离。因此,如何使Kalman滤波的平差模型本身具备抗粗差的能力,正是抗差Kalman滤波研究的内容。
     综合考虑观测粗差和模型误差两者共同引起的误差因素,提出自适应抗差UKF滤波算法,将此算法应用于北斗/SINS, GPS/SINS等卫星组合导航系统中,并以GPS/SINS组合系统为主要研究对象,通过计算机仿真,证明新算法分别可以减少粗差和动态误差模型不准确性带来的精度影响因素,达到较高的定位精度。由于卫星组合导航系统是目前科学研究的热点之一,其应用领域和应用前景十分广泛,因此研究如何改善滤波算法的性能从而提高组合系统的导航精度具有很好的实际意义。
Recently, the navigation systems often used in the aircrafts include:the inertial navigation systems, the satellite navigation system, the Doppler navigation systems, the celestial navigation systems, and the terrain-aided navigation system, and so on. In the last 70's century, the integrated navigation system has been emerged in view of the shortcomings of the single navigation system. This new kind of navigation system has been used in the fields of the maritime, the aviation and the aerospace. With the development of the computer technology, especially the micro-computer technology and the modern-control theory, the integrated navigation system is becoming an important development direction of the modern navigation system. The main characteristic of the integrated system is that a variety of single navigation systems can be combined together using some algorithms and their advantages can be used to enforce the whole performance of the system. For many different forms of the integrated navigation systems, their typical functions include:Firstly, the surpass capability. The integrated navigation system has many additional functions which a single subsystem does not have, because it is can take full advantage of the sub-systems. Secondly, the complementary function. The integrated system has the expanded scope of the application, because of the combination of the information from the different subsystems. Thirdly, the redundancy capability. More signal information can be obtained from the subsystems to improve the reliability of the integrated system.
     The key technology of information processing phase in the integrated navigation system is the Kalman filtering algorithm. This processing algorithm estimates the system errors based on the Kalman filtering algorithm to correct the positioning errors of the integrated system. The main signal information is obtained from two or more subsystems' output to achieve a comprehensive purpose. Currently, many researchers at home and abroad have studied the Kalman filtering algorithm used in the satellite navigation and the satellite integrated navigation. The main research fields include robust Kalman filtering algorithm, adaptive Kalman filtering algorithm, as well as their improved algorithm. However, few or no analysis has been focused on the robust Unscented Kalman filtering (UKF) algorithm and the adaptive UKF algorithm.
     This dissertation focuses on the application of the UKF in the GPS/SINS Integrated Navigation System, its positioning accuracy and the advantages and disadvantages of this filtering algorithm. The dissertation puts forward an improved robust-UKF algorithm based on the main disadvantages of the standard-UKF algorithm, which is combining the adaptive-estimation theory into the robust filtering algorithm. The main contributions of the dissertation include:
     ·Firstly, the principles of the satellite integrated navigation system were studied. An improved system tight-combination method is presented, which is based on a full portfolio of hardware and software combination method. This new method is used in the GPS/SINS navigation system to become the main experimental platform of the filtering algorithm. The advantage of our new combination method is that it can simplify the hardware-designing process, as well as improve the software applications. At the same time, a detailed analysis of GPS/SINS, GPS/DR, GPS/INS/TAN and other integrated systems has been done to study their combination principle and combination chart.
     ·Secondly, some filtering algorithm currently used in the satellite integrated navigation system are introduced, including the Kalman filtering algorithm and its improved algorithms, the particle filtering algorithm, the Federal filtering algorithm, the Sage filtering algorithm, the adaptive filtering algorithm, the robust filtering algorithm, and the intelligent filtering algorithm. A detailed analysis to the advantages and disadvantages of these filtering algorithms has been done, based on the practical application environment of the satellite navigation system.
     ·Thirdly, the basic theory of the standard Kalman filtering algorithm is studied deeply. Several improved Kalman filtering algorithms are analyzed, including the Extended Kalman filtering algorithm (EKF), the Unscented Kalman filtering algorithm (UKF), the Federal Kalman filtering algorithm, the robust Kalman filtering algorithm and the adaptive Kalman filtering algorithm. After summarizing the performance advantages and disadvantages of UKF, we can conclude that:the main advantages are the direct use of the non-linear system model, the avoidance of the function linear-error and no need to calculate the Jacobian matrix; the main disadvantage is the requirement of the priori known to the system mathematical model and noise statistics.
