用户名: 密码: 验证码:
沼气液化制取生物质LNG关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石能源紧缺,价格上涨及其所引起的环境污染问题使沼气能源的利用成为近年来研究热点。沼气液化能提高沼气能量密度和燃烧特性,使其可作为清洁能源替代天然气用于生产生活领域,同时也能解决沼气储存、运输困难问题,是实现沼气综合化、规模化利用的重要技术手段。液化后的沼气称为生物质LNG(Liquefied Natural Gas),然而与天然气相比,沼气存在甲烷含量低、二氧化碳含量高、净化工艺不完善、液化系统能耗高等问题,制约着沼气液化技术的发展。
     本文在深入分析研究国内外沼气净化与液化技术现状的基础上,研究沼气液化制取生物质LNG的关键技术问题;根据厌氧发酵理论,以黄储玉米秸秆作为原料,研究了密闭存放的预处理方法对秸秆中纤维素和半纤维素降解率的影响,以及秸秆与其他发酵原料混合发酵对沼气产量和甲烷含量的影响。基于相平衡理论,采用低温液化冷能技术,对二氧化碳的分离进行了研究;依据热力学焓熵(?)理论,研究工艺参数对沼气液化系统的(?)损失影响;在深入分析天然气液化流程的基础上,研究了沼气液化系统中的工艺参数对系统能耗的影响;将撬装化设计技术引入沼气液化系统,建立了净化与液化耦合的沼气液化系统。
     以厌氧发酵理论为指导,研究了黄储玉米秸秆密闭处理培育自然菌种提高纤维素降解的预处理方法。对玉米秸秆进行了CMC酶、木聚糖酶、滤纸酶及外切酶的酶活分析,发现中层秸秆酶活比底层高;对玉米秸杆分别与牛粪、污泥混合发酵进行实验研究,得到了甲烷含量较高的发酵原料的混合比例。实验表明黄储玉米秸秆合理储存既能培养微生物又可以降低预处理成本。
     基于液化冷能技术,构建了适用于分离沼气中二氧化碳的净化系统。模拟分析了压力和温度对二氧化碳分离的影响规律,利用气液相状态方程计算了该系统的热力学工艺参数,结果表明该系统技术适合分离二氧化碳含量在20%-50%的沼气,分离后沼气中二氧化碳摩尔分数降至9%以下;通过实验优化了低温液化分离二氧化碳的工艺条件:在压力3.7MPa、温度-78.5℃、流量0.8g/s条件下,沼气中的甲烷体积分数由58.2%提高到82.8%,二氧化碳体积分数由36.4%下降到8.8%。
     基于热力学焓熵(?)理论,研究了沼气液化系统的(?)变化规律。设计混合制冷剂沼气液化流程,模拟系统中设备(?)损失分布,结果表明沼气液化系统(?)损失最大的设备是压缩机,其次是换热器和冷却器;建立小型实验平台,对混合制冷剂沼气液化体系进行实验研究,提出了沼气液化后的闪蒸气体预冷液化系统内混合制冷剂的节能方法,实验结果表明:采用该节能方案后,压缩机的(?)损失减少12.2%,冷却器的(?)损失减少27.2%,实验证明了该方法的有效性。
     基于热力学最小能耗原理,设计氮气膨胀、混合制冷剂两种液化系统,模拟得出系统中压缩机、冷却器功耗及沼气液化率等性能参数,分析了各换热器中管路换热负荷—温度的分布情况,得到了多组元混合制冷剂在换热器中相变耦合的性能曲线;研究了制冷剂级数对液化系统的影响,研究表明带预冷混合制冷剂的流程能耗低于单级制冷流程能耗;分析了该流程中的各参数对压缩机的比功耗与比冷却水负荷影响,得到了高、低压制冷剂的压力、温度、沼气及制冷剂中组分变化等对液化系统比能耗的影响规律。
     在深入研究小型天然气撬装化系统基础上,将撬装化与模块化引入沼气液化系统,建立了净化与液化耦合的沼气撬装化液化系统。采用低温液化分离二氧化碳的净化系统与预冷和混合制冷耦合的冷箱,得出液化系统的全流程节点的温度、压力、摩尔焓、摩尔熵、摩尔流量和气相分数。结果表明:生物质LNG液化率为0.9242,系统的能耗为0.455kWh/Nm3
Due to the shortage of fossil energy, rising prices and the resultant environmental pollution problems, the use of biogas energy has become a research hotspot in recent years. Biogas liquefaction can improve the energy density and combustion characteristics of biogas, so it can be used as clean energy to replace natural gas used in various fields of production and living. At the same time, biogas liquefaction system can solve the problem of biogas storage, transportation difficulties, and it's also a technology means to achieve a comprehensive, large-scale use of biogas. Liquefied biogas was referred to as biomass LNG (Liquefied Natural Gas). However, in comparison with natural gas, biogas has several problems, such as low composition of methane, high content of carbon dioxide, imperfect in the purification process and liquefaction system, and high-energy consumption and so on. These problems have seriously restricted the development of liquefaction biogas technology.
