用户名: 密码: 验证码:
滨海地区雨洪水资源优化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该研究针对滨海地区水资源短缺且利用率低,大量水资源得不到利用直接流入海洋等问题,依据水土保持工程学、水资源管理学、汛限水位动态控制等理论,运用SWAT分布式水文模型、SCS-CN模型、VISUAL MODFLOW地下水数值模拟模型、MAPGIS和ARCGIS等方法和技术,采用外业调查收集及实验观测数据,以山东省乳山河流域为研究对象,开展雨洪水资源优化利用研究,为解决水资源供需不平衡的矛盾及水资源优化配置提供理论支撑和决策依据。研究结论如下:
     (1)构建了乳山河流域SWAT分布式水文模型,模拟计算了水资源入海量,并计算了该流域水资源开发利用潜力。计算结果表明:1)流域水资源多年平均入海量为19695万m3,25%、50%、75%典型年全年入海量分别为26115万m3、20430万m3和12676万m3;流域水资源多年平均汛期入海量为15064万m3,25%、50%、75%典型年平均汛期入海量分别为21238万m3、14301万m3和8873万m3。2)流域地表水资源多年平均可利用量为4788万m3,25%、50%、75%典型年地表水资源可利用量分别为6096万m3、3382万m3和2411万m3。流域多年平均地下水资源可开采量为1626万m3。3)流域地表水开发利用潜力11639万m3,地下水的开发利用潜力为1967万m3。
     (2)对地表水资源进行了调节计算,提出了龙角山水库调度运行方案。研究表明:1)枯水年份水资源不足,在75%来水典型年龙角山水库农业灌溉缺水292.14万m3;在90%来水典型年龙角山水库共缺水2416.41万m3,其中农业灌溉缺水1406.09万m3,生产生活缺水1010.32万m3;2)丰水年(25%)和平水年(50%)份龙角山水库水资源各存在剩余2961.93万m3、1324.80万m3;3)采用复蓄指数法计算乳山河流域中小型水库、塘坝及机井抽取地下水的可供水量:在25%、50%、75%和90%频率水平年,可供水量总量分别为4159.26万m3、3900.43万m3、3585.63万m3和3008.20万m3,分别可满足灌溉面积23.21万亩、14.15万亩、10.47万亩和6.21万亩,同时为工业用水供水217万m3。
     (3)从龙角山水库汛限水位动态控制和雨水集蓄措施空间布局两个方面提出了乳山河流域地表水资源优化利用的方法和途径。研究结果表明:1)乳山河流域适宜修建蓄水坑塘的面积13.14km2;适宜庭院集雨场的面积60.08kmm2;适合修筑蓄水池的位置49处;适合修筑拦水坝的位置31处;适合修筑大口井的位置30处。2)采用不同时段同频率放大法,将典型洪水过程线转换成设计洪水过程线。在此基础上采用峰量综合控制法经过调洪计算并修正了各旬的汛限水位,在25%水平年可增加蓄水量1264.81万m3。
     (4)结合VISUAL MODFLOW建立地下水库数值模拟模型,并采用单一单元法计算了不同频率下地下水库的可供水量。研究表明:1)枯水年份水资源不足,在现状来水量90%频率下农业灌溉缺水量3929.11万m3。在现状来水量75%的枯水年农业灌溉缺水量1185.78万m3。2)在平水年和丰水年可满足全部供水量;3)在不同频率来水年份(25%、50%、75%、90%)地下水库复蓄指数分别0.68、0.92、1.22和1.61,枯水年的利用率最高。
     (5)提出了乳山河流域“两枯一平”和“四枯一丰”年份的地表水与地下水联合调蓄模式。“两枯一平”情况下,在特枯90%年份适当增加生产生活用水的供水量1010.32万m3;在降水频率75%年份增加农业用水开采量1477.92万m3;在降水频率75%的年份汛期增加回灌量1779.35万m3,在降水频率50%年份汛期增加回灌量503.08万m3后,可以恢复地下水位。“四枯一丰”情况下,在75%频率的枯水年,适当增加农业灌溉用水量1477.92万m3。在75%频率的枯水年汛期增加地下水回灌量972.09万m3,在降水频率25%年份汛期增加地下水回灌量487.44万m3后,可以恢复地下水位。
In view of the shortage and the low utilization rate of water resources in coastal area, and the phenomemon that a lot of water directly flows into the sea without be used, on the basis of soil and water conservation engineering, water resources management, limited water level dynamic control theory, by taking Rushan river basin in Shandong Province as the research object, this paper used methods and techniques such as the distributed hydrological model SWAT, SCS-CN model, VISUAL MODFLOW groundwater numerical simulation model, MAPGIS and ARCGIS to carry out the research on optimized utilization of the rain flood resources by using field investigation collection and experimental observation data. The thesis provides theoretical support and decision basis for both solving the contradictions of imbalanced between supply and demand of water resources and water resources optimal allocation. Research conclusions are as follows:
     (1) A distributed hydrological model SWAT of the study area was established to simulate the water flux to ocean, and water resources development and utilization potential was calculated. The results show that:1) the average water resources flux to ocean of the basin is196.95million m3, water into ocean of25%,50%and75%rain frequency throughout the year is261.15million m3,204.3million m3and126.76million m3respectively. An average water flux to ocean of flood season is150.64million m3, flux to ocean of flood season in25%,50%and75%rain frequency is212.38million m3,143.01million m3and88.73million m3respectively.2) an average of utilization rate of surface water resources is47.88million m3, usable surface water resource under25%,50%,75%rain frequency is60.96million m3,33.82million m3and24.11million m3respectively. An average of groundwater resources which could be mined is16.26million m3.3) In Rushan river basin surface water exploitation and utilization potential is116.39million m3, the exploitation and utilization of the groundwater potential is19.67million m3.
