用户名: 密码: 验证码:
基于光内送粉的激光熔覆快速制造机理与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有的激光熔覆快速制造过程中偏置侧向送粉和多粉管光外同轴送粉熔覆成形工艺的不足,本文提出了一种“光束中空,粉管居中,光内送粉”的新型激光熔覆快速制造工艺,可应用于金属零件激光熔覆直接制造领域。
     本文完成的主要工作和取得的成果如下:
     1.设计了一套基于光内送粉的激光熔覆快速制造系统,该系统将传统的圆锥形聚焦激光束变换为中空的锥形聚焦激光束,将粉末送入中空部分,实现光粉同轴;对所设计的送粉系统开展了性能分析,结果表明,粉末利用率高达60%-75%,比现有的多粉管光外同轴送粉的粉末利用率提高50%以上。
     2.以作用区域的整体粉末为研究对象,建立了光内同轴送粉成形工艺下的激光束与粉末相互作用的粉末遮光率和粉末颗粒温升简化数学模型,分析了激光利用率;所建立的模型可有效指导送粉喷头的结构优化设计和成形过程仿真。
     3.详细研究了光内送粉试验关键工艺参数,如光束输出模式、离焦量、激光功率密度、送粉量和扫描速度等对熔覆质量的影响;在多模激光束模式下,探索了不同工艺参数与熔覆层质量的关系,为多层熔覆薄壁墙成形试验打下良好的基础。
     4.建立了光内送粉激光熔覆快速制造过程中温度场和应力场有限元分析模型,研究了光内送粉熔覆过程中工件的温度分布和应力分布,为控制熔覆层微观质量和预防裂纹产生提供理论指导;设计了一套熔池温度控制系统,可以有效防止热积累,抑制裂纹效果显著。
     5.在理论分析和实验研究的基础上,开展了光内同轴送粉激光熔覆快速制造的应用基础研究,探索了变方向、变截面、变斑等工艺在金属典型零件中的应用。并结合激光重熔以获得较好的零件表面质量。
     研究结果表明,利用光内送粉激光熔覆快速制造系统进行金属直接制造,可以提高粉末利用率和成形质量;与原有成形方式相比,成形件显微组织更致密无缺陷,成形过程稳定可靠,表面粗糙度大大降低,无“上粗下细”现象,侧面几乎没有未熔颗粒。
For the disadvantages of the lateral powder feeding and multi-lateral coaxial powder feeding process in laser cladding rapid prototyping process, a new process of hollow focusing laser, powder tube being medial and inside-beem powder feeding is put forward, which can be especially apply in laser cladding direct manufacturing.
     The major work completed and the results obtained are as follows:
     1.A new system of inside-beam coaxial powder feeding is designed, which can transform the conical focusing laser beam to hollow conical focusing laser beam and powder is delivered to the middle hollow part, and powder is coaxial with the laser. Then the performance of this system is analyzed. The results show that the powder utilization can reach to 60% -75%, which is 50 percent higher than that of the existing coaxial powder.
     2. Selecting the overall regional powder as the research object, the simplified mathematics model of powder shading efficiency and powder temperature increment model is established, and the power effect efficiency is analyzed also, which is useful for the design and optimization of powder feed nozzle and the simulation of forming process.
     3. The key process parameters, such as laser power density, beam of light mode and scanning speed etc, are studied in detail. In the multimode laser, the relation between different process parameters and cladding coat quality is found out, which can prepare fully for shaping multilayer parts.
     4. The finite element analysis model of temperature and stress of the laser cladding rapid manufacturing using inside-beam powder feeding is established, temperature distribution and the stress distribution of the workpiece is researched, which is theoretically useful for controlling the quality of microstructure and to prevent the cracks. Then the pool temperature control system is designed that can prevent heat accumulation effectively and delay cracks remarkably.
     5. Based on the theoretical analysis and experimental research, the laser cladding rapid manufacturing using inside-beam powder feeding is developed. The applications in the typical metal parts with process of variable direction, variable cross-section and variable spot are studied. Combined with laser re-melting, a better surface quality can be obtained.
     The results show that if adopting the system of the laser cladding rapid manufacturing using inside-beam powder feeding, the powder utilization and forming quality can be improved; compared with the original mode, there has a dense microstructure and no more defects, the process is more stable and reliable, the surface roughness is reduced greatly, and there is no "the thick top and the thin bottom " phenomenon, and has no melting particles in the side wall.
