用户名: 密码: 验证码:
氧化铝生料浆配料过程不确定优化方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生料浆配料是烧结法氧化铝生产过程中的第一道工序,配料的合理性直接关系到后续工序的产品质量和资源能源消耗。然而,生料浆配料过程是一个复杂的工业过程,生料浆指标之间耦合严重,过程反应机理不明,工况变化复杂,特别是参与配料的物料成分含量频繁波动且无法在线实时检测,使过程输入参数表现出很大不确定性,致使人工操作模式和传统优化方法都难以对氧化铝生料浆配料过程进行有效的优化控制。
     为了在优化过程中充分考虑物料参数不确定性的影响,提高优化结果的鲁棒性,本文提出了氧化铝生料浆配料不确定优化策略,并将其应用于实际工业过程,取得了良好的效果。论文主要研究工作及创新性成果如下:
     (1)在对过程工艺进行深入分析的基础上,围绕不确定参数的数学描述、不确定优化模型结构及求解算法三个方面的问题,提出了氧化铝生料浆配料过程的不确定优化控制方案。该方案根据配料物料表现出的不同特性,将物料分为原料和返料两大类,分别研究其成分含量不确定参数置信区间的获取方法,并定义了区间不确定度和区间覆盖率评价置信区间的合理性;同时,考虑生料浆质量指标的生产要求和检测滞后性,研究了生料浆配料过程不确定优化模型的结构,并提出了与模型结构相匹配的分类专家知识库和专家推理策略,实现不确定优化模型的有效求解。
     (2)针对返料成分含量数据波动大和非线性强的问题,提出了一种基于粗糙集(RS)广义重构技术的不确定预估方法。该方法首先通过关联维数和最大李亚普诺夫指数鉴别返料成分含量时间序列的混沌特性;然后利用RS约简理论,提出了一种广义相空间重构技术,提取包含充分预测信息的精简样本集,建立最小二乘支持向量机(LS_SVM)返料成分含量时间序列预测模型;最后,通过对预测结果补偿一定的误差,获取返料成分参数合理的置信区间。对于随时间变化相对平稳的原料成分参数,采用数据统计的方法,确定不确定参数的置信区间,并引入一种滚动更新策略,不断优化置信区间边界。数据验证结果表明了置信区间的合理性。
     (3)考虑生料浆配料过程不确定性、滞后性、指标耦合性和区间要求,建立了基于质量预测模型的字典序区间目标不确定优化模型。生料浆质量预测模型以基于物料平衡的机理模型为主规律模型,并将基于神经网络和经验知识的智能补偿模型相集成,以提高模型预测精度。仿真结果表明,与机理模型和单一神经网络模型相比较,集成模型具有更高的预测精度,能够很好地解决生料浆质量指标检测滞后的问题。基于质量预测模型,建立了一种以质量指标区间违背最小为目标函数的字典序区间目标不确定优化模型,该模型综合考虑了生料浆指标的强耦合性和区间要求,能够准确地描述氧化铝配料过程的优化问题。
     (4)针对不确定优化模型目标函数的字典序结构,提出了一种基于Hammersley序列抽样(HSS)技术和分类专家知识库的字典序优化推理策略。在知识库的设计中,根据优化模型一级优化目标,将知识规则进行分类,并在每类规则集内对知识规则进行优先级排序,这种具有优先级别的分类知识库结构与优化模型的字典序和推理策略相匹配,能够实现不确定问题的快速求解。
     (5)开发了氧化铝生料浆配料不确定优化系统。该系统利用OPC技术实现了优化机与底层集散控制系统(DCS)的实时数据通信,并通过企业内部网与分析检测数据管理系统的服务器相连,实现了数据与操作信息的网络共享和传输,主要功能包括过程监控、配比优化、数据导入、数据管理、报表打印等。系统的工业应用减轻了工人的劳动轻度,提高了系统的鲁棒性和指标的合格率,稳定了生产,为其它行业配料过程的控制提供了一种优化模式。
The raw material blending(RMB) is the first process of alumina production by sintering method. The quality of the slurry produced by the RMB process makes direct influence on the product quality and energy consumption of the downstream processes. However, the RMB is a complex process with strong coupling, unknown chemical reactions and complex condition changes. Especially, the composition fluctuation of raw materials and the difficulty of on-line measurement result in the uncertainty in process parameters, which makes it very difficult for human operation and traditional optimization technologies to effectively realize the optimal control of the blending process.