     (2) The surface water resources was calculated, and dispatching operation scheme of dragon horn mountain reservoir was made. Research shows that:1) in the low water year water resources was in shortage, in a typical year of75%frequency dragon horn mountain reservoir was short of agricultural irrigation water of2.92million m3; In a typical year of90%frequency it was short of24.16million m3, of which the agricultural irrigation water deficit is14.06million m3and production and living water deficit is10.10million m3;2)In a wet year (25%) and a normal flow year (50%), the dragon horn mountain reservoir remain29.62million m3,13.25million m3;3) multiple storage index method is used to calculate the Rushan rivers domain small reservoirs and shuitangba and shaft drawing groundwater supply amount:in25%,50%,75%and90%frequency level years, the total supply amount is41.59million m3,39.00million m3,35.86million m3and30.08million m3respectively, which could meet the irrigation area of232100mu,141500mu,104700mu and62100mu.
     (3) Method and way to optimize the utilization of surface water resources was proposed from the dynamic control of dragon horn mountain reservoir flood control level and space layout of rainwater collection measures. The results show that:1) an area of13.14km2is suitable for construction of water storage pits in the study area;49positions are suitable for the construction of a reservoir;31locations are Suitable for the construction of a dam;30locations are appropriate for building large open well; area of60.08km2is appropriate for courtyard catchment.2) the method of the homogenous frequency enlargement of different time intervals is used to convert the typical flood process line into the design flood process line. On this basis, criterion-peak and volume decision criterion was used to calculate and correct limited water level of each ten-day, it increases12.65million m3of the storage capacity in25%frequency level years.
     (4) underground reservoir numerical simulation model was established combined with VISUAL MODFLOW, and a single element method was used to calculate the water supply of underground reservoir under different frequencies. Research shows that:1) water resources is in shortage in low water years, the total water deficit is39.29million m3under the hydrologic frequency of90%, all of which is for agricultural irrigation water. In the hydrologic frequency of75%, there is lack of11.86million m3agricultural irrigation water.2) in median water year and wet year, it can meet the overall water;3) in different frequency of precipitation years (25%,50%,75%,90%) the underground reservoir storage index are0.68,0.92,1.22and1.61, the highest utilization rate appears in the dry year.
     (5) In the research area,"two low years and one normal years" and "four dry years and a wet years" of surface water and groundwater joint regulation mode were put forward. In the case of "two low years and one normal year", in dry year of90%frequency, water for life is more mined10.10million m3. In precipitation frequency of75%, agricultural production increases14.78million m3, groundwater injection volume is increased of17.79million m3in the flood season (June, July, August, September). In the flood season of the precipitation frequency of50%, groundwater injection volume increases5.03million m3. After that the underground water level restores. In the case of" four dry years and a wet years ", under precipitation frequency of75%, agricultural water supply increases14.78million m3, groundwater injection volume is increased of9.72million m3in the flood season. In the flood season of the precipitation frequency of25%, injection volume is increased4.87million m3. Then the underground water level restores.