引文
[1]钟敏霖,刘文今.国内外高功率激光材料加工研究的最新发展[J].激光集锦,2003, 13(2-3): 19-33.
    [2]王至尧.中国材料大典[M].北京:化学工业出版社, 2006.
    [3]杨森,钟敏霖等.激光快速成型金属零件的新方法[J].激光技术, 2001, 25(4): 254-258.
    [4]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D],博士学位论文.武汉:华中科技大学, 2004.
    [5]张永忠,石力开,章萍芝等.基于金属粉末的激光快速成型技术新进展[J].稀有金属材料与工程, 2000, 29(6): 361-364.
    [6]许勤,张坚.激光快速成型技术研究现状与发展[J].九江学院学报, 2005, 20(1): 8-10.
    [7] B.S. Shin, D.Y. Yang, D.S. Choi et al. A new rapid manufacturing process for multi-face high-speed machining[J]. The international journal of advanced manufacturing technology, 2003, 22(1-2):68-74.
    [8] N.P. Karapatisect, Griethuysen van, PS J. Direct rapid tooling: a review of current research[J]. Rapid Prototyping Journal, 1998, 2(4): 77-89.
    [9] Murphy M L, Steen W M, Lee C.A Novel Rapid Prototyping Technique for the Manufacture of Metallic Components[C], ICALEO’94, 31-40.
    [10]张凯,刘伟军,尚晓峰等.金属零件激光直接快速成形技术的研究(上)—国外篇[J].工具技术, 2005, 39(5): 3-8.
    [11]张凯,刘伟军,尚晓峰等.金属零件激光直接快速成形技术的研究(下)—国内篇[J].工具技术. 2005, 39(6): 3-5.
    [12]陈静,林鑫,王涛等. 316L不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程. 2003, 32(3): 183-186.
    [13]陈静,杨海鸥,杨健等.高温合金和钛合金的激光快速成形工艺研究[J].航空材料学报, 2003 ,23(10):100-103.
    [14]杨健.激光快速成形金属零件力学行为研究[D],学位论文.西安:西北工业大学, 2004.
    [15]张永忠,石力开,章萍芝等.激光快速成形镍基高温合金研究[J].航空材料学报, 2002, 22(1): 22-25.
    [16]席明哲,张永忠,石力开等.工艺参数对激光快速成型316L不锈钢组织性能的影响[J].中国激光, 2002, 36(11): 105-108.
    [17]刘常乐.载气式激光熔覆送粉器的研制[D],学位论文.天津:天津工业大学, 2003.
    [18]唐英,王云山,孙荣禄等.激光熔敷镍基自熔性合金粉末的研制[J].天津工业大学学报, 2003, 22(5): 52-55.
    [19] Hu Yingping. Coaxial Nozzle Design for Laser Cladding/Welding Process.欧洲专利, WO2005/028151, 2005.
    [20] Angelo Buongiorno, Wanague, N.J. Laser Powered Metal Cladding Nozzle.美国专利, US5477026, 1995.
    [21] Gary K Lew, Richard M Less. Deposition Head For Laser.美国专利US5961862, 1999.
    [22] Guo Wen. Compact coaxial nozzle for laser cladding.美国专利, US7259353, 2004.
    [23] YP Hu. An analysis of powder feeding systems on the quality of laser cladding[J]. Advances in Powder Metallurgy& Particulate Materials, 1997, 21: 17-31.
    [24] Andrew J.Pinkerton, Lin Li. Direct additive laser manufacturing using gas- and water-atomised H13 tool steel powders[J]. Int J Adv Manuf Technol, 2005, 25(5-6): 471-479.
    [25] D Hu, H Mei, R Kovacevic. Improving solid freeform fabrication by laser based additive manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, Part B. 2002(B9):1253-1264.
    [26] Jichang Liu, Lijun Li. Effects of powder concentration distribution on fabrication of thin-wall parts in coaxial laser cladding[J]. Optics & Laser Technology. 2005, 37(4): 287-292.