     Considering the uncertainty in raw material composition parameters, the optimization strategy under uncertainty is proposed to enhance the robustness of the optimization system for the blending process of alumina production. And the industrial application results prove the effectiveness of the proposed scheme. The major innovation research achievements include:
     (1)After investigating the RMB process, the optimization strategy under uncertainty, including three modules of the mathematical description of uncertain parameters, the structure of optimization model with uncertain parameters and the solution algorithm, is proposed for the blending process. The optimization strategy firstly obtains the confidence interval of uncertain parameters on the basis that the blended materials are divided into two kinds of raw materials and returned materials. And the interval uncertainty degree and the interval cover rate are defined to evaluate the confidence intervals. Then, according to the production requirements of slurry quality and the time-delay of off-line measurement, the structure of the optimization model with uncertain parameters is researched for the RMB process. And, the classificatory knowledge base and the expert reasoning strategy, which match with the structure of the optimization model, are designed to effectively solve the optimization problem of the RMB process.
     (2)For the returned material with the large composition fluctuation and the strong nonlinearity, the confidence intervals of the compositions are predicted based on the generalized phase space reconstruction technology. Firstly, the correlation dimension and the largest Lyapunov index are adopted to analyze chaotic characteristics of time series of compositions of returned material. Then, by using rough set(RS) theory, the generalized phase space of multi-component time series of returned material is reconstructed to extract training samples and LS_SVM was used to describe the relationship between input and output variables. Finally, the confidence intervals of composition parameters of returned material are obtained by compensating certain deviations for the prediction results of LS_SVM. For raw materials with small fluctuation of compositions, the statistical method is used to determine the confidence intervals of uncertainty parameters, and the rolling update strategy is introduced to on-line optimize the interval. Data verification results show the effectiveness of parameter intervals.
     (3)Based on the uncertainty, time-delay, coupling and interval requirements, the lexicographic interval goal optimization model with uncertain parameters, which includes the prediction model for slurry quality, is built for the RMB process of alumina production. In the prediction model, a mechanistic model based on material balance principle is established as the master-rule model, and an intelligent compensation model combining neural networks(NNs) with empirical knowledge is integrated with the mechanistic model to enhance the prediction precision. Simulation experiments show that the prediction results of integrated model are better than that of single mechanism model as well as that of NN model. So, the integrated model can deal with the large time-delay of off-line measurement for slurry quality. Based on the quality prediction model, the lexicographic interval goal optimization model with uncertain parameters is built, the objective of which is to minimize the violation to the intervals of quality indexes. This model can accurately describe the optimization problem of alumina blending process due to taking into account uncertain parameters, strong coupling and interval requirements of quality indexes.
     (4)Considering the structure of the optimization model, the lexicographic reasoning strategy based on the hammersley sequence sampling(HSS) technology and classificatory knowledge base is designed to solve the optimization problem with multiple objectives, interval requirements and uncertain parameters. In the design of knowledge rules, the knowledge rules of blending process are classified into different groups according to the first optimization objective, and sorted by precedence in every group. This kind of classificatory knowledge base with precedence matches the optimization model and the reasoning strategy, and the effective solution is realized.
     (5) On the basis of the researches amentioned above, the optimization system under uncertainty is developed for the RMB process of alumina production. In the sytem, the OPC is used to realize the real-time communication between the optimization computer and the DCS, and the analyzed data management system is connected to the optimization system by the intranet to acquire automatically the analyzed data from the offline laboratory. And the optimization system realizes the functions including process monitoring, ratio optimization, data leading-in, data management and so on. The results of industrial application show that the proposed strategy can reduce the burden of operators, enhance the robustness of the system, improve the quality of slurry and stablize the whole alumina production. It provides a good optimization mode for other blending processes with uncertainty.