引文
1.曹升乐.水库汛限水位计算理论与方法[M].北京:中国水利水电出版社,2004.
    2.曹永强.汛限水位动态控制方法研究及其风险分析[D].大连理工大学,2003,4.
    3.楮恒华,张致国.吉林省地下水开发的另一途径——地下水库的开发利用[J].吉林地质,2000(3):65-70.
    4.戴长雷.地下水库调控研究[D].吉林大学,2006.
    5.邓坤,张璇,杨永生,等.流域水资源调度研究综述[J].水利经济,2011,29(6):23-27.
    6.杜汉学,常国纯,等.利用地下水库蓄水的初步认识[J].水科学进展,2002,13(5):618-622.
    7.杜守建.区域水资源优化配置研究[D].西安理工大学,2009.
    8.冯平,韩松.提高水库汛限水位的防洪风险分析[J].天津大学学报,2007,40(5):525-529.
    9.傅湘,纪昌明.水库汛期调度的最大洪灾风险率研究[J].水电能源科学,1998,16(2):12-15.
    10.高慧琴,杨明明,黑亮,等MODFLOW和FEFLOW在国内地下水数值模拟中的应用[J].地下水,2012,(4):13-15.
    11.高盼,叶水根,李淑芹.徒骇马颊河流域水资源优化配置研究[J].水利与建筑工程学报,2008,6(1):98-100.
    12.郭生练,刘攀.建立水库汛限水位动态控制推进机制的建议[J].中国水利,2008,(9):1-3.
    13.胡四一,高波,王忠静.海河流域洪水资源安全利用——水库汛限水位的确定与运用[J].中国水利,2002,(10):105-108.
    14.黄强.陕西省南水北调受水区水资源优化配置研究[J].中国水利,2013,(22):21-22.
    15.黄强,苗隆德,王增发.水库调度中的风险分析及决策方法[J].西安理工大学学报,1999,15(4):6-10.
    16.李恩宽,梁川.物元分析法在西安市水资源开发利用综合评价中的应用[J].水资源研究,2005,26(1):38-40.
    17.李继清,张玉山,王丽萍等.洪水资源化及其风险管理浅析[J].人民长江,2005,36(1):36-37.
    18.李景保,巢礼义,杨奇勇,等.基于洪水资源化的水库汛限水位调整及其风险管理[J].自然资源学报,2007,(3):329-339.
    19.李林,翁建平.潘家口水库主汛期汛限水位动态控制研究[J].海河水利,2007,(1):34-35.
    20.李世君.北京张坊岩溶地下水库特征及调蓄能力研究[D].中国地质大学(北京),2012.
    21.李旺林,束龙仓,殷宗泽地下水库的概念和设计理论[J].水利学报,2006,37(5):613-618.
    22.李伟.地下水库特征参数分析及降水与地下水资源联合调蓄[D].河海大学,2005.
    23.李新攀.石羊河流域水资源优化配置研究[D].兰州理工大学,2012.
    24.李彦彬,徐建新,黄强.灌区地表水和地下水联合调度模型研究[J].沈阳农业大学学报,2007,37(6):884-889.
    25.林国庆,郑西来,李海明.地下水库人工补给的模型研究--以大沽河地下水库为例[J].中国海洋大学学报:自然科学版,2005,35(5):745-750.
    26.林学钰.论地下水库开发利用中的几个问题[J].长春地质学院学报,1984,(2):113-121.
    27.刘行刚.黄水河流域地表水与地下水联合调控研究[D].济南大学,2010.
    28.刘青勇,张保祥,马承新.地下水库回灌补源的数值模拟研究——以山东省邹平县城北水源地为 例[J].灌溉排水学报,2005,24(2):70-74.
    29.刘小勇,吴普特.雨水资源集蓄利用研究综述[J].自然资源学报,2000,15(2):189-193.
    30.刘颖超.北京市西郊地下水库调蓄能力与利用模式研究[D].吉林大学,2012.
    31.马承新.山东省地下水人工回灌补源模式研究[D].武汉大学,2005.
    32.倪深海,崔广柏.多水源多目标供水系统模拟模型研究[J].中国农村水利水电,2003,(6):48-50.
    33.潘俊,骆阳,陈显利,等.地表,地下水库联合调蓄供水的风险性[J].中国给水排水,2005,20(11):49-51.
    34.齐学斌,庞鸿宾,赵辉,等.地表水地下水联合调度研究现状及其发展趋势[J].水科学进展,1999,10(1):89-94.