     ·An adaptive UKF algorithm based on the standard UKF algorithm are proposed to solve the problems that the system's mahematic model is non-accuracy and the noise statistics is unknown. This new algorithm is applied to the GPS/SINS integrated navigation system to analyze its performance in detail, like positioning accuracy and calculation redundancy. Comparing with the standard UKF and the Robust UKF, our new adaptive UKF algorithm can improve the positioning accuracy of the satellite navigation system significantly.
     ·A robust UKF algorithm based on the robust estimation theory is proposed. This new algorithm is mainly used to improve the poor positioning accuracy caused by the observation-rough errors. The classical estimation model of the standard Kalman filtering algorithm is used to reduce the accidental error. The presence of gross errors will impact the estimation results inevitably and even cause a significant positioning departure. Therefore, the main study point of the robust Kalman filtering algorithm is how to make the adjustment Kalman filter model itself has the ability of anti-gross error.
     ·Last but not least, an adaptive-robust UKF filtering algorithm is presented, after comprehensively considering of the error caused by observing gross error factors and the model error caused by error factors. Our new UKF algorithm is applied to the BD/SINS and GPS/SINS integrated satellite navigation system respectively. The simulation results indicate that this improved algorithm can achieve a high positioning accuracy, while reducing the accuracy influencing factors caused by the gross error and dynamic error model.
     Currently, the problem exist in the satellite integrated navigation system is a hot scientific research topic, and the applications and prospects of this system are very broad. Therefore, it is a great practical significance to study how to improve the performance of filtering algorithms to improve the navigation accuracy of the integrated systems.
引文
[1]周祖渊.全球卫星导航系统的构成及其比较[J].重庆交通大学学报(自然科学版),2008,2(1):30-35.
    [2]王惠南.GPS导航原理与应用[M].北京:科学出版社,2003,8.
    [3]帅平,曲广吉,向开恒.现代卫星导航系统技术的研究进展[J].中国空间科学技术,2004,24(3):46-53.
    [4]S. Loddo, M. C. Crews, S. G. Revnivykh. News from satellite navigation systems. 2007 Munich Satellite Navigation Summit, Munich Germany:International Union of Navigation,2007.
    [5]王智,耿相铭.Galileo卫星导航系统中的BOC调制与接收技术,上海航天,2007,2(6):45-48.
    [6]Yang Yunchun, Jay A. Farrell. Magnetometer and differential carrier phase GPS-aided INS for advanced vehicle control [J]. IEEE Transactions on Robotics and Automation,2003,19(2):269-281.
    [7]房建成,申功勋,万德钧,等.GPS/DR组合导航系统自适应扩展卡尔曼滤波模型的建立[J].控制理论与应用,1998,15(3):385-389.
    [8]吴小兰.GPS/SINS组合导航系统研究.中山大学[D],2007.
    [9]林雪原,孙校书,张力.GPS/DR组合系统建模与实现[J].海军航空工程学院学报,2005,20(3):325-328.
    [10]房建成,申功勋,万德钧.一种自适应联合卡尔曼滤波器及其在车载GPS/DR组合导航系统中的应用研究[J].中国惯性技术学报,1998,6(4):1-6.
    [11]寇艳红,张其善,李先亮.车载GPS/DR组合导航系统的数据融合算法[J].北京航空航天大学学报,2003,29(3):264-268.
    [12]柴艳菊,欧吉坤.GPS/DR组合导航中一种新的数据融合算法[J].武汉大学学报:信息科学版,2005,30(12):1048-1051.
    [13]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4):293-298.
    [14]YANG Y, HE H, XU G. Adaptively Robust Filtering for Kinematic Geodetic Positioning [J]. Journal of Geodesy,2001,75 (2/3):109-116.
    [15]杨元喜,文援兰.卫星精密轨道综合自适应抗差滤波技术[J].中国科学:D辑,2003,32(11):1112-1119.
    [16]YANG YUAN-XI, GAO WEI-GUANG. A New Learning Statistic for Adaptive Filter Based on Predicted Residuals [J]. Progression Natural Science,2006,16(5): 833-837.
    [17]Cui Xianqiang, Yang Yuanxi. Adaptively robust filtering with classified adaptive factors [J]. Progress in Natural Science,2006,16(8):846-841.
    [18]杨殿阁,连小珉,张涛,耿华,基于北斗卫星的车辆组合导航系统开发[J].清华大学学报(自然科学版),2008,48(5):50-56.
    [19]邹维兰让,高社生,任思聪,融合SAR的INS/GNSS组合导航系统[J].航空电子技术,2000,(1):22-25.
    [20]于兴旺,张小红.GPS/GLONASS组合单点定位在导航中的应用[J].测绘信息与工程,2007,32(6):1-2.
    [21]林雪原,刘建业.北斗双星定位系统改进及其算法的研究[J].空间科学学报,2003,23(2):149-154.