引文
[1]刘丽孺.氧化铝生产的能耗分析及环境负荷评价:[博士学位论文].沈阳:东北大学,2003
    [2]杨重愚.轻金属冶金学.北京:冶金工业出版社,1996
    [3]Sebastian E. Feedback control for optimal process operation. Journal of Process Control,2007,17(3):203-219
    [4]Crowther R H, Pitrak J E, Ply E N. Computer control at american oil. Chemical Engineering Process,1961,57(6):39-50
    [5]Mesarovic M D, Macko D, Takahara Y. Theory of hierarchical multilevel systems. New York:Academic Press,1970
    [6]Mahmoud M S. Multilever systems control and applications:a suivey. IEEE Trans. SMC,1997,7(3):125-143
    [7]黄道,蒋慰孙.合成氨系统优化的一类新方法.华东化工学院学报,1987,13(4):491-499
    [8]Morari M, Stephanopoulos G, Arkun, Y. Studies in the synthesis of control structures for chemical processes:Part I. AIChE Journal,1980,26(2):220-232
    [9]Luyben W L. The concept of eigenstructure in process control. Industial& Engineering Chemistry Research,1988,27(1):206-208
    [10]Fisher W R, Doherty M F, Douglas J M. The interface between design and control,3:Selecting a set of controlled variables. Industial& Engineering Chemistry Research,1988,27(4):611-615
    [11]Narraway L T, Perkins J D. Selection of process structure based on linear dynamic economics. Industial& Engineering Chemistry Research,1993, 32(11):2681-2692
    [12]Zheng A, Mahajanam R V, Douglas J M, Hierchical procedure for plantwide control system synthesis. AIChE Journal,1999,45(6):1255-1265
    [13]Skogestad S. Plantwide control:the search for the self-optimizing control structure. Journal of Process Control,2000,10(5):487-507
    [14]Kassidas A, Patry J, Marlin T. Integrating process and controller models for the design of self-optimizing control. Computers and Chemical Engineering,2000, 24(12):2589-2602
    [15]Skogestad S. Control structure design for complete chemical plants. Computers and Chemical Engineering.2004.28(1-2):219-234
    [16]Jensen J B, Skogestad S. Optimal operation of simple refrigeration cycles:Part Ⅰ. Computers and Chemical Engineering,2007,31(5-6):712-721
    [17]Young R E. Petroleum refining process control and real-time optimization. IEEE Control System Magazine,2006,26(6):73-83
    [18]Singh A, Forbes J F, Vermeer P J, et al. Model-based real-time optimization of automotive gasoline blending operations. Journal of Process Control,2000, 10(1):43-58
    [19]Mercangoz M, Doyle Ⅲ F J. Real-time optimization of the pulp mill benchmark problem. Computers and Chemical Engineering,2008,32(4-5):789-804
    [20]Yip W S, Marlin T E. The effect of model fidelity on real-time optimization performance. Computers and Chemical Engineering,2004,28(1-2):267-280
    [21]Fraleigh L M, Guay M, Forbes J F. Sensor selection for model-based real-time optimization:relating design of experiments and design cost, Journal of Process Control,2003,13(7):667-678
    [22]Sequeira E, Graells M, Puigjaner L. Real-time evolution of online optimization of continuous processes. Industrial& Engineering Chemistry Research,2002, 41(7):1815-1825
    [23]Basak K, Abhilash K S, Ganguly S, et al. On-line optimization of a crude distillation unit with constraints on product properties. Industrial& Engineering Chemistry Research,2002,41(6):1557-1568
    [24]Shamma J S, Athans M. Gain scheduling:potential hazards and possible remedies. IEEE Control Systems Magazine,1992,12(3):101-107
    [25]Lawrence D A, Rugh W J. Gain scheduling dynamic linear controllers for a nonlinear plant. Automatica,1995,31(3):381-390
    [26]Ying C M, Joseph B. Performance and stability analysis of LP-MPC and QP-MPC cascade control systems. AIChE Journal,1999,45(7):1521-1534