     Based on the analysis of LNG liquefaction and purification, the key technologies of preparing biomass LNG was studied. Based on the anaerobic fermentation theory, the effect of the pretreatment method of corn straw mixing with cow dung and mud on the content of methane in biogas was researched, respectively. Based on LNG cold energy utilization technology and obvious difference in critical temperature and pressure between CH4and CO2, the separating efficiency of separating CO2from biogas was calculated by PR equation and phase equilibrium theory. According to thermodynamic law. the effect of process parameters on exergy loss of the biogas liquefaction system was analyzed. Based on the research of liquefied natural gas system, the effect of process parameters on system energy consume was analyzed. Skid-mounted package and modulization were introduced into the biogas liquefaction system, and the coupling biogas liquefaction system with purification and liquefaction was established.
     In this paper, the pretreatment method of storing corn straw in obturation environment was proposed to improve cellulose degradation rate, based on the anaerobic fermentation and microbial fermentation theory. CMC enzyme, xylanase, filter paper enzyme and exonuclease activity were tested for the pretreatment stalk. The results showed that the enzyme activity of middle corn stalks reached the highest level. The mixed fermentation experiment including two parts was conducted. One part was mixing corn straw with cow dung, and the other part was mixing corn straw with the sludge. The results showed that the methane content of the former was about20%above the latter. Corn straw closed cultivation of microorganisms can culture microorganisms and reduce pretreatment costs, which provides an effective pretreatment method for large-scale dry fermentation biogas industrialization.
     A purifying system separating CO2from biogas was constructed based on LNG cold energy utilization technology. The effects of the different temperature and pressure on separating efficiency were analyzed. The CO2separation system by liquefaction in low tempreture was constructed, and the thermodynamic parameters of this system were calculated by PR equation. The simulation results indicated that the volume fraction of CO2reduced to less than9%. The system is ideal for separating CO2in the range of20%to50%from biogas. The optimum technological conditions was obtained, with the pressure of3.7MPa, the temperature of-78.5℃and the flow rate of0.8g/s. Under this condition, the volume fraction of CH4increased from58.2%to82.8%, and the volume fraction of CO2decreased from36.4%to8.8%.
     According to thermodynamic law. the exergy loss of the biogas liquefaction system was analyzed. A small mixed refrigerant gas liquefaction process was designed and the exergy loss of the equipment was computed and simulated. The results showed that the compressor was subjected the most impairment from the exergy loss of the system, followed by the heat exchanger and cooler. The mixed refrigerant biogas liquefaction system was studied in a small experimental platform. The experiment conclusions indicated-that the exergy loss of the compressor was reduced by12.2%, and the cooler was reduced by27.2%, by adopting the cooling capacity of flash gas to cool the outlet gas of compressor, which proved the validity of the method.
     According to the thermodynamic theory of the core principle, two liquefaction systems were designed and the parameters of compressors and coolers were calculated. The key parameters of the two processes were compared. The distribution of heat load-tempreture in heat exchangers was also analyzed. And then the performance curves of multi-component mixed refrigerant existing phase changes coupling in the heat exchanger were determined. Effect of the number of stages of mixed refrigerant cycle on biogas liquefaction system was analyzed. The results showed that the energy consumption of the mixed refrigerant process with precooling was lower than that of the single-stage one. The effect of parameters on the energy of liquefaction system was simulated. The laws on effect of the change of temperature, pressure and component fraction at the same time on the energy consumption of liquefaction were obtained.
     Based on the research of small-scale liquefied natural gas system in skid-mounted package, skid-mounted package and modulization were introduced into the biogas liquefaction system. Temperature, pressure, enthalpy, entropy, molar flow and vapors fraction in liquid and gas phase fraction of every node in the whole process were obtained by using the coupling precooling and refrigerant purification system. The results showed that the liquefaction rate of biogas liquefaction system was0.9242and the power consumption of the equipment was0.455kWh/Nm3
引文
[1]程序,邓恒受,等.开发沼气,实现生物质天然气对天然气的替代[J].中国工程科学,2011,13(2):29-34.