    35.曲兴辉,谷秀英.平原区地表水与地下水联合调控模型研究[J].水文,2005,25(4):23-25.
    36.邵景力,崔亚莉,李慈君.包头市地下水-地表水联合调度多目标管理模型[J].资源科学,2003,25(4):49-55.
    37.申宏星.广东省水利工程水环境效益量化模型及应用研究[D].河海大学,2005.
    38.宋进喜,李怀恩,李琦.城市雨水资源化及其生态环境效应[J].生态学杂志,2003,22(2):32-35.
    39.宋茂斌,戴婷婷,冯宝平,等.灌溉水库汛限水位动态调度的风险分析[J].人民黄河,2008,30(5):58-59.
    40.王邦贤,吕志涛.利用地下水库联合调蓄水资源方案探讨[J].水资源研究,2011,32(4):7-9.
    41.王本德,郑德凤,周惠成,等.汛限水位动态控制方案优选方法及指标体系研究[J].大连理工大学学报,2007,47(1):113-118.
    42.王浩,王建华,秦大庸.流域水资源合理配置的研究进展与发展方向[J].水科学进展,2004,15(1):123-128.
    43.王红雷,王秀茹,王希.利用SCS-CN方法估算流域可收集雨水资源量[J].农业工程学报,2012,28(12):86-91.
    44.王红雷,王秀茹,王希,等.采用SCS-CN水文模型和GIS确定雨水集蓄工程的位置[J].农业工程学报,2012,28(22):108-114.
    45.汪洪泽,董增川,赵焱.基于协同进化遗传算法的滨湖河网地区水资源优化配置[J].南水北调与水利科技,2014,12(2):15-19.
    46.王颖倩.区域水资源优化配置与综合效益评价的实证研究[D].天津大学(天津),2009.
    47.王中根,朱新军,李尉,等.海河流域地表水与地下水耦合模拟[J].地理科学进展,2011,30(11):1345-1353.
    48.吴泽宁,胡彩虹,王宝玉,等.黄河中下游水库汛限水位与防洪体系风险分析[J].水利学报,2006,37(6):641-648.
    49.徐建国,卫政润,张涛,等.环渤海山东地区地下水库建设条件分析[J].地质调查与研究,2004,27(3):197-202.
    50.冶雪艳,杜新强,曹剑峰FEFLOW在黄河下游断流对地下水影响评价中的应用[J].黑龙江水专学报,2008,35(3):92-95.
    51.尤祥瑜,谢新民,孙仕军,等.我国水资源配置模型研究现状与展望[J].中国水利水电科学研究院学报,2004,2(2):131-140.
    52.于广杰.北方缺水灌区地表水地下水联合利用模型分析[J].甘肃水利水电技术,2010,46(1):6-10.
    53.张崇栋.滕州电厂水资源供需研究[D].河海大学,2007.
    54.张俊.太原市水资源优化配置模型及应用研究[D].太原理工大学,2010.
    55.张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析[J].长江流域资源与环境,2009,18(2):116-120.
    56.张书函,丁跃元.德国的雨水收集利用与调控技术[J].北京水利,2002,(3):39-41.
    57.张永华,张运凤,刘爽,等.地表水与地下水联合运用的可持续性评价[J].人民黄河,2009,(2):47-48.
    58.张增勤,冯创业.河北省利用地下水库实施水资源优化配置的可行性[J].南水北调与水利科技,2010,8(006):102-105.
    59.张正斌,黄占斌,山仑.雨水资源合理利用及其宏观调控[J].水土保持通报,1999,19(2):52-56.
    60.张正苹,成自勇,沈国云,等.黄河流域向甘肃省可供水资源优化配置研究[J].华南农业大学学报,2014,35(2):105-109.
    61.张志阔,刘本华,廖若芙.王河地下水库地下水动态分析及预报[J].水利水电科技进展,2004,24(3):47-50.
    62.张子豪,李博瑶.地表水与地下水联合调蓄供水水源井的优化设计[J].黑龙江科技信息,2013,(36):247.
    63.赵天石.关于地下水库几个问题的探讨[J].水文地质工程地质,2002,(5):65-67.
    64.赵廷红,牛争鸣.实现城市雨水资源化的基本途径[J].中国给水排水,2001,17(10):56-58.
    65.郑德凤,王本德.流域防洪系统中地下水库调蓄能力分析与计算[J].大连理工大学学报,2005,45(1):132-137.