    [27]Yousfi C, Tournier R. Steady-state optimization inside model predictive control, Proceedings of the American Control Conference, Boston, MA, USA, 1991,2:1866-1870
    [28]Muske K R. Steady-state target optimization in linear model predictive control, Proceedings of the American Control Conference, Albuquerque, NM, USA, 1997,6:3597-3601
    [29]Sorensen R C, Cutler C R. LP integrates economics into dynamic matrix control. Hydrocarbon Process,1998,77(9):57-65
    [30]Nath R, Alzein Z. On-line dynamic optimization of olefins plants. Computers & Chemical Engineering,2000,24(2):533-538
    [31]Zanin A C, Tvrzska de Gouvea M, Odloak D. Integrating realtime optimization into the model predictive controller of the FCC system. Control Engineering Practice,2002,10(8):819-831
    [32]Zanin A C, Tvrzska de Gouvea M, Odloak D. Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit. Computers& Chemical Engineering,2000,24(2):525-531
    [33]M unoz C, Cipriano A. An Integrated system for upervision and economic optimal control of mineral processing plants. Minrals Engineering,1999, 12(6):627-642
    [34]Qin S J, Badgewell T. A survey of industrial model predictive control technology. Control Engineering. Practice,2003,11(7):733-764
    [35]Johansen T A, Sbarbaro D. Lyapunov-based optimizing control of nonlinear blending process. IEEE Trans. Control Syst. Technol,2005,13(4):631-638
    [36]王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究:[博士学位论文].长沙:中南大学,2001
    [37]Goh A T C. Back-propagation neural networks for modeling complex systems. Artificial intelligence in Engineering,1995,9(3):143-151
    [38]喻寿益,王吉林,彭晓波.基于神经网络的铜闪速熔炼过程的工艺参数预测模型.中南大学学报(自然科学版),2007,38(3):523-527
    [39]Yang C H, Deconinck G, Gui W H, et al. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity. IEEE Trans. on neural networks,2002,13(1): 229-236
    [40]Rrasad V, Bequette B W. Nonlinear system identification and model reduction using artificial neural networks. Computers and Chemical Engineering,2003, 27(12):1741-1751
    [41]Ohdar R K, Pasha S. Prediction of the process parameters of metal powder preform forging using artificial neural network. Journal of Materials Processing Technology,2003,132(1-3):227-234
    [42]Xiong Z H, Zhang J. A batch-to-batch inerative optimal control strategy based on recurrent neural network models. Journal of Process Control,15:11-21
    [43]Roy N K, Potter W D, Landau D P. Polymer property prediction and optimization using neural networks. IEEE Transactions on Neural Networks, 2006,17(4):1001-1014
    [44]Wang L, Fang J C, Zhao Z Y. Application of backward propagation network for forecasting hardness and porosity of coatings by plasma spraying. Surface& Coatings Technology,2007,201(9-11):5085-5089
    [45]Wu M, Nakano M, She J H. A distributed expert control system for a hydrometallurgical zinc process. Control Engineering Practice,1998,6(12): 1435-1446
    [46]Liau L C-K, Yang T C-K, Tsai M-T. Expert system of a crude oil distillation unit for process optimization using neural networks. Expert System with Applications,2004,26(2):247-255
    [47]Babuska R, Verbruggon H B, Bancan H J L. Fuzzy modeling of enzymatic penicillin-G Anversion. Engineering Application of Artificial Intelligence, 1999,12(1):79-72
    [48]Xiao W, Weidemann B. Fuzzy modeling and its applicatioin to magentic bearing systems. Fuzzy Sets and Systems,1995,73(20):201-217