    [2]王欧.中国生物质能源开发利用现状及发展政策与未来趋势[J].中国农村经济,2007,(7):10-15.
    [3]石元春.中国生物质原料资源[J].中国工程科学,2011,13(2):16-23.
    [4]董天峰,李君兴,张蕾蕾,等.生物质能技术现状与发展[J].农业与技术,2008.28(2):9-11.
    [5]迟姚玲,丁福臣,易玉峰,等.生物质能的开发利用[J].北京石油化工学院学报,2008,16(2):11-14.
    [6]曹湘洪.我国生物能源产业健康发展的对策思考[.J].化工进展,2007.26(7):905-913.
    [7]邓启明.基于循环经济的农村能源与生物质能开发战略研究[J].农业工程学报,2006,,1(22):12-15.
    [8]范志林,张军,林晓芬,等.关于生物质基本性质分析的问题[J].东南大学学报(自然科学版),2004,34(3):352-355.
    [9]曹文胜.小型LNG装置的预处理与液化流程研究[D].上海:上海交通大学.博士论文,2008.
    [10]崔明,赵立欣,田宜水,等.中国主要农作物秸秆资源能源化利用分析评价[J].农业工程学报.2008,24(12):291-296.
    [11]冯婷婷,成魁,闵庆文.等.西藏日喀则地区沼气能源式及其效益分析[J].资源科学,2008,30(9):1313-1319.
    [12]Suzuki T,Yamada Y. Physical and gas transport properties of novel hyperbranched polyimide-ssilica brid membranes[J].Polymer BuIletin,2005,53(2):139-146.
    [13]袁振宏,吴创之,等.生物质能利用原理与技术[M].北京:化学出版社.2005.
    [14]马隆龙,吴创之.等.生物质气化技术及其应用[M].北京:化学工业出版社.2003.
    [15]刘荣厚,牛卫生,等.生物质热化学转化技术[M].北京:化学工业出版社.2005.
    [16]Zhang R H, Zhang Z Q. Biogasification of fice straw with an anaerobic-phased solids digester system [J]. Bioresour. Technol,1999,68 (3):235-245.
    [17]Mala-Alvarez J, Macq S, Llabrqs P.Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives[J]. Bioresource Technology,2000,74 (1):3-16.
    [18]Martinez A T, Speranza M, Ruiz-Duenas F J. Biodegradation of lignocellulosics:Microbial. chemical, andenzymatic aspects of the fungal attack of lignin[J].Int Microbiol.2005.8(3): 195-204.
    [19]Luning L,van Zundert EHM.Brinkmann AJF.ComParison of dry and wet digestion for solid waste[J].Water Science and Technology 2003,48(4):15-20.
    [20]Fernandez J,Perez M,Romero LI.Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municiPal solid waste (OFMSW) [J].Bioresource Technology 2008,99(14):6075-80.
    [21]Lu SG,Imai T,Ukita M,Sekine M.Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes[J].Journal of Environmental Sciences-China,2007,19(4):416-20.
    [22]刘晓英.餐厨垃圾特性及厌氧发酵产沼性能研究[J].北京:北京化工大学,2010.6.
    [23]蒋彬.餐厨垃圾中温厌氧发酵工艺性能及特征影响因素研究[D].南京:东南大学,2009.9.
    [24]孙国朝,邵廷杰,郭学敏.沼气干发酵工艺必须的条件:沼气新技术应用研究[M].成都:四川科学技术出版社,1988:47-58.
    [25]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社.2005:54-58.
    [26]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:28-31.
    [27]边炳鑫,赵由才.农业固体废物的处理与综合利用[M].北京:化学工业出版社,2005:187-188.
    [28]Pang Y, Liu Y, Li X, Wang K, Yan H. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment[J]. Energy Fuels,2008,22 (4):2761-2766.
    [29]Yebo Li, Stephen Y. Park, Jiying Zhu. Solid-state anaerobic digestion for methane production from organic waste[J]. Renewable and Sustainable Energy Reviews,2011 (15):821-26.
    [30]De Baere L. Partial stream digestion of residual municiPal solid waste[J]. Water Science and Technology,2008,57(7):1073-1077.
    [31]Bolzonella D, Innocenti L, Pavan P, Traverso P, Cecchi F. Semi-dry thermophilic anaerobic digestion of the organic fraction of municiPal solid waste:focusing on the start-up phase[J]. Bioresource Technology.2003,86 (2):123-129.