    66.郑德凤.雨洪资源与地下水资源联合调控理论及应用研究[D].大连理工大学,2005.
    67. A Tilmant, E H Faouzi, M Vanclooster. Optimal operation of multipurpose reservoirs using flexible stochastic dynamic programming [J]. Applied Soft Computing,2002,2:61-74.
    68. Afzal Javaid, Noble David H. Optimization model for alternative use of different quality irrigation waters [J]. Journal of Irrigation and Drainage,1992,118(2):218-228.
    69. Aly A H, Peralta R C. Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems[J]. Water Resources Research,1999,35(8):2415-2425.
    70. Baltar A M, Fontane D G. Use of multiobjective particle swarm optimization in water resources management[J]. Journal of water resources planning and management,2008,134(3):257-265.
    71. Chilton J C, Maidment G G, Marriott D, et al. Case study of a rainwater recovery system in a commercial building with a large roof[J]. Urban water,2000,1(4):345-354.
    72. Cresti D. Analysis and design of household rainwater catchment systems for rural Rwanda[D]. Massachusetts Institute of Technology,2007.
    73. Custodio E. Aquifer overexploitation:what does it mean?[J]. Hydrogeology Journal,2002,10(2): 254-277.
    74. De Vries J J,Simmers I. Groundwater recharge:an overview of processes and challenges[J]. Hydrogeology J,2002,10(1):5-17.
    75. Ejaz M S, Peralta R C. Maximizing conjunctive use of surface and ground water under surface water quality constraints[J]. Advances in water resources,1995,18(2):67-75.
    76. Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. Journal of Water Resources Planning and Management,2003,129(3): 210-225.
    77. Farreny R, Morales-Pinzon T, Guisasola A, et al. Roof selection for rainwater harvesting:quantity and quality assessments in Spain[J]. water research,2011,45(10):3245-3254.
    78. Fujita S. Measures to promote stormwater infiltration[J]. Water Science and Technology,1997, 36(8):289-293.
    79. Garrido A. A mathematical programming model applied to the study of water markets within the Spanish agricultural sector[J]. Annals of Operations Research,2000,94(1-4):105-123.
    80. Gleick P H. Water in crisis:paths to sustainable water use[J]. Ecological applications,1998,8(3): 571-579.
    81. Gould J, Gurusamy K. Proceedings of Workshop on Rainwater Catchment Systems Technology and Utilisation in Botswana, Botswana Technology Centre, P [J]. Bag,1993,82:89.
    82. Gould J, Nissen-Petersen E. Rainwater catchment systems for domestic supply[M]. IT Publications London,1999.
    83. Gould J. Catching up-upgrading Botswana's rainwater catchment systems[J]. Waterlines,1997, 15(3):13-20.
    84. Hamdan S M. A literature based study of stormwater harvesting as a new water resource[J]. Water Science & Technology,2009,60(5):1327-1339.
    85. Helmreich B, Horn H. Opportunities in rainwater harvesting [J]. Desalination,2009,248(1): 118-124.
    86. Herrmann T, Schmida U. Rainwater utilisation in Germany:efficiency, dimensioning, hydraulic and environmental aspects [J]. Urban Water,2000,1(4):307-316.
    87. Jones L, Willis R, Yeh WWG. Optimal eontrol of nonlinear groundwater hydraulics using differential dynamic programming [J].Water Resourees Researeh,1987,23(11):2097-2106.
    88. Jones M P, Hunt W F. Performance of rainwater harvesting systems in the southeastern United States [J]. Resources, Conservation and recycling,2010,54(10):623-629.
    89. J(?)rgensen L F, Stockmarr J. Groundwater monitoring in Denmark:characteristics, perspectives and comparison with other countries [J]. Hydrogeology journal,2009,17(4):827-842.
    90. Kahinda J M, Lillie E S B, Taigbenu A E, et al. Developing suitability maps for rainwater harvesting in South Africa [J]. Physics and Chemistry of the Earth, Parts A/B/C,2008,33(8): 788-799.
    91. Karakocak B B, Yenigun O, Toraman R T. An integrated approach to water management in Kayseri:rainwater collection and use in an amusement park[J]. Water Science & Technology, 2013,67(5):1137-1143.
    92. Lado C. Socio-economic factors influencing sustainable water supply in Botswana[J]. GeoJournal, 1997,41(1):43-53.
    93. Li X Y, Gong J D, Wei X H. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China [J]. Journal of Arid Environments,2000,46(4): 371-382.