    [49]熊智华,王雄,徐用懋.一种利用多神经网络结构建立非线性软测量模型的方法.控制与决策,2000,15(2):173-176
    [50]裘智峰,桂卫华,阳春华.基于融合模型的多目标分级推理方法及其工业应用.信息与控制,2007,36(2):250-256
    [51]李劫,孔玲爽,阳春华.氧化铝烧结法生产的生料浆质量预测模型及应用.中国有色金属学报,2006,16(3):536-541
    [52]王锡淮,李少远,席裕庚.基于自适应模糊聚类的神经网络软测量建模方法,控制与决策,2004,19(8):951-953
    [53]阳春华,谢明,桂卫华,等.铜闪速熔炼过程冰铜品位预测模型的研究及应用.信息与控制,2008,37(1):28-33
    [54]王凌云,桂卫华,彭晓波.基于智能融合策略的冰铜品位预测模型.化工自动化仪表,2007,34(3):26-29
    [55]Gui W H, Wang L Y, Yang C H, et al. Intelligent prediction model of matte grade in copper flash smelting process. Transactions of Nonferrous Metals Society of China,2007,17(5):1075-1081
    [56]王永富,李小平,柴天佑.转炉炼钢动态过程预设定模型的混合建模与预报.东北大学学报(自然科学版),2003,24(8):715-718
    [57]严爱军,岳恒,赵大勇,等.一类复杂工业过程的智能预报模型及其应用.控 制与决策,2005,20(7):794-797,802
    [58]严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制.自动化学报,2006,32(4):636-640
    [59]王耀南,王辉,彭建春,等.复杂工业过程的综合集成智能控制.信息与控制,1999,28(4):198-304
    [60]Wu M, She J H, Michio Nakano. An expert control system using neural netwoks for the electrolytic process in zinc hydrometallurgy. Engineering Applications of Artificial Intelligenct,2001,14(5):589-598
    [61]王雅琳,桂卫华,阳春华. 基于综合建模方法的铅锌烧结块成分预测.中南大学学报(自然科学版),2005,36(1):113-118
    [62]陈晓方,桂卫华,王雅琳,等.基于智能集成策略的烧结块残硫软测量模型.控制理论与应用,2004,21(1):75-80
    [63]王耀南,宋明.复杂工业系统的广义知识模型与智能模型.中南工业大学学报(自然科学版),2003,34(4):335-341
    [64]王雅琳,桂卫华,阳春华,等.基于有限信息的铜吹炼动态过程智能集成建模,控制理论与应用,2009,26(8):860-866
    [65]李志杰,邓欣,阳春华,李勇刚.基于改进粒子群优化算法的锌电解过程模型研究.计算机测量与控制,2008,16(6):805-807
    [66]谢书明,陶钧,柴天佑.转炉炼钢终点磷的智能预报.控制理论与应用,2003,20(4):555-559
    [67]袁亚湘,孙文渝.最优化理论与方法.北京:科学出版社,1997
    [68]Boggs P T, Tolle J W. Sequential quadratic programming for large-scale nonlinear optimization. Journal of Computational and Applied Mathematics, 2000,124(1):123-137
    [69]Yang C H, Wu M, Shen D Y, et al. Hybrid intelligent control of gas collectors of coke ovens. Control Engineeriing Practice,2001,9(7):725-733
    [70]Wu M, Michio Nakano. A model-based expert control system for the leaching process in zinc hydrometallurgy, Expert System with Application,1999,16(2): 135-143
    [71]Liau L C, Yang T C, Tsai M. Expert system of a crude oil distillation unit for process optimization using neural networks. Expert System with Applications, 2004,26(2):247-255
    [72]Wu M, Xu C H, Du Y X. Intelligent optimal control for lead-zinc sintering process state. Trans. Nonferrous Met. Soc. China,2006,16(4):975-981
    [73]胡志坤,桂卫华,阳春华.连续碳酸化分解过程专家优化系统.东南大学学报(自然科学版),2006,36(s):1-4
    [74]Nascimento C A O, Giudici R, guardani R. Neural network based approach for optimization of industrial chemical processes. Computers and Chemical Engineering,2002,4(9-10):2303-231
    [75]Yang C H, Deconinck G., GuiWH. An optimal power-dispatching control for the electrochemical process of zinc based on backpropagation and hopfield neural networks. IEEE Trans. on industrial electronics,2003,50(5):953-961
    [76]桂卫华,王雅琳,阳春华,等.基于改进模拟退火算法的锌电解过程分时供电优化控制.控制理论与应用,2001,18(1):127-130
    [77]王雅琳,桂卫华,阳春华,等.模拟退火算法改进及工业应用.中南工业大学学报,1999,30(6):638-641
    [78]阳春华,温丽敏,朱红求,等.基于满意优化的氧化铝生料浆调配方法.控制与决策,2008,23(10):1168-1172
    [79]Liu P, Su J H, Dong Q M, et al. Optimization of aging treating treatment in lead fram copper alloy by intelligent technique. Materials Letters,2005,59(26): 3337-334
    [80]胡志坤,阳春华,桂卫华.基于遗传算法的连续碳酸化分解过程模糊优化.金属材料与冶金工程,2007,35(5):34-37
    [81]莫愿斌,陈德钊,胡上序.混沌粒子群算法及其在生化过程动态优化中的应用.化工学报,2006,57(9):2123-2127
    [82]李勇刚,桂卫华,阳春华.一种弹性粒子群优化算法.控制与决策,2008,23(1): 95-98
    [83]王雅琳,王宁,阳春华,等.基于微粒群算法的生料浆调配多目标满意优化.计算机工程与应用,2008,44(1):197-201
