用户名: 密码: 验证码:
空芯光子带隙光纤的结构设计和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤的出现开辟了光纤发展的新时代,并在短时间就展现出了普通光纤无法比拟的优越特性和巨大的发展潜力,近年来已成为光通信领域的一个研究热点。而根据导光机制的不同可将光子晶体光纤分为两大类,一类是全内反射光子晶体光纤,另一类是光子带隙光纤,对于前者的研究较多且理论上已接近成熟,后者的研究偏少且与前者相比后者具有高效耦合特性,低非线性特性和传输窗口可控等特性,因此受到了包括军方在内的各界的广泛关注。
     本论文从理论上对空芯光子带隙光纤(HC-PBGFs)的结构设计与特性分析进行了探索性的研究,首先对光子晶体和光子晶体光纤的概念、发展和特性给予介绍,尤其对HC-PBGFs的特性进行了总结,随后建立了理论研究的基础,对HC-PBGFs的纤芯设计、模式特征、色散、非线性和损耗等特性进行了分析,主要工作概括如下:
     1.对构成光纤的四种格点结构包括圆化空气孔进行了简要的介绍,利用平面波展开法(PWM)求解电场的本征值方程,得到了折射率比为1.45:1的平面外带隙结构图,并对其进行了较详细的分析,得出占空比越大要求沿传播方向的传播常数越大才能形成光子带隙的结论;利用PWM给出了带隙传播图,并利用该图解释了要想在HC-PBGFs中实现中心缺陷导光,必须同时具备光波频率落入光子带隙范围内和传播模式满足β≤kn_2,这两个条件的结论。
     2.详细推导了基于混合棱边/节点元的全矢量有限元(FEM)模型和完全匹配层(PML)边界条件。给出了计算光子晶体光纤磁场矢量的FEM模型。并利用该模型考察了三角格子全内反射光子晶体光纤的色散特性,给出了模式的场能量分布、等高线分布和色散,与已发表文献的结果吻合良好,验证了模型的正确性和有效性。为后续章节提供了理论基础。
     3.利用带隙传播图设计了研究的三角格子HC-PBGFs,简要分析了表面模(SMs)形成的原因,并利用全矢量FEM模拟了在不同纤芯截切半径情况下的光纤,得出了消除SMs的光纤纤芯半径的最佳可取范围为R=0.9-1.0A。随后,同样利用带隙结构图设计了研究的圆六边形空气孔按三角格子排列的HC-PBGFs,模拟了不同纤芯外半径和不同石英环相对厚度的光纤,发现石英环的引入既可以抑制SMs也可以激发SMs,关键要看纤芯环厚度的选择;得出了相应的消除SMs的光纤纤芯外半径和石英环相对厚度的可取范围。在最后研究了光纤的薄壁芯环,得出了芯环壁的最佳归一化厚度取值范围为T=0.3-0.6之间。
     4.对具有C_(6v)对称的19单元芯HC-PBGFs的模式简并特性进行了分析,对找到的16个模式进行了分类和命名,随后对常用的7单元芯三角格子HC-PBGFs的模场特性、色散特性、基质中的能量分布特性、有效模场面积、非线性系数以及损耗特性进行了较全面的分析,并对材料效应也做了研究,研究发现在计算大占空比的HC-PBGFs的色散时,可以忽略材料色散,而材料效应对非线性系数的贡献是不能忽略的,并得出了对于HC-PBGFs而言其非线性系数很小要比传统单模光纤的非线性系数低大约3个数量级的结论;最后研究了HC-PBGFs的色散可控特性,发现可以通过改变光纤的包层和纤芯的结构参数来实现调节光纤的零色散点和色散斜率,改变空气孔的圆化直径或者芯环的厚度能够控制光纤的色散斜率,改变空气孔的圆化直径、孔间距、基质折射率、芯环厚度以及占空比可调节光纤的零色散点。
     5.研究了基于正方格子(SL)的HC-PBGFs的模场行为,发现该种光纤有两个优点一是模式的宽带运行,二是有效的单模运转。随后对SLHC-PBGFs的泄漏损耗进行了全面的分析,发现包层数是影响泄漏损耗的主要因素,圆化直径、孔间距和纤芯直径对泄漏损耗的影响较小,但可以通过调节它们使得在确定的波长下具有最小的泄漏损耗。首次对该种光纤的色散特性进行了分析,经分析发现SL HC-PBGFs的色散特性主要由光纤纤芯和包层结构决定,纤芯直径的和包层环数的变化对色散的影响较小,圆化直径、孔间距和占空比的变化对色散的影响较大;色散特性满足HC-PBGFs的缩放率,且改变这种光纤的结构可以实现对其色散波长和色散斜率的调节。
Advent of photonic crystal fibers(PCFs) opens up a new era of development of optical fibers,which exhibit many unique properties that are not realized in conventional optical fibers and hold great potential,and PCFs have become a research hotspot in the field of optical communications.According to the difference of guiding mechanisms,PCFs can be.divided into two types.One is total internal reflection PCFs(TIR-PCFs),the other is photonic bandgap fibers(PBGFs).More researches concentrate on the former one and matured theory has been developed.But PBGFs posses a few unique properties,such as highly effective coupling,low nonlinear and controllable transmission window, and they have attracted a considerable amount of attention from various fields including army.