    94. Liaw C H, Tsai Y L. Optimum storage volume of rooftop rain water harvesting systems for domestic usel [J]. Journal of the American Water Resources Association,2004,40(4):901-912.
    95. Loucks D P, Fedra K. Impact of changing computer technology on hydrologic and water resource modeling [J]. Reviews of Geophysics,1987,25(2):107-112.
    96. Loucks D P. Sustainable water resources management [J]. Water international,2000,25(1):3-10.
    97. Madramootoo C A, Dodds G T, Papadopoulos A. Agronomic and environmental benefits of water-table management [J]. Journal of irrigation and drainage engineering,1993,119(6): 1052-1065.
    98. Maier H R, Simpson A R, Zecchin A C, et al. Ant colony optimization for design of water distribution systems [J]. Journal of water resources planning and management,2003,129(3): 200-209.
    99. Mikkelsen P S, Adeler O F, Albrechtsen H J, et al. Collected rainfall as a water source in danish households-what is the potential and what are the costs? [J]. Water Science and Technology,1999, 39(5):49-56.
    100. Montalvo I, Izquierdo J, Perez R, et al. Particle swarm optimization applied to the design of water supply systems [J]. Computers & Mathematics with Applications,2008,56(3):769-776.
    101.Motsi K E, Chuma E, Mukamuri B B. Rainwater harvesting for sustainable agriculture in communal lands of Zimbabwe [J]. Physics and Chemistry of the Earth, Parts A/B/C,2004,29(15): 1069-1073.
    102. Mupangwa W, Love D, Twomlow S. Soil-water conservation and rainwater harvesting strategies in the semi-arid Mzingwane Catchment, Limpopo Basin, Zimbabwe[J]. Physics and chemistry of the Earth, Parts A/B/C,2006,31(15):893-900.
    103. Mwenge Kahinda J, Taigbenu A E, Boroto J R. Domestic rainwater harvesting to improve water supply in rural South Africa[J]. Physics and Chemistry of the Earth, Parts A/B/C,2007,32(15): 1050-1057.
    104. Ngigi S N, Savenije H H G, Gichuki F N. Land use changes and hydrological impacts related to up-scaling of rainwater harvesting and management in upper Ewaso Ng'iro river basin, Kenya [J], Land Use Policy,2007,24(1):129-140.
    105. Ngigi S N, Savenije H H G, Thome J N, et al. Agro-hydrological evaluation of on-farm rainwater storage systems for supplemental irrigation in Laikipia district, Kenya [J]. Agricultural Water Management,2005,73(1):21-41.
    106. Ngigi S N. What is the limit of up-scaling rainwater harvesting in a river basin? [J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(20):943-956.
    107. Nolde E. Possibilities of rainwater utilisation in densely populated areas including precipitation runoffs from traffic surfaces [J]. Desalination,2007,215(1):1-11.
    108. Oweis T, Hachum A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa [J]. Agricultural Water Management,2006,80(1):57-73.
    109. Pachpute J S, Tumbo S D, Sally H, et al. Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa [J]. Water resources management,2009,23(13):2815-2839.
    110.Ringler C. Optimal allocation and use of water resources in the Mekong River Basin: multi-country and intersectoral analyses [M]. P. Lang,2001.
    111. Sazakli E, Alexopoulos A, Leotsinidis M. Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece [J]. Water research,2007,41(9):2039-2047.
    112. Schets F, Italiaander R, van den Berg H, et al. Rainwater harvesting:quality assessment and utilization in The Netherlands [J]. Journal of water and health,2010,8(2):224-235.
    113.Sharma K D. Rainwater harvesting and recycling [J]. Water Management, Purificaton, and Conservation in Arid Climates:Water Conservation,2000, (3):59.
    114. Sturm M, Zimmermann M, Schutz K, et al. Rainwater harvesting as an alternative water resource in rural sites in central northern Namibia [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2009,34(13):776-785.
    115. Wardlaw R, Barnes J. Optimal allocation of irrigation water supplies in real time [J]. Journal of irrigation and drainage engineering,1999,125(6):345-354.
    116. Watanabe S. Study on storm water control by permeable pavement and infiltration pipes [J]. Water science and technology,1995,32(1):25-32.
    117. Wei Z, Wen-ke W. Study on storm water management in urban planning [C]. Water Resource and Environmental Protection (ISWREP),2011 International Symposium on. IEEE,2011,4: 2729-2732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700