    [32]Zhang,Z.,R.Zhang. Anaerobic phased solids digester system for biogasification of agcultural and food wastes[D]. Ph.D dissertation. University of California at Davis,2000.
    [33]Ballesteros I,Oliva J M,Negro M J,et al.Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata)at different Particule sizes[J]. Process Biochemistry,2002,38(2):187-192.
    [34]Luo.Q, Li, Xiujin.Anaerobic biogasification of NaOH-treated corn stalk, Transactions of Chinese Society[J]. agricultural Engineer 2005,21(2):111-115.
    [35]冯磊,李润东,李延吉NaOH固态预处理对秸科厌氧消化的影响[J],深圳大学学报理工版,2010,27(3):367-373.
    [36]庞云芝,李秀金.中国沼气产业化途径与关键技术[J].农业工程学报,2006.22(s1):53-57.
    [37]Saha B C,Iten L B.Cotta M A,et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol[J].Process Biochemistry,2005.40(12):3693-3700.
    [38]He Rongyu, Liu Xiaofeng. Yan Zhiying.Review on enhancing biogas production by additives[J]. China Biogas,2007,25(5):8-10.
    [39]袁旭峰,高瑞芳,李培培等.复合菌系MC1预处理对玉米秸秆厌氧发酵产甲烷效率的提高[J].农业工程学报.2011,27(9):266-270.
    [40]Wan ChuJun, Huang Fenghong, Liu Rui,Hui Jiang,Huang Feng.Effect on increasing biogas production using rape straw by microbiological pretreatment [J].Transactions of the CSAE, 2010,26(6):267-271.
    [41]Chandra RP,Bura R,Mabee WE,Berlin A,Pan X,Saddler JN.Substrate pretreatment:the key to effective enzymatic hydrolysis of lignocellulosics[J]. Biofuels 2007,108:67-93.
    [42]Muller H. W., Trosch W. Screening of white-rot fungi for biological pretreatment of wheatstraw for biogas production[J]. Appl.Microbiol. Biotechnol,1986,24(2):180-185.
    [43]Montero B, Garcia-MoralesJ.L.SalesD,Solera R, Evolution of microorganisms in thermophilic-dry anaerobic digestion[J].Bioresource Technology,2008,99 (8):3233-3243.
    [44]Chu Lili,Yang Gaihe,Zhang Cuili,et al.The biogas production efficiency of crop straws at different temperature [J].Agricultural Research in the Arid Areas,2008,26(3):190-193.(in Chinese with English abstract)
    [45]Song zilin LI Yibing.Yang gaihe,etal Effect of total solid concentration and temperature on biogas yield of mixture of chicken manure and corn straws[J]. Transaction of the CSAE,2010,26(7):260-265.
    [46]Mashad HM,Zeeman G,Loon WKP,Bot GPA,Lettinga G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure[J].Bioresource Technology, 2004,45:191-201.
    [47]Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process:review[J]. Bioresource Technology,2008,99(10):4044-4064.
    [48]Liu Ronghou,Hao Yuanyuan,Wu Lijuan.Effect of temperature on biogas yield and property during anaerobic fermentation process of pig dung[J].Renewable Energy,2006,129(5):32-35.(in Chinese with English abstract)
    [49]邵琳,朱光灿.餐厨垃圾厌氧发酵工艺的影响与优化[J].环境科技,2008,21(6):56-59.
    [50]Liu Dejiang, Gao Guili, Zhu Yanmei, Li yan, Yan Zhiqun.The comParison experiment of biogas fermentation with pig dung, cow dung,sheep dung[J]. Journal of Tarim University, 2005,17(2):11-13.
    [51]王晓娇,李轶冰,李敏,等.牛糞、鸡糞和稻秆混合的沼气发酵特性与工艺优化[J].农机械学报,2010,3(41):104-108.
    [52]张全国主编.沼气技术及其应用[M].北京:化学工业出版社.2005.
    [53]孟昭满.生活垃圾填理气产沼气的提取净化利用[J].中国环保产业.2007,(12):49-51.
    [54]梁汉昌编著.气相色谱法在气体分析中的应用[M].北京:化学工业出版社.2008.
    [55]黄建彬编著.工业气体手册[M].北京:化学工业出版社,2002.
    [56]孙济美主编.天然气和液化石油气汽车[M].北京:北京理工大学出版社.2001.
    [57]林聪主编.沼气技术理论与工程[M].北京:化学工业出版社,2007.
    [58]石元春.中国工程院可再生能源战略研究项目生物质能技术专题报告[R].中国工程院.2007.