     The dissertation focuses on structure designs and properties research of hollow-core photonic bandgap fibers(HC-PBGFs) from theory.Firstly,it presents a brief review of photonic crystal and some fundamental concepts,the development and properties of PCFs,especially the properties of HC-PBGFs are summarized.And then,numerical methods and mathematic tools are illustrated in the following chapter,by which properties of HC-PBGFs are analyzed,involving core design,mode characteristics,dispersion,nonlinear,and loss.The primary works could be described as follows:
     1.A brief introduction to four types of lattice structure of photonic crystal is presented.By means of plane wave extension method(PWM) to solve the eigenvalue equation of electric field,we come at out of plane bandgap structure diagram with index ratio 1.45:1,and conclude by detailed analysis that more larger air filling fraction is,more larger propagation constants are needed to form photonic bandgap.In addition,from bandgap propagation diagram we can found that guiding light in defect core for HC-PBGFs needs satisfy two conditions:(1) beam frequency lying in range of photonic bandgap,(2) propagation constant of guiding mode abides by the condition ofβ≤kn_2.
     2.A full-vector finite element method(FEM) based on hybrid edge/nodal element and perfectly matched layers boundary conditions are deduced in detail. Furthermore,the FEM model of the magnetic field vector for PCFs is given by this method.And we take advantage of the model to investigate the dispersion of triangular lattice TIR-PCF,and corresponding results are in good agreement with that of the literature published,which verifies the correctness and effectiveness of the model.This chapter provides a theoretical basis for the follow-up chapters.
     3.Triangular lattice HC-PBGFs to be studied are designed by using the bandgap propagation diagram,the different core radius of the fibers are simulated by full-vector FEM model solver.A brief analysis of the reasons for the formation of surface modes(SMs) is presented,the optimal range of core radius that is free of SMs is R = 0.9-1.0A.And then,we design HC-PBGFs with rounded hexagons air hole arranged by triangular lattice,and simulate the fibers with different outer core radius and different normalized core thickness. By analysis it shows that the introduction of the silica ring can not only inhibit SMs but also induce SMs,whether SMs appear or not depends on the choice of the core ring thickness.The desired range of outer core radius and core ring thickness free of SMs is derived.In the final we investigate thin-wall core ring of the fibers and conclude that the optimal normalized thickness range is T= 0.3-0.6.