    [22]陈俊勇.GPS现代化和Galileo运行准备的进展[J].测绘通报,2005,3:1-5.
    [23]帅平,曲广吉,向开恒.现代卫星导航系统技术的研究进展[J].中国空间科学技术,2004,3:45-53.
    [24]ICAO. ICD-2002 (GLONASS Interface Control Document, Version5) [R]. [s. n.]: International Civil Aviation Organization (ICAO),2002. RTCA Paper No. 639295/SC1592685, GNSSP/22WP/66.
    [25]边少锋.卫星导航系统概论[M].北京:电子工业出版社.2005.
    [26]林雪原.北斗双星定位系统的分析与研究[J].导航与控制.2005.4(1):16-20.
    [27]A. Giremus, J. Y. Tourneret, P. M. Djuric. An Improved Regularized Particle Filters for GPS/INS Integration[C]//Proc. of the 6th IEEE Workshop on Signal Processing Advances in Wireless Communications. Toulouse, France:[s. n.],2005:1013-1017.
    [28]M. S. Arulampalam, S. Maskell, N. Gordon. A Tutorial on Particle Filters for Online Nonlinear/non-nonlinear/non-gaussian Bayesian Tracking [J]. IEEE Transactions on Signal Processing,2002,50(2):174-188.
    [29]T. H. Kerr. Decentralized filtering and redundancy management for multi-sensor navigation[J]. IEEE Transactions on Aerospace and Electronic System,1987, AES223(1):83-119.
    [30]N. A. Carlson, M. P. Berarducci. Federated Kalman filter simulation results[J]. Navigation,1994,41(3):297-321.
    [31]李正强,王宏力.信息融合技术在组合导航系统中的应用[J].飞行力学,2006,24(1):89-92.
    [32]Shen Xuemin, Li Deng. Game theory approach to discrete H∞ filter design [J]. IEEE Trans. on Signal Processing,1997,45(4):1092-1095.
    [33]Shen Xuemin, Li Deng. A dynamic system approach to speech enhancement using the H∞ filtering algorithm [J]. IEEE Trans. On Speech and Audio Processing,1999, 7(4):391-399.
    [34]D. Simon. From here to infinity [J]. Embedded Systems Programming,2001,14(11): 615-623.
    [35]Jun, Shen Xuemin, Jon W M. Robust channel estimation for OFDM wireless communication systems-an H∞ approach [A]. IEEE Vehicular Technology Conference,2002,4:24-28.
    [36]王丹力等.基于RBF网络的惯导系统初始对准[J].航天控制,1999,(2):44-50.
    [37]Nassar Sameh, Niu XiaoJi. INS/GPS sensitivity analysis using different Kalman Filter approaches [C]. Proceedings of the Institute of Navigation, National Technical Meeting,2006, (2):993-1001.
    [38]李书进,虞晖.基于扩展卡尔曼滤波的非线性带滑移滞变系统的实时估计[J].武汉大学学报:信息科学版,2004,29(1):89-93.
    [39]Rao K. Deergha, Reddy B. Srinivas. Ridge regression based EKF for GPS navigation under bad GDOP conditions. IETE Journal of Research,1996,42(2): 377-382.
    [40]Eric A. Wan and Rudolph van der Merve. The Unscented Kalman Filter for Nonlinear Estimation [C]. Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control, IEEE, Lake Louise, Canada, 2000:153-158.
    [41]万莉,刘焰春,皮亦鸣.EKF、 UKF、 PF目标跟踪性能的比较[J].雷达科学与技术,2007,5(1):13-16.
    [42]江宝安.基于UKF的再入大气层弹道导弹跟踪研究[J].雷达科学与技术,2008,6(2):147-150.
    [43]Jwo Dah-Jing, Lai Chun-Nan. Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation[J]. GPS Solutions,2008,9(12), pp:249-260.
    [44]Park Chan Gook, Kim, KwangJin Kang, Woo Yong. UKF based in-flight alignment using low cost IMU[C]. Collection of Technical Papers-AIAA Guidance, Navigation, and Control Conference,2006(4):2637-2648.
    [45]Haykin Simon. The unscented Kalman filter, Kalman filtering and neural networks [M]. Wiley Publishing,2001.
    [46]吴富梅,杨元喜等.GPS/DR组合导航自适应Kalman滤波算法[J].测绘科学技术学报,2008,25(3):206-208.
    [47]Jwo Dah-Jing, Wang Sheng-Hung. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sensors Journal, May 2007, vol.7, pp: 778-789.