    [59]任保增,李爱勤,李玉.二氧化碳、甲烷分离工艺述评[J].河南化工,2002,4:7-8.
    [60]Li Fen-rong,Yi Hong-hong,Tang Xiao-long,Progress in Purification and Resource Utilization of Rural Biogas[J].Chemical Industry and Engineering,2011,28(2):73-78.
    [61]黄文强主编.吸附分离材料[M].北京:化学工业出版,2005.7.
    [62]Dipl.-Ing. Michael Beil, Dipl.-Ing. Et.al. Overview on (biogas) upgrading technologies[J]. http://www.biogasmax.eu/media/pdf.
    [63]苏欣,张琳.油田气净化处理工艺探讨.气体净化[J].2007,7(3),21-26.
    [64]Asa Tynell. Gunnar Borjesson. Margareta Persson. Microbial growth on Pall rings-A problem when upgrading biogas with the water-wash absorption technique[J]. Applied Biochemistry and Biotechnology,2007,141:299-319.
    [65]Carlos A.Grande,Alirio E.Rodrigues.Layered Vacuum Pressure-Swing Adsorption for Biogas Upgrading[J]. Industrial & Engineering Chemistry Research,2007,46(23):7844-7848.
    [66]Cavenati S.Grande C A,Rodrigue A E. Removal of carbon dioxide from natural gas by vacuumpressure swing adsorption[J]. Energy & Fuels,2006,20(6):2648-2659.
    [67]Zhao X,XuX,Sun L. Adsorption behavior of carbon dioxide and methane on AIPO4-14:A neutral molecularsieve[J]. Energy & fuels,2009,23:2648-2659.
    [68]Dong F,Lou H.Kodama A.et al. The Petlyuk PSA process for the separation of ternary gas mixtures:Exemplification by separating a mixture of CO2-CH4-N2[J]. SeParation and Purification Technology,1999,16:159-166.
    [69]Warmuzinski, SodzawicznyW. Effect of adsorption pressure on methane purity during PSAseParations of CH4/N2 mixture [J]. Chemical Engineering and Processing,1999,38:55-60.
    [70]Jizhong Ren, Rong Wang, Hongyan Zhang, Zhansheng Li, Development of asymmetric poly(vinylidene fluoride) (PVDF) hollow fiber membranes for CO2 capture technology[J].Journal of Membrane Science,2006,281:334-344.
    [71]Teng Yiwan Wu Fawen WangHui etal Research progress of polymeric material of gas seParation membrane for gas CO2/CH4[J]. Chemical Industry and Engineer Progress. 2007,26(8):1075-1079.
    [72]杨爱军,张丽红,孙丽萍,等.膜技术在天然气分离中的应用[J].辽宁化工,2008,37(4):245-248.
    [73]Harasimowicz M, Orluk P,Zakrzewska-Trznadel G,etal.Application of polyimide membranes for biogas purification and enrichmengt[J]. Journal of Hazardous Material.2007,144(3): 698-702.
    [74]Makaruk A,Miltner M,Harasek M.Membrane biogas upgrading processes for the production of natural gas substitute[J].Separation and Purification Technology,2010,74:83-92.
    [75]Jizhong Ren,Rong Wang,Tai-shung Chung,etal. The effect of chemical modification on morphology and performance of 6FDA-ODA hollow fiber membrance for CO2/CH4 seParation[J].Jounal of Membranes Science,2003,222(1):133-147.
    [76]曹文胜,鲁雪生,等.降低空气中CO2浓度的低温液化法[J].低温与超导.2006.34(1):14-16.
    [77]LinW S,HuangM B,HeH M, et a.l A transcritical CO2 Rankine cyclewith LNG cold energy utilization and liquefaction of CO2 in gas turbine exhaust[J].Journal of Energy Resources Technology,2009,131(4):1-5.
    [78]Grande C A, Rodrigues, AE. Biogas to fuel by vacuum pressure swing adsorption.Behavior of equilibrium and kinetic-based adsorbents[J]. Industrial & Engineering Chemistry Research,2007,46(13):4595-4605.
    [79]Fras Annika T Andersson, Anna Karlsson,Bo H Svensson,Jorgen Ejlertsson.Occurrence and Abatement of Volatile Sulfur Compounds during Biogas Production[J]. Journal of the Air & Waste Management Association,2004,54(7):855-861.
    [80]Francesca Accettola, Georg M. Guebitz and Rainer Schoeftner. Siloxane removal from biogas by biofiltration:biodegradation studies[J].Clean Technologies and Environmental Policy,2008,10:211-218.