    [27] J.Y. Jeng, S.C. Peng and C.J. Chou. Metal Rapid Prototype Fabrication Using Selective Laser Cladding Technology[J]. Int J Adv Manuf Technol, 2000, 16(9): 681-687.
    [28] C.A. Brice, H.L. Fraser. Characterization of Ti-Al-Er alloy produced via direct laser deposition[J]. Journal of materials science. 2003, 38(7): 1517-1521.
    [29] Andrew J. Pinkerton, Lin Li. The significance of deposition point standoff variations in multiple-layer coaxial laser cladding (coaxial cladding standoff effects)[J]. International Journal of Machine Tools & Manufacture, 2004, 44(6): 573–584.
    [30] M.P. Mughal, H. Fawad, R.Mufti. Parametric thermal analysis of a single molten metal droplet as applied to layered manufacturing[J]. Heat and Mass Transfer, 2006, 42(3): 226-237.
    [31]朱银锋.用于激光快速制造的三维送粉头的设计[J].应用激光, 2005, 25(1): 13-16.
    [32]谭华,陈静,杨海欧等.激光快速成形过程的实时监测与闭环控制[J]. 2005, 25(2): 73-76,96.
    [33]于君,陈静,谭华等.激光快速成形工艺参数对沉积层的影响[J].中国激光, 2007, 34(7): 1014-1018.
    [34]张永忠,席明哲,石力开等.激光快速成形316L不锈钢研究[J].材料工程, 2002, (5): 22-25.
    [35]宁国庆,钟敏霖,杨林等.激光直接制造金属零件过程的闭环控制研究[J].应用激光, 2002, 22(2): 172-176.
    [36]钟敏霖,宁国庆,刘文今.激光熔覆快速制造金属零件研究与发展[J].激光技术, 2002, 26(5): 388-391.
    [37]靳晓曙,杨洗陈.金属零件的直接快速制造和再制造[J].机械设计与制造, 2006, (6): 96-98.
    [38]杨洗陈,王云山,赵新等.大面积激光自动涂覆系统及其工业应用[J].天津纺织工学院学报, 1998, 17(1): 80-85.
    [39]高淑英,杨洗陈.用于激光熔敷的同轴送粉喷嘴的设计[J].天津工业大学学报, 2003, 22(5): 42-45.
    [40]高淑英.用于激光熔覆的同轴送粉喷嘴的设计和研究[D],硕士学位论文.天津:天津工业大学, 2002.
    [41]尚晓峰,刘伟军,王天然等.激光工程化净成形技术同轴送粉的研究[J].中国机械工程, 2004, 15(22): 1994-1997.
    [42]杨毅.激光直接快速成形金属零件的机理及工艺研究[D],硕士学位论文.长沙:南华大学, 2006.
    [43]钟敏霖,刘文今,李凤生.垂直面送粉激光熔覆喷嘴.中国专利, 02123645.3 .
    [44]钟敏霖,刘文今.垂直装卸的分体式激光熔覆同轴送粉喷嘴.中国专利, 00100041.1 .
    [45]钟敏霖,张红军,刘文今.可调宽带双向对称送粉激光熔班喷嘴.中国专利, 01110132.6.
    [46]张永忠,石力开.激光熔覆同轴送粉喷嘴.中国专利, 01267740.X .
    [47]王云山,杨洗陈,赵新.一种激光涂敷送粉嘴.中国专利, 02245661.9 .
    [48]李鲁伯.孔类零件内壁激光熔覆及合金化用同轴送粉嘴.中国专利, 02110244.9 .
    [49]胡乾午,曾晓雁.一种内置式激光熔覆喷嘴.中国专利, 200410013108.0 .
    [50]沈德久,廖波,王玉林.同轴送粉对激光熔覆组织的细化作用[J].应用激光, 2002, 22(3): 290-292.
    [51]张慧杰,胡国清等.快速原型技术综述[J].机械, 2004, (6): 1-3.
    [52]周笑薇,王小珍.激光熔覆技术在工业中的应用[J].中州大学学报, 2005, 22(4):110-111.
    [53] Terry T, Wohler S. Worldwide developments & Trends in Rapid prototyping & tooling, Progress in rapid prototyping Manufacturing and Rapid tooling[C]. Proceedings of First International Conference on rapid prototyping & Manufacturing’98, Beijing, 1998.