     4.Mode degeneracy of 19-cell HC-PBGFs with C_(6v) symmetry is discussed in detail and 16 models found are classified and named according to the label of traditional step-index fiber.And then we investigate properties of 7-cell HC-PBGFs,including mode characteristics,dispersion,power fraction in silica,mode effective area,nonlinear coefficient and loss,and together with material effect.By analysis we can conclude that material dispersion can be neglected for HC-PBGFs with high air filling fraction,but the contribution of material effect to nonlinear coefficient can not be ignored,and the nonlinear coefficient of HC-PBGFs is roughly 3 orders of magnitude lower than that of conventional optical fibers.Finally,controllable dispersion property of HC-PBGFs is discussed.By simulating we found that theoretically the zero dispersion wavelength can be tailored by respectively changing rounded diameter of air holes,pitch,refractive index,normalized thickness of core rings, and the ratio of hole diameter to pitch.At the same time the tailoring of dispersion slope can also be realized by changing rounded diameter of air holes or pitch or normalized thickness of core rings.
     5.The modal characteristics of HC-PBGFs based on a square lattice with rounded square air holes are investigated,by using a full-vector FEM.And it was found that there are two advantages for this type fiber,one is operating under broad bandgap and another is single mode.And then,the leakage loss was analyzed completely.Simulations show that the number of cladding rings plays a key role to the leakage loss,while the rounded diameter,the core diameter and the hole pitch have a small influence on leakage loss but for a given wavelength the desired lowest leakage loss could be obtained by tuning them.In addition, the dispersion properties of the fibers are investigated for the first time.By simulation,we can found the core diameter and the number of cladding rings have a small influence on dispersion comparing to rounded diameter,hole pitch and air filling fraction.And dispersion property is found to satisfy scaling law of HC-PBGFs,furthermore the desired dispersion wavelength or desired dispersion slope could be obtained by properly changing the structure of the fibers.
引文
[1]http://ab-initio.mit.edu/photons/[DB/OL].
    [2]http://www.st-andrews.ac.uk/~photocryst/[DB/OL].
    [3]E.Yablonovitch."Inhibited spontaneous emission in solid-state physics and electronics"[J].Phys.Rev.Lett.,1987,58(20):2059-2062.
    [4]S.John."Strong localization of photons incertain disordered dielectric superlattices"[J].Phys.Rev.Lett.,1987,58(23):2486-2489.
    [5]K.M.Ho,C.T.Chen,and C.M.Soukoulis."Existence of a photonic gap in periodic dielectric structures"[J].Phys.Rev.Lett,1990,65(20):3152-3155.
    [6]E.Yablonovitch."Photonic band structure:the face-centered-cubic case employing nonspherical atoms"[J].Phys.Rev.Lett.,1991,67(17):2295-2298.
    [7]E.Yablonovitch."photonic band-gap structure"[J].J.Opt.Soc.Am B.1993,10(2):283-295.
    [8]E.Yablonovitch."Photonic band-gap crystals"[J].J.Phys.:Condens.Matter.,1993,5:2443-2460.
    [9]P.St.J.Russell."Photonic band gaps"[J].Physics World,1992,5(8):37-42.
    [10]J.C.Knigh,T.A.Birks,P.St.J.Russell et.al."All-silica single-mode optical fiber with photonic crystal cladding"[J].Opt.Lett.,1996,21(19):1547-1549.
    [11]T.A.Birks,J.C.Knight and P.St.J.Russell."Endless single-mode photonic crystal fiber"[J].Opt.Lett.,1997,22(13):961-963.
    [12]J.C.Knight,T.A.Birks,R.F.Cregan et al."Large mode area photonic crystal fibre "[J].Electron.Lett.,1998,34(13):1347-1348.
    [13]A.Ortigosa-Blanch,J.C.Knight,W.J.Wadsworth,et al."Highly birefringent photonic crystal fibers"[J].Opt.Lett.,2000,25(18):1325- 1327.
    [14]B.J.Mangan,J.C.Knight,T.A.Birks,et al."Experimental study of dual-core photonic crystal fiber"[J].Electron.Lett.,2000,36(16):1358-1359.