    [81]周磊.车用沼气纯化装置试验研究[D].郑州:河南农业大学机电工程学院.2008.
    [82]李坚,张书景.金毓墨,等.污水处理厂消化沼气脱硫(H2S)实验[J].环境工程.2006.24(1):43-46.
    [83]胡明成,龙腾瑞,李学军.沼气脱硫技术研究新进展[J].中国沼气.2005.23(1):17-20.
    [84]黄兵,黄若华,孙石,等.低浓度H2S恶臭气体的生化处理研究[J].云南环境科学.1998.17(3):9-10.
    [85]叶启亮,惠文明.陶军,等.醇胺法选择性脱除H2S实验研究[J].华东理工大学学报.2002.28(2),127-130,152.
    [86]曹文胜,鲁雪生,石玉美.小型天然气液化流程[J].天然气工业.2005.25(5):109-111.
    [87]顾安忠.液化天然气技术[M].北京:机械工业出版社,2003.
    [88]曹文胜,鲁雪生,等.小型撬装式LNG装置的流程模拟[J].化工学报,2006,57(6):1290-1295.
    [89]Shi Yumei.Wang Rongshun,Gu Anzhong.Influcnee of Parameters on C3/MRC process performance of natural gas liquefaction(1)[J].Natural Gas Industry.2004.24(2):88-90.
    [90]Shi Yumei.Wang Rongshun,Gu Anzhong,Influenee of Parameters on C3/MRC process performance of natural gas liquefaction(2)[J].Natural Gas Industry.2004.24(3):111-114.
    [91]张维江.石玉美.汪荣顺.几种国外新型的小型天然气液化流程分析[J].低温与超导.2008,36(5):15-36.
    [92]徐文渊.小型液化天然气生产装设[J].石油天然气化工.2005.34(3):161-164.
    [93]曹文胜,鲁雪生,林文胜.等小型LNG装置的模块化撬装工艺技术[J].化工学报.2009,60(s1):100-105.
    [94]曹文胜,鲁雪生,顾安忠.小型撬装LNG装置的流程模拟[J].化工学报,2006,57(6):1290-1295.
    [95]曹文胜,鲁雪生.撬装型天然气液化装置流程设计[J].真空与低温,2006,(1):23-27.
    [96]Zhang Ai-rain,Chen Guang-ming,Wang Qin. Experimental study on a small scale liquefied natural gas apParatus [J].Joural of Zhejiang University,2008,42(11):1973-1976.
    [97]Mehmet Kanoglu.Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction[J].Int.J.Energy Res.2002,(26):763-774
    [98]YANG X D,GU A Z,XI W K,et al. ComParisonstudy on small-scale LNG plants in China[c]// 8th Topical Conference on Natural Gas Utilization. Washington.DC,USA:American Chemical Society,2008:128-136.
    [99]蒋建国,赵振振,杜雪娟等.秸秆高固体厌氧消化预处理实验研究[J]环境科学,2007.28(4):886-890.
    [100]庞云芝,基于提高麦桔厌氧消化性能的碱预处理方法研究及工程应用[D].北京:北京化工大学.2010.6.
    [101]Wang Y.L,Dentel S.K. The effect of high speed mixing and polymer dosing rates on the geometric and rheological characteristics of conditioned anaerobic digested sludge [J].Water Research,2010,44(2):6041-6052.
    [102]Guendouz J, Buffiere P, Cacho J, Carrere M. Delgenes JP. High-solids anaerobic digestion: comParison of three pilot scales[J]. Water Science and Technology 2008,58(9):1757-1763.
    [103]Thomas A, Barbara A, Vitaly K, et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations[J]. Bioresource Technology,2007,98(17):3204-3212.
    [104]马磊,王德汉,谢锡龙,等.接种量对餐厨垃圾高温厌氧发酵的影响[J].农业工程学报,2009,90(1):53-56.
    [105]张波,史红钻,张丽丽,等.pH对厨余废物两相厌氧发酵中水解和酸化过程的影响[J].环境科学学报,2005,25(5):665-669.
    [106]赵明星,严群,阮文权,等.pH调控对蚜余物厌氧发酵沼气的影响[J].生物加工过程[J].2008,6(4):45-49.
    [107]杨淑蕙,主编.植物纤维化学[M].北京:中国轻工业出版社,2001:8-10.
    [108]蒋挺大,编著.木质素[M].北京:化学工业出版社,2008.12.
    [109]Zhao Zhigang, Cheng Keke. Zhang Jianan, Gao Feng. Advances in pretreatment technology of lignocellulose renewable biomass[J]. Modern Chemical Industry,2006.26(2):39-42.