    [84]阳春华,谷丽珊,桂卫华.基于改进粒子群算法的整流供电智能优化调度.浙江大学学报(工学版),2007,41(10):1655-1659
    [85]Zhu H Q, Yang C H, Gui W H. Permeability prediction model for imperial smelting furnace by integrating CBR with adaptive PSO. High Technology Letters,2009,15(3):267-271
    [86]杨秋辉,游志胜,樊鸿,等.用线性规划求解工程混合料最优配料问题.四川大学学报(自然科学版),2005.42(1):198-201
    [87]贾娟鱼,白晨光,赖宏,等.烧结矿和入炉矿配料的优化及实现.重庆大学学报(自然科学版),2002.25(10):68-71
    [88]蒋大军,石军.铁矿石的价值评价与线性规划优化配料.烧结球团,1999,24(5):44-48
    [89]Yang C H, Gui W H, Kong L S, et al. A Genetic-algorithm-based optimal scheduling system for full-filled tanks in the processing of starting materials for alumina production. Canadian Journal of Chemical Engineering,2008,86(4): 813-821
    [90]吕学伟,白晨光,邱贵宝,等.基于遗传算法的烧结配料综合优化研究.钢铁,2007,42(4):12-20
    [91]Litvinenko V I, Burgher J A, Vyshemirskij, et al. Application of genetic algorithm for optimization gasoline fractions blending compounding. Proceedings of IEEE International Conference on Artificial Intelligence Systems,2002, pp:391-394
    [92]Zhao X Q, Rong G. Blending scheduling based on particle swarm optimization algorithm. Proceedings of the IEEE International Conference on information Reuse and Integration,2004, pp:618-622
    [93]阳春华,王晓丽,陶杰,等.铜闪速熔炼配料过程建模与智能优化方法研究.系统仿真学报,2008,20(8):2152-2155
    [94]李智,姚驻斌,张望兴,等.基于神经网络的混匀配料优化方法.钢铁研究,2000,(4):10-12
    [95]邓春萍,吴敏.配煤过程的神经网络专家控制策略.中国矿业大学学报,2000,29(6):610-61
    [96]Murty B S N, Rao R N. Global optimization for prediction of blend composition of gasolines of desired octane number and properties. Fuel Processing Technology,2004,85(14):1595-1602
    [97]阳春华,沈德耀,吴敏.焦炉配煤专家系统的定性定量综合设计方法.自动化学报,2000,26(2):226-232
    [98]Duan X G, Yang C H, LiHX, et al. Hybrid expert system for raw materials blending. Control engineering practice,2008,16(11):1364-1371
    [99]Wu M, Michio Nakano, She J H. A model-based expert control strategy using neural networks for the coal blending process in an iron and steel plant. Expert System with Application,1999,16(3):271-281
    [100]Liao Y F, Wu C H, Ma X Q. New hybrid optimization model for power coal blending. Proceedings of 2005 International Conference on Machine Learning and Cybernetics,2005, pp:4023-4027
    [101]Yang C H, Gui W H, Kong L S, et al. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence,2009,22(4-5): 796-805
    [102]孔玲爽,阳春华,王雅琳,等.一种解决蕴含不确定性信息的氧化铝配料问题的智能优化方法.控制理论与应用,2009,26(9):1051-1055
    [103]Yang CH, GuiWH, Kong L S, et al. Modeling and Optimal-setting Control of Blending Process in a Metallurgical Industry. Computers and Chemical engineering,2009,33(7):1289-1297
    [104]Wang Y L, Ma J, Gui W H, et al. Multi-objective intelligent coordinating optimization blending system based on qualitative and quantitative synthetic model. Journal of Central South University of Technology,2006,13(5): 552-557
    [105]Gui W H, Wang Y L, Yang C H. Composition-prediction-model-based intelligent optimisation for lead-zinc sintering blending process. Measurement & Control,2007,40(6):176-181
    [106]Wen Y, Rubio J J, Morales A. Optimization of crude oil blending with neural networks. Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas,2004, pp:4903-4908
    [107]Wen Y, Morales A. Nneural networks for the optimization of crude oil blending. International Journal of Neural Systems,2005,15(5):377-389
    [108]向齐良,吴敏,侯奔,等.基于成分预测模型的矿石烧结配料专家优化方法.山东大学学报,2005,35(4):43-47
    [109]Banyasz Cs, Keviczky L, Istvan V. A novel adaptive control system for raw materials blending. IEEE Control systems magazine,2003,23(1):87-96.