    [15]A.Ferrando,E.Silvstr,P.Andres."Designing the properties of dispersion-flattened photonic crystal fibers"[J].Opt.Express,2001,9(13):687-697
    [16]W.H.Reeves,J.C.Knight and P.St.J.Russell."Demonstration of ultra-flattened dispersion in photonic crystal fibers"[J].Opt.Express,2002,10(14):609-613.
    [17]J.Y.Y.Leong,P.Petropoulos,J.H.V.Price,et al."High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1-μm Pumped Supercontinuum Generation"[J].J.Lightwave Technol.,2006,24(1):183-190.
    [18]K.Furusawa,A.Malinowski,J.H.V.Price,et al."Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding"[J].Opt.Express,2001,9(13):714-720.
    [19]K.Saith,M.Koshiba."Single-polarization single-modes photonic crystal fiber"[J].IEEE Photon.Technol.,2003,15(10):1384-1386
    [20]K.Hiirokazu,K.Satoki,K.Shigeki."Absolutely single-polarization single-mode photonic crystal fiber"[J].IEEE.Photon.Technol.,2004,16(1):182-184
    [21]J.C.Knight,J.Broeng,T.A.Birks,et al."Photonic band gap guidance in optical fibers"[J].Science,1998,282(5393):1476-1478.
    [22]R.F.Cregan,B.J.Mangan,J.C.Knight,et al."Single-mode photonic bandgap guidance of light in air"[J].Science,1999,285(5433):1537-1539.
    [23]B.Temelkuran,S.D.Hart,G Benoit,et al."Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO_2 laser transmission"[J].Nature,2002,420(6916):650-653
    [24]T.Larsen,A.Bjarldev,D.Hermann,et al."Optical devices based on liquid crystal photonic bandgap fibres"[J].Opt.Express,2003,11(20):2589-2596.
    [25]F.Luan,A.K.George,T.D.Hedley,et al."All-solid photonic bandgap fiber"[J].Opt.Lett.,2004,29(20),2369-2371.
    [26]F.Couny,F.Benabid,and P.S.Light."Large-pitch kagome-structured hollow-core photonic crystal fiber"[J].Opt.Lett.,2006,31(24):3574-3576.
    [27]Z.Wang,T.Taru,T.A.Birks,et al."Coupling in dual-core photonic bandgap fibers:theory and experiment"[J].Opt.Express,2007,15(8):4795-4803.
    [28]A.Melds,J.C.Chen,I.Kurland,et al."High transmission through sharp bends in photonic crystal waveguides"[J].Phys.Rev.Lett.,1996,77(18):3787-3790.
    [29]S.Kim,G P.Nordin,J.H.Jiang,et al."High efficiency 90° silica waveguide bend using an air hole photonic crystal region"[J].IEEE Photon.Technol.Lett.,2004,16(8):1846-1848.
    [30]H.Kosaka,T.Kawashima,A.Tomita,et al."Superprism phenomena in photonic crystals"[J].Phys.Rev.B,1998,58(16):10096R-10098R.
    [31]S.Y.Lin,V.M.Hietala,L.Wang,et al."Highly dispersive photonic band-gap prism"[J].Opt.Lett.,1996,21(21):1771-1773.
    [32]H.Kosaka,T.Kawashima,A.Tomita,et al."Superprism phenomena in photonic crystals:toward microscale lightwave circuits"[J].J.Lightwave.Technol.,1999,17(11):2032-2038.
    [33]L.Wu,M.Mazilu,and T.F.Krauss."Beam steering in planar-photonic crystals:from superpdsm to supercollimator"[J].J.Lightwave.Techonl.,2003,21(2):561-566.
    [34]X.Wang,X.Hu,Y.Li,et al."Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures"[J].Appl.Phys.Lett.,2002,80(23):4291-4293.
    [35]W.J.Wadsworth,J.C.Knight,W.H.Reeves,et al."Yb~(3+)-doped photonic crystal fiber laser"[J].IEEE Electron.Lett.,2000,36(17):1452-1454.