    [110]Zhao Lv,Li Zhiguang,Li Huiyong.et al.Research progress on pretreatment technologies of lignocellulose[J].Chemistry and Bioengineering.2007,24(5):5-8.
    [111]Huang Qian, Huang Fenghong, Jiang Mulan, et al. The selection of lignin-degrading fungus and the straw fermentation by mixed strains[J]. China Biotechnology,2008,28(2):66-70.
    [112]Ojumu T V, Ogunkunle O A. Production of glucose from lignocellulosic under extremely low acid and high temperature in batch process, auto-hydrolysis approach[J].Journal of Applied Sciences,2005,5(1):15-17.
    [113]Lo YC, Saratale GD, Chen WM, Bai MD, Chang JS. Isolation of cellulose hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production[J]. Enzyme and Microbial Technology.2009,44:417-425.
    [114]Souichiro Kato, Shin Haruta, Zong Jun Cui, Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria[J]. FEMS Microbiology Ecology,2006,51(1):133-142.
    [115]Zhu Honglong, Wang Lisheng, Cai Haiying, et al. Effects of two kinds of white-rot fungi on degradation of rape straw[J].Anhui Agricultural Science Bulletin,2007,13(8):33-35.
    [116]Schell DJ,Farmer J.Newman M.McMillan JD.Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor-investigation of yields.kinetics,and enzymatic digestibilities of solids[J].Applied Biochemistry and Biotechnology.2003.105:69-85.
    [117]Hu ZH,Yu HQ.Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover[J]..Process Biochemistry,2005.40(7):2371-7.
    [118]陈国邦,包锐,永华编.低温工程技术·数据[M]北京:化学工业出版社,2006.
    [119]Behnam Tirandazi, Mehdi Mehrpooya, Ali Vatani. Exergy analysis of C2+ recovery plants refrigeration cycles [J].Chemical Engineering Research and Design.2011.89(6):676-689.
    [120]刘宝兴,编.工程热力学[M].北京:机械工业出版社,2005.
    [121]Yunus A.Cengel Michael A Bole.Thermodynamics:An Engineering Approach Sixth edition[M].北京:电子工业出版社,2009.4.
    [122]石玉美,顾安忠,汪荣顺,等.流程参数对丙烷预冷混合制冷剂循环(?)损失的影响[J].上海交通大学学报,2004,38(10):1703-1706.
    [123]郑丹星.流体与过程热力学[M].北京:化学工业出版社.2005.
    [124]朱刚,顾安忠.多元混合工质粘度计算[J].流体机械,2000,28(4):61-63.
    [125]Martin Lisal,William R Smith.Accurate vapour-liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation PrerreYvesMartin.LNG process selection no easy task[J],Hydrocarbon engineering,2004(5):75-79.
    [126]Michael L.Michelsen M. L.A modified huron-vidal mixing rule forcubic-equation of state[J]. Fluid Phase Equilibria,1990, (60):213-219.
    [127]余国保.新型混合工质低温平衡实验研究及气体液化系统优[D].广州:中山大学,2009.6.
    [128]崔晓龙.新型吸收制冷工质相平衡理论与实验研究[D].杭州:浙江大学,2006.10.
    [129]张地洪,鄢友军,向新华,等.天然气偏差因子的实验研究[J].天然气工业,2005,22:107-109.
    [130]MukhoPadhyay M.Awasthi R.K-value predictions for the methane-ethane-proPane system[J].Cryogenics,1981,(6):345-349.
    [131]高婷,林文胜,多组分介质低温相平衡的理论研究现状[J].低温与超导,2008,36(9):40-45.
    [132]Smejkal,M.Soos. Comparison of computer simulation of reactive distillation using ASPEN PIUS and HYSYS software[J].Chemical Engineering and Processing,2002,(41):413-418.
    [133]Yogesh Jaluria.Simulation-based optimization of thermal systems[J].Applied Thermal Engineering,2008,29(7):1346-1355.
    [134]黄黎.沼气制备车用燃料的研究[D].郑州:河南农业大学,2010.6.
    [135]王兰芝,李桂明.杨红键,等.天然气净化技术研究进展[J].河南化工,2006,,23(12):1 1-13.
    [136]Hang N,Noam L.A novel near-zero CO2 emission thermal cyclewith LNG cryogenic exergy utilization [J].Energy,2006,31(10-11):1666-1679.
    [137]Rijo Jacob Thomas. Exergy based analysis on different exPander arrangements in helium liquefiers [J]. International Journal of Refrigeration. Available online 23 November 2011.