    [54] Sachlos Eleftherios, Reis Nuno, Ainsley Chris, et al. A process to make collagen scaffolds with an artificial circulatory system using rapid prototyping [J]. Materials research society symposium proceedings, 2003, 758: 187-192.
    [55]张旭东,陈武柱.激光-电弧同轴复合焊炬.中国专利, 03109130.
    [56]王建军.基于激光熔覆的快速制造技术的初步研究[D],硕士学位论文.天津:天津工业大学, 2003.
    [57]张庆茂.送粉激光熔覆应用基础理论的研究[D],博士学位论文.长春:中国科学院长春光学精密机械与物理研究所, 2000.
    [58]余宽新,江铁良,赵启大.激光原理与激光技术[M].北京:北京工业出版社, 1998.
    [59]关振中.激光加工工艺手册[M].北京:中国计量出版社, 1998.
    [60]陆建等.激光与材料相互作用物理学[M].北京:机械工业出版社, 1996.
    [61]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社, 2002.
    [62] S. F. Corbin, E. Toyserkani, A. Khajepour. Cladding of an Fe-aluminide coating on mild steel using pulsed laser assisted powder deposition[J]. Materials Science and Engineering A. 2003, 354(1-2): 48-57.
    [63]陈庆华.激充与材料相互作用及热场模拟[M].昆明:云南科技出版社, 2001
    [64]张庆茂,刘文今,杨森等.激光与熔覆粉末作用效率的计算及影响因素[J].激光技术, 2002(3): 170-172.
    [65]刘振侠.激光熔凝和激光熔覆的数学模拟和数学分析[D],硕士学位论文.西安:西北工业大学, 2003.
    [66]李会山.激光再制造的光与粉末流相互作用机理及试验研究[D],博士学位论文.天津:天津工业大学, 2004.
    [67]倪栋,段进,徐久成等.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社, 2003.
    [68]邓开发,陈洪,是度芳等.激光技术与应用[M].长沙:国防科技大学出版社, 2001.
    [69]王涛,古桂茹,李玉翔等.激光在机械制造技术中的应用[J].激光杂志, 2006, 27(3): 75-76.
    [70] S.F. Corbin, E. Toyserkani, A. Khajepour. Cladding of an Fe-aluminide coating on mild steel using pulsed laser assisted powder deposition[J]. Materials Science and Engineering A. 2003, 354(1-2): 48-57.
    [71] Jichang Liu, Lijun Li. Effects of powder concentration distribution on fabrication of thin-wall parts in coaxial laser cladding[J]. Optics & Laser Technology. 2005, 37(4): 287-292.
    [72] Jichang Liu, Lijun Li. Effects of process variables on laser direct formation of thin wall[J]. Optics & Laser Technology. 2007, 39(2): 231-236.
    [73] Subrata Kumar, Subhransu Roy. Development of theoretical process maps to study the role of powder preheating in laser cladding[J]. Computational Materials Science. 2006, 37(4): 425-433.
    [74] C.P. Paul, P. Ganesh, S.K. Mishra et al. Investigating laser rapid manufacturing for Inconel-625 components[J]. Optics & Laser Technology. 2007, 39(4): 800-805.
    [75] A. Plati, J.C. Tan, I.O. Golosnoy, et al. Residual Stress Generation during Laser Cladding of Steel with a Particulate Metal Matrix Composite[J]. Advanced Engineering Materials 2006, 8(7): 619-624.
    [76]黄延禄,邹德宁,梁工英等.送粉激光熔覆过程中熔覆轨迹及流场与温度场的数值模拟[J].稀有金属材料与工程, 2003, 32(5): 330-334.
    [77]石力开,高士友,席明哲等.金属直薄壁件激光沉积过程的有限元模拟[J].金属学报, 2006, 42(5): 449-453.
    [78]王秀凤,陈光南,胡世光等.激光点热源作用下动态微变形的数值模拟和校验[J].中国激光. 2004, 31(12): 1518-1521.
    [79]姚山,陈宝庆,曾锋等.覆膜砂选择性激光烧结过程的建模研究[J].铸造, 2006, 54(6): 545-548.
    [80]郭华锋,周建忠,胡增荣.金属粉末激光烧结温度场的三维有限元模拟[J].工具技术, 2006, 40(11): 13-18.