    [36]K.Furusawa,T.M.Monro,P.Petropoulos,et.al."Mode locked laser based on ytterbium doped holey fiber"[J].IEEE Electron.Lett.,2001,37(9):560-561.
    [37]W.J.Wadsworth,R.M.Percival,G.Bouwmans,et al." High power air-clad photonic crystal fiber laser"[J].Opt.Express,2003,11(1):48-53.
    [38]C.H.Liu,B.Ehlers,F.Doerfel,et al."810W continuous-wave and single transverse-mode fibre laser using 20μm core Yb-doped double-clad fibre"[J].IEEE Electron.Lett.,2004,40(23):1471-1472.
    [39]H.Lim,A.Chong,and F.W.Wise."Environmentally-Stable Femtosecond Ytterbium Fiber Laser with Birefringent Photonic Bandgap Fiber"[J].Conference on Lasers and Electro-Optics(CLEO)Baltimore,Maryland,2005 paper:CTuCC6
    [40]A.Wang,A.K.George,J.C Knight."Three-Level Neodymium Fiber Laser Incorporating Photonic Bandgap Fiber"[J].Conference on Lasers and Electro-Optics(CLEO) Long Beach,Califomia,2006,CTu17
    [41]A.Wang,A.K.George,and J.C.Knight."Three-level neodymium fiber laser incorporating photonic bandgap fiber"[J],Opt.Lett.,2006,31(10):1388-1390.
    [42]A.Ruehl,O.Prochnow,M.Engelbrecht,et al."Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control"[J],Opt.Lett.,2007,32(9):1084-1086.
    [43]S.F(?)vrier,D.D.Gaponov,P.Roy,et al."High-power photonic-bandgap fiber laser"[J],opt.Lett.,2008,33(9):989-991.
    [44]E.R.Brown,C.D.Parker,and E.Yablonovitch."Radiation properties of a planar antenna on a photonic-crystal substrate"[J].J.Opt.Soc.Am.B,1993,10(2):404-407.
    [45]E.R.Brown,O.B.Memahom."High zenithal directivity from a dipole antenna on a photonic crystal"[J].Appl.Phys.Lett.,1996,68(9):1300-1302.
    [46]H.Subbaraman,M.Y.Chen,and R.T.Chen."Photonic Crystal Fiber-Based True-Time-Delay Beamformer for Multiple RF Beam Transmission and Reception of an X-Band Phased-Array Antenna"[J].J.Lightwave Technol.,2008,26(15):2803-2809.
    [47]S.Fan,P.Villeneuve,J.Joannopoulos,et al."Channel drop filters in photonic crystals"[J].Opt.Express,1998,3(1):4-11.
    [48]C.Manolatou."Coupling of modes analysis of resonant channel add 2 drop filters"[J].IEEE J.Quantum.Electron.,1999,35(9):1322-1331.
    [49]M.Imada,S.Noda,A.Chutinan,et al."Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide"[J].J.Lightwave Technol.,2002,20(5):73-878.
    [50]T.P.White,L.C.Botten,R.C.McPhedran,et al."Ultracompact resonant filters in photonic crystals"[J].Opt.Lett.,2003,28(24):2452-2454.
    [51]F.Villa and J.Gaspar-Armenta."Photonic crystal to photonic crystal surface modes:narrow-bandpass filters"[J].Opt.Express,2004,12(11):2338-2355.
    [52]X.D.Cui,H.Christian,and V.R(u|¨)diger."Design of ultra-compact metallo-dielectric photonic crystal fiiters"[J].Opt.Express,2005,13(16):6175-6180.
    [53]F.V.Villa and J.A.Gaspar-Armenta."Photonic crystal-photonic crystal surface modes:Narrow band-pass filters"[J].Optical Interference Coatings,2004,paper THE9.
    [54]S.K.Varshney,K.Saitoh,N.Saitoh,et al."Strategies for realizing photonic crystal fiber bandpass filters"[J].Opt.Express,2008,16(13):9459-9467.