    [48]沈云峰,朱海,莫军等.简化的Sage-Husa自适应滤波算法在组合导航中的应用及仿真[J].青岛大学学报,2001(3):44-47.
    [49]刘建娟,徐晓苏,刘锡祥.基于小波变换的自适应滤波技术在组合导航系统中的应用[J].中国惯性技术学报,2005(10):35-38.
    [50]王春霞,赵伟等.双重自适应联邦滤波在SINS-卫星组合中的应用研究[J].传感器与微系统,2008,27(3):66-69.
    [51]高为广,何海波,陈金平.自适应UKF算法及其在GPS/INS组合导航中的应用[J].北京理工大学学报.2008,28(6):505-509.
    [52]Yang Yuanxi, He Haibo, Xu Guochang. Adaptively robust filtering for kinematic geodetic positioning [J], Journal of Geodesy,2001,75(2):109-116.
    [53]周江文,黄幼才,杨元喜,等.抗差最小二乘法[M].武汉:华中理工大学出版社,1997.
    [54]A. H. Mohamed, K. P. Schwarz. Adaptive Kalman Filtering for GPS/INS [J]. Journal of Geodesy,1999,7(30):193-203.
    [55]Yang Yuanxi, Song Lijie, Xu Tianhe. Robust Estimator for Correlated Observations Based on Infector Equivalent Weights [J]. Journal of Geodesy,2002,7(6):353-358.
    [56]张浩.SINS/GPS组合导航系统滤波算法研究及工程实现[D].南京:南京理工大学,2004.
    [57]潘涛.低成本SINS/GPS组合导航系统技术[D].南京:南京理工大学,2004.
    [58]袁建平,方群,郑愕,GPS在飞行器导航定位中的应用[M],西北工业大学出版社,2000.
    [59]黄晓瑞,崔平远.基于信息融合的组合导航系统研究[J].数据采集与处理,2001,6(2):210-214.
    [60]王文贯,唐诗华.GPS卫星定位误差概论,测绘与空间地理信息,2006,29(5):39-42.
    [61]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [62]张继伟.Kalman滤波理论及其在导航系统中的应用[M],北京:科学出版社,2003.
    [63]JUL IER S J, UHLMANN J K, DURRANTWHYTEN H F. A New App roach for Filtering No-linear System [C]. Proceedings of the American Control Conference. Washington,1995:1628-1632.
    [64]徐天河,杨元喜.改进的Sage自适应滤波方法[J].测绘科学,2000,25(3):22-24.
    [65]祝转民,杨宜康.Kalman滤波工程应用问题分析及改进方法研究[J].宇航学报,2002,23(3):44-47.
    [66]高为广,何海波,陈金平.自适应UKF算法及其在GPS/INS组合导航中的应用[J].北京理工大学学报,2008,28(6):505-509.
    [67]Hide C, Moore T, Smith M. Adaptive Kalman Filtering Algorithms for Integrating GPS and low cost INS[C].2004 Position Location and Navigation Symposium, IEEE Aerospace and Electronic Systems Society, Monterey, Califorlia,2004: 227-233.
    [68]Al-Dhaher A H G, Mackesy D. Multi-sensor data fusion architecture[C]. The 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications, Ottawa, Ontario, Canada,2004:159-163.
    [69]HU Cong-wei, CHEN Wu. Adaptive Kalman filtering for vehicle navigation[J]. Journal of Global Positioning System,2003,2(1):42-47.
    [70]YANG Qing-mei, SUN Jia-min. Simulation study on underwater autonomous robot based on fuzzy Kalman[C]. Fourth International Conference on Fuzzy Systems and Knowledge Discovery,2007,2:619-623.
    [71]马瑞平,魏东,张明廉.一种改进的自适应卡尔曼滤波及在组合导航中的应用[J].中国惯性技术学报,2006,14(6):37-40.
    [72]张涛,徐晓苏.基于模糊白适应的组合导航系统信息融合算法[J].中国惯性技术学报,2007,15(2):197-201.
    [73]王美玲,卢磊.基于模糊算法的GPS定位误差估计[J].中国惯性技术学报,2007,15(2):185-187,192.
    [74]耿延睿,李大字,郭文荣.衰减因子自适应估计卡尔曼滤波比较研究[J].控制工程,2006,13(S1):70-72.
    [75]YANG Qing-mei, SUN Jian-min. Design of Location System for an Underwater Autonomous Robot[C].2007 IEEE International Conference on Control and Automation, Guangzhou, China,2007:1756-1759.
    [76]Sasiadek J Z, Khe J. Sensor fusion based on fuzzy Kalman filter[C]. Proceedings of the Second International Workshop on Robot Motion and Control, Bukowy, Dworek, Poland,2001:275-283.