    [110]Ozsoy C, Yilmaz C, Cetinkaya M, et al. Constrained self-tuning control of raw material blending process in cement industry. Proceedings of the IEEE International Symposium on Industrial Electronics,1997, pp:135-142
    [111]张承慧,曾毅,李希霖.水泥配料过程建模与自校正控制.信息与控制,1995,24(2):122-128
    [112]Shih J S, Christopher Frey H. Coal blending optimization under uncertainty. European Journal of Operational Research,1995,83(3):452-465
    [113]Zhang Y, Monder D, Forbes J F. Real-time optimization under parametric uncertainty:a probability constrained approach. Journal of Process Control, 2002,12(3):373-389
    [114]Dantzig G B. Linear programming under uncertainty. Management Science, 1955,1(3-4):197-206
    [115]Bellman R E. Dynamic programming. Princeton:Princeton University Press, 1957
    [116]Charnes A, Cooper W W. Chance-constrained programming. Management Science,1959,6(1):73-79
    [117]Pistikopoulos E N. Uncertainty in process design and operations. Computers and Chemical Engineering,1995,19(1):553-563
    [118]Bellman R, Zadeh L A. Decision-making in a fuzzy environment.Management Science,1970,17(4):141-161
    [119]Sahinidis N V. Optimization under uncertainty:state-of-the-art and opportu-nities. Computers and Chemical Engineering,2004,28(6-7):971-983
    [120]彭锦,刘宝碇.不确定规划的研究现状及其发展前景.运筹与管理,2002,11(2):1-10
    [121]Moritz D, Johannes G, Wolfgang M, et al. Numerical solution approaches for robust nonlinear optimal control problems. Computers and Chemical Engineering,2008,32(6):1279-1292
    [122]Mosat A, Fischer U, Hungerbuhler K. Multiobjective batch process design aiming at robust performances. Chemical Engineering Science,2007,62(21): 6015-6031
    [123]Mulvey J M, Vanderbei R J, Zenios S A. Robust optimization of large-scale systems. Operations Research,1995,43(2):264-281
    [124]Escudero J, Kamesam P V, King A, et al. Production planning via scenario modeling. Annals of Operations Research,1993,43:311-335
    [125]黎冰,顾幸生.不确定条件下生产计划的灰色机会约束规划模型.第五届全球智能控制与自动化会议论文集,杭州,2004,pp:15-19
    [126]丁然,李歧强,孙同景.一种不确定条件下批处理过程的鲁棒调度模型.系统工程学报,2006,21(4):387-392
    [127]List G F, Wood B, Nozick L K, et al. Robust optimization for fleet planning under uncertainty. Transportation Research Part E,2003,39(3):209-227
    [128]杨文宇,刘健.配电网架的多阶段不确定性规划.电工技术学报,2006,21(6):89-95
    [129]Datskov I V, Ostrovsky G M, Achenie L E K, et al. An approach to multicriteria optimization under uncertainty. Chemical Engineering Science,2006,61(8): 2379-2393
    [130]刘琦,顾幸生.基于模糊规划的不确定性条件下递阶生产计划模型.信息与控制,2000,29(5):399-406
    [131]Miller W A, Leung L C, Azhar T M, et al. Fuzzy production planning model for fresh tomato packing. International Journal of Production Economics,1997, 53(3):227-238
    [132]Li L S, Lai K K. A fuzzy approach to the multiobjective transportation problem. Computers and Operations Research,2000,27(1)::43-57
    [133]张焰,陈章潮,谈伟.不确定性的电网规划方法研究.电网技术,1999,23(3):15-18,22
    [134]徐震浩,顾幸生.不确定条件下中间存储时间有限的flow shop的免疫调度算法.计算机工程与应用,2004,30:35-38