    [81]刘振侠,黄卫东,万柏涛.送粉式激光熔覆数值模型基本问题研究[J].中国激光. 2003, 30(6): 567-570.
    [82] GU Dongdong, SHEN YiFu, LIU ManCang, et al. Numerical simulations of temperature field in direct metal Laser sintering process[J]. Transactions of Nanjing University of Aeronautics & Astronautics. 2004, 21(3): 225-233.
    [84]郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元温度场分析[J].中国表面工程, 2004, 17(6): 10-14.
    [85]郝南海,陆伟,左铁钏.激光熔覆过程热力耦合有限元应力场分析[J].中国表面工程,2005,1: 20-23.
    [86]徐庆鸿,郭伟,田锡唐等.激光熔覆三维温度场数值模型的建立与验证[J].焊接学报. 1997, 18(2): 58-62.
    [87]赵镇南.传热学[M].北京:高等教育出版社, 2002.
    [88]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社, 2003.
    [89]田应涛.激光重熔修复镍基合金微裂纹应力应变场的数值模拟[D],硕士学位论文.哈尔滨:哈尔滨工业大学, 2006.
    [90]陆山.热结构分析有限元程序设计[M].西安:西北工业大学出版社, 2003.
    [91]饶寿期.有限元法和边界元法基础[M].北京:北京航空航天大学出版社, 1990.
    [92]方昆凡.工程材料手册-黑色金属材料卷[M].北京:北京出版社, 2002.
    [93] Marathon. MR1S Operator’s Manual[Z]. Raytek Corporation, 2000.
    [94]王伊卿.电弧喷涂制造模具关键技术及材料开发研究[D],博士学位论文.西安:西安交通大学, 2001.
    [95]严宗达.塑性力学[M].天津:天津大学出版社, 1988.
    [96]夏志皋.塑性力学[M].上海:同济大学出版社, 1991.
    [97]杨秉俭.灰铸铁的应力屈服曲面及其三维热弹塑性应力解析[J].西安交通大学学报, 1992, 26(4): 37-46.
    [98]龙日升,刘伟军.激光金属沉积成形过程热应力的数值模拟[J].高技术通讯, 2007, 12(2): 142-147.
    [99]李守卫.多组元金属粉末选择性激光烧结数值模拟及试验研究[D],硕士学位论文.南京航空航天大学, 2006.
    [100]张剑峰.Ni基金属粉末激光直接烧结成形及关键技术研究[D],博士学位论文.南京航空航天大学, 2002.
    [101]闫旭日,颜永年,张人佶等.分层实体制造中层间应力和翘曲变形的研究[J].机械工程学报, 2003, 39(5): 36-40.
    [102]左铁钏.高强铝合金的激光加工[M].长沙:国防工业大学出版社, 2002.
    [103] Salehi D, Brandt M. Melt pool temperature control using LabVIEW in Nd: YAG laser blown powder cladding process[J]. International Journal of Advanced Manufacturing Technology, 2006, 29(3-4): 273-278.
    [104] Hoffmann. E, Backes. G, Gasser et al. Process monitoring by temperature control during generating with CO2 laser radiation[J]. Laser and Optoelektronik, 1996, 28(3): 59-67.
    [105] Yongqing Fu, Hejun Du; Zhang, S et al. Stress and surface morphology of Ti-Ni-Cu thin films: effect of annealing temperature[J]. Surface coatings technology, 2005, 198(1-3): 389-394.
    [106]朱鹏飞,石世宏,胡进等.基于PMAC数控激光加工系统光粉一体化控制[J].苏州大学学报, 2006, 26(4): 39-41.
    [107] C. Atwood, M. Griffith, L. Harwell et al. Laser Engineered Net Shaping (LENSTM): A tool for direct fabrication of Metal Parts[C]. Proceedings of ICALEO '98, November 16-19, 1998, Orlando, FL: E-1.
    [108] Gray K. Lewis, Eric Schlienger. Practical considerations and capabilities for laserassisted direct metal deposition[J]. Materials and Design, 2000, 21(4): 417-423.
    [109] J. Mazumder, D. Dutta, N. Kikuchi et al. Closed loop direct metal deposition: art to part[J].Optics and Lasers in Engineering, 2000, 34(4-6): 397-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700