    [77]FU Jun, ZHANG Xiao-feng, BIAN Hong-wei, XU Jiang-ning, ZHU Tao. Adaptive Kalman filter based on fuzzy logic control for marine integrated navigation system [J]. Journal of Chinese Inertial Technology,2007,15(4):412-417.
    [78]高为广,张双成,GPS导航中的抗差自适应Kalman滤波算法[J].测绘科学,2005,30(2):98-100.
    [79]周东华,叶银忠著.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [80]付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [81]Julier S, Uhlmann J. Unscented filtering and nonlinear estimation [J]. Proc of the IEEE Aerospace and Electronic Systems,2004,92(3):401-422.
    [82]张常云.三星定位原理研究[J].航空学报,2001,3,22(2):175-176.
    [83]薛鸿印,李景森.北斗无源定位技术[J].现代防御技术,2005,33(4):39-41.
    [84]李锐等.无源北斗/惯导组合导航系统技术研究[J].微计算机应用,2005,11,26(6):648-651.
    [85]高法钦,谈展中.无源北斗/惯导组合导航算法研究[J].系统工程与电子技术,2006,6,28(6):903-906.
    [86]黄显亮,刘建业,林雪原,等.北斗双星/SINS组合导航系统滤波模型的一致性研究[J].中国惯性技术学报,2005,13(5):29-32.
    [87]汪秋婷,胡修林.基于UKF的新型无源北斗/SINS组合系统直接法卡尔曼滤波[J].系统工程与电子技术,2010,32(2):376-379.
    [88]J. W. Erickson, P. S. Maybeck, J. F. Raquet. Multipath-adaptive GPS/INS receiver [J]. Aerospace and Electronic Systems,2005,41(2):645-657.
    [89]Zhou Zhanxin, Gao Yanan and Chen Jiabin. Unscented Kalman Fliter for SINS alignment[J]. Journal of Systems Engineering and Electronics,2007,18(2), pp: 327-333.
    [90]R ISTIC B, FAR INA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry radar [J]. IEE Proceedings:Radar, Sonar and Navigation,2003,150 (2):65-70.
    [91]CRASSID IS J L, MARKLEY F L. Unscented filtering for space-craft attitude estimation [J]. Journal of Guidance, Control and Dynamics,2003,26(4):536-542.
    [92]武延鹏,尤政,任大海.采样Kalman滤波器在天文卫星定姿滤波中的应用[J].清华大学学报(自然科学版),2003,43(8):1013-1016.
    [93]余学祥.抗差卡尔曼滤波模型及其在GPS监测网中的应用[J].测绘学报,2001,30(1):26-30.
    [94]张金槐.卡尔曼滤波发散的统计识别及自适应滤波技术[J].长沙:国防科技大学学报,1998,20(1):1-24.
    [95]许国辉,刘跃.卡尔曼滤波的精度评定[J].广州大学学报(自然科学版),2002,(5):57-59.
    [96]HUANG X Y, CUI H T, CUI P Y. An autonomous optical navigation and guidance for soft landing on asteroids[J]. Acta Astronautica,2004,54 (10):763-771.
    [97]A. Steven. Palm-size spy planes [J]. Mechanical Engineering,1998,120(2):74-78.
    [98]Bar-Shalom Y, Li X R. Thiagalingam Kirubarajan. Estimation with Applications to Tracking and Navigation:Theory Algorithms and Software [M]. John Wiley& Sons, Inc,2001.
    [99]韩崇昭,朱红艳,段战胜,等.多源信息融合及应用[M].北京:清华大学出版社,2006.
    [100]Murat E, Derek P A. Maneuvering Target Tracking with an Adaptive Kalman Filter [C]. Proceedings of the 37th IEEE Conference on Decision& Control, Tampa, Florida, USA,1998:737-742.
    [101]Julier S J, Uhlmann J K. A New Extension of the Kalman Filter to Nonlinear Systems [C]. Proc of AeroSense:the 11th Int Symp on Aerospace/Defence Sensing, Simulation and Controls, Orlando, Florida,1997:182-193.
    [102]宫晓琳,房建成.模型预测滤波在机载SAR运动补偿POS系统中的应用[J].航空学报,2008,29(1):102-108.
    [103]V D. Merwe R,E A. Wan. The unscented particle filter[C], Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control(AS-SPCC), IEEE. Lake Louise, Alberta,Canada, Oct,2000.
    [104]P. Aggarwal, Z. Syed, El-Sheimy N. Hybrid extended particle filter (HEPF) for integrated civilian navigation system[C], Position, Location and Navigation Symposium,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700