    [135]刘永健,袁希钢,罗袆青.基于模糊规划的质量负荷不确定水网络的综合.化工学报,2006,57(4):867-873
    [136]郭均鹏,吴育华.区间线性规划的标准型及其求解.系统工程,2003,21(3):79-82
    [137]程志强,戴连奎,孙优贤.区间参数不确定系统优化的可行性分析.自动化学报,2004,30(3):455-459
    [138]达庆利,刘新旺.区间数线性规划及其满意解.系统工程理论与实践,1999,19(4):3-7
    [139]Gen M, Cheng R. Optimal design of system reliability using interval programming and genetic algorithms. Computers and Industrial Engineering, 1996,31(1-2):237-240
    [140]Mausser H E, Laguna M. A heuristic to minimax absolute regret for linear programs with interval objective function coefficients. European Journal of Operational Research,1999,117(1):157-174
    [141]Li Y P, Huang G H, Nie S L. An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty. Advances in Water Resoures,2006,29(5):776-789
    [142]林玉鹏,曾光明.考虑不确定性因素影响的城市污水处理厂优化设计模型研究(Ⅰ).湖南大学学报(自然科学版),2000,27(4):94-100
    [143]孙燕,谭瑛,曾建潮.求解模糊机会约束规划模型的微粒子群算法.系统 工程与电子技术,2009,31(2):376-379
    [144]李劫,孔玲爽,阳春华.氧化铝烧结法生产的生料浆质量预测模型及应用.中国有色金属学报,2006,16(3):536-540
    [145]杨迪雄,杨丕鑫.强震地面运动的混沌特性分析.防灾减灾工程学报,2009,29(3):252-260
    [146]Grassberger P. An optimized box-assisted algorithm for fractal dimensions. Physics Letters A,1990,148:63-68
    [147]Leung H, Lo T, Wang S. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Transactions on Neural Networks,2001,12(5):1163-1172
    [148]Han M, XiJH, XuSG, et al. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Transactions on Signal Processing, 2004,52(12):3409-3416
    [149]杨绍清,贾传莹.两种实用的相空间重构方法.物理学报,2002,51(11):2452-2458
    [150]韩敏,李德才.基于EOF-SVD模型的多元时间序列相关性研究及预测.系统仿真学报,2008,20(7):1669-1672,1676
    [151]岳毅宏,韩文秀,程国平.多变量时间序列相空间重构中参数的确定.控制与决策,2005,20(3):290-293
    [152]刘树勇,朱石坚,俞翔.相空间重构的一种新方法.系统仿真学报,2007,19(21):4990-4993
    [153]张文修,吴伟志,梁吉业.粗糙集理论与方法.北京:科学出版社,2001
    [154]Shen L X. Francis E H, Qu L S. Fault diagnosis using rough sets theory. Computers in Industry,2000,43(3):61-72
    [155]宋海鹰,桂卫华,阳春华.模糊偏最小二乘支持向量机的应用研究.系统仿真学报,2008,20(5):1344-1347,1352
    [156]徐玖平,李军.多目标决策的理论与方法. 北京:清华大学出版社,2005
    [157]Charnes A, Cooper W W. Management models and industrial applications of linear programming. New York:Wiley,1961
    [158]Jank W. Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM. Computational Statistics& Data Analysis,2005,48(4):685-701
    [159]Ponce-Ortega J M, Rico-Ramirez V, Hernandez-Castro S, et al. Improving convergence of the stochastic decomposition algorithm by using an efficient sampling technique. Computers and Chemical Engineering,2004,28(5): 767-773
    [160]Kalgnanam J R, Diwekar U M. An efficent sampling technique for off-line quality control. Technometrics,1997,39(3):308-319
    [161]刘宝碇,赵瑞清,王纲,等.不确定规划及应用.北京:清华大学出版社,2003,5-7
    [162]王浩宇,蔡瑞英.一种面向对象推理模型及其知识表示.南京工业大学学报,2002,24(3):20-24
    [163]梁维中.缸体铸件质量专家系统知识库的实现.哈尔滨理工大学学报,2001,6(2):96-98
    [164]Hashi F M, Juster N P, Pennington A D. Functional approach to redesign. Engineering with Computers,1994,10(3):125-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700