    [138]C.W. Remeljej, A.F.A. Hoadley. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes[J]. Energy,2006,31(12):2005-2019.
    [139]Shi Yumei.Wang Rongshun.Gu Anzhong. Exergy Analysis Of Mixed Refrigerant Cycle To Liquefy The Natural Gas[J].Journal of Engineering Thermophysics,2003,24(4):564-566.
    [140]石玉美,顾安忠.汪荣顺.等.混合制冷剂循环液化天然气流程的优化分析[J].工程热物理学报,2000.21(4):409-412.
    [141]Pu Liang,Sun Shanxiu.Cheng Xianghua etal.Calculations and exergy analysis on several kinds of liquefaction processes of natural gas[J]. Chmical Engineer,2008,36(2):54-58.
    [142]Frank Del Nogal,Jin Kuk Kim and Simon Perry.Optimal Design of Mixed RefrigerantCycles[J].Ind.Eng.Chem.Res.,2008,47(22):8724-8740.
    [143]Nibbelke.R,Kauffman.S.Pek.B. Liquefaction Process ComParison of C3MR and DMR for Tropical Conditions[J].GPA 81 stannual convection,2002:1-13.
    [144]M.Mafi,M.Amidpour and S.M.Mousavi Naeynian.ComParison of low temperature mixed refrigerant cycles for seParation systems[J].Int.J.Energy Res,2009,(33):358-377.
    [145]Barday M,Denton N. Selection Offshore LNG Process[J].LNG Journal,2005, (11):34-36.
    [146]Mark J.Roberts,Yu Nan Liu,James C. Technology selection[J].Hydrocarbon Engineering.2004(5):81-84.
    [147]Cao Wensheng. Lu Xuesheng, Lin Wensheng, Gu Anzhong. Parameter comParison of two small-scale natural gas liquefaction processes in skid-mounted Packages[J]. Applied thermal engineering.2006,(26):898-904.
    [148]Yin Quansen, Li Hongyan. Ji Zhongmin.etal. Effect of number of stages of mixed refrigerant cycle on refrigeration performance[J].Journal ofChemical Industry and Engineering.2009,60(11):2689-2693.
    [149]Li Suyan Ma Caifeng Liu Zhengwei.Optim al design and analysis on small-scale natural gas liquefaction in nitrogen exPander cycle[J].CryogeFlics.168(2):47-51.
    [150]赵国伟,尹全森,季中敏,等.单级混合制冷剂天然气液化流程动态特性模拟[J].节能技术,2009(4):315-317.
    [151]Mao qiong Gong,Jianfeng Wu,Zhaohu Sun,Development and performance test of a small trailer-mounted moveable natural gas liquefier[J].Energy Conversion and Management, 2012,57:148-153.
    [152]吴裕庆,张华.混合工质用于单级压缩制冷回热循环的理论研究与分析[J].制冷技术,2009,38(1):38-43.
    [153]A.A.AIexandrov.B.A.Grigoriev,etc.Some modeling of Cooling cycles used in individual and mixed refrigerants[J].Fluid Phase Equilibria,2000,(174):175-189.
    [154]Frank Del NogaI,Jin Kuk Kim and Simon Perry.Optimal Design of Mixed RefrigerantCycles[J].Ind.Eng.Chem.Res.,2008,47(22):8724-8740
    [155]G.C.Lee,R.Smith,X.X.Zhu.Optimal Synthesis of Mixed Refrigerant Systems Low Temperature Processes[J].Ind.Eng.Chem.Res.,2002,(41):5016-5028.
    [156]Cao Wensheng,Wu Jiuing,Lu Xuesheng,etal.Thermodynamic analysis on mixed refrigerant cycle of small scale natural gas lqyefaction process skid-mounted Package[J].Journal of Chemical Industry and Engineering,2008,s2(59):53-59.
    [157]Zhao Min,Li Yanzhong.Analysis for Selecting Mixed Refrigerant Composition Based on Raw Natural Gas in ProPane PreCooled Mixed Refrigerant Liquefaction Process[J].Journal Of Xian Jiaotong University.2010,44(2):108-112.
    [158]Kirillov N G.Analysis of Modern Natural Gas Liquefaction Technologies[J].Chemical and Petroleum Engineering,2004,(40):7-8.
    [159]王海涛.黄福川.马奎,等.沼气净化压缩罐装的实验研究[J].中国沼气.2009.27(1):24-26.
    [160]王海涛,沼气灌装工艺及集成装备技术研究[D].南宁:广西大学,2009.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700