    [55]S.G.Johnson,S.Fan,P.R.Villeneuve,et.al."Guided modes in photonic crystal slabs"[J].Phys.Rev.B,1999,60(8):5751-5758.
    [56]S.G.Johnson,P.R.Villenenve,S.Fan,et.al."Linear waveguides in photonic-erystal slabs"[J].Phys.Rev.B,2000,62(12):8212-8222.
    [57]S.Fan,S.G.Johnson,J.D.Joannopoulos,et.al."Waveguide branches in photonic crystals"[J].J.Opt.Soc.Am.B,2001,18(2):162-165.
    [58]C.Luo,S.G.Johnson,and J.D.Joannopoulos."Subwavelength imaging in photonic crystals"[J].Phys.Rev.B,2003,68(4):045115-1-15
    [59]Ao.X.Y.,and He S.L."Polarization beam splitters based on a two-dimensional photonie crystal of negative refraction"[J].Opt.Lett.,2005,30(16):2152-2154.
    [60]J.D.Joannopoulos,R.D.Meade,J.N.Winn."Photonic crystal:molding the flow of light"[M].Princeton:Princeton University,1995:19-21.
    [61]K.C.Kao and G.A.Hockham."Dielectric Fiber Wave Guides for Light Communications"[J].Proceedings of the Institution of Electrical Engineers,1966,113:1151-1158.
    [62]ITU-T Recommendation G.652,Characteristic of a single-mode optical fibre and cable[S].Oct.1984
    [63]ITU-T Recommendation G.653,Characteristic of a dispersion-shifted single-mode optical fibre and cable.Oct.1988
    [64]ITU-T Recommendation G.655,Characteristic of a non-zero dispersion-shifted single-mode optical fibre and cable.Oct.1996
    [65]J.C.Knight and P.St.J.Russell."New ways to guide light"[J].Science,2002,296(5566):276-277.
    [66]P.St.J.Russell."Photonie-erystal fibers"[J].J.Lightwave Technol.,2006,4(12):4729-4749.
    [67]T.A.Birks,P.J.Roberts,P.St.J.Russell et al."Full 2-D photonie bandgaps in silica/air structure"[J].Electron.Lett.,1995,31(22):1941-1943.
    [68]N.G.R.Broderiek,T.M.Monro,P.J.Bennett,et al."Nonlinearity in holey optical fibers:measurement and future opportunities"[J].Opt.Lett.,1999,24(20):1395-1397.
    [69]J.Zhou,K.Tajima,K.Nakajima et al."Progress on low loss photonic crystal fibers"[J].Opt.Fiber Technol.,2005,11(2):101-110.
    [70]K.Tajima."Low loss PCF by reduction of hole surface imperfection"[J].ECOC'07,Dresden,Germany,2007,PD 2.1:73-74.
    [71]K.Nagayama,K.Kakui,M.Matsui,et al."Ultra-low-loss(0.1484 dB/km) pure silica core fiber and extension of transmission distance"[J].Electron.Lett.,2002,38(20):1168-1169.
    [72]G.P.Agrawal."Nonlinear Fiber Optics,3~(rd) edition"[M].Boston:Academic Press,2001:3-4.
    [73]Knight J C,Birks T A,Russell P St J,et.al."Properties of photonic crystal fiber and the effective index model"[J].Opt.Soc.Am.A,1998,15(3):748-752.
    [74]Mortensen N A."Effective area of photonic crystal fibers"[J].Opt.Express,2002,10(7):341-348.
    [75]J.K Ranka,R.S.Windeler,A.JStentz."Visible continuum generation in air-silica micro structure optical fibers with anomalous dispersion at 800 nm"[J].Opt.Lett.,2000,25(1):25-27.
    [76]J.C.Knight,J.Arriaga,T.A.Birks,et al."Anomalous dispersion in photonic crystal fiber"[J].IEEE Photon.Technol.Lett.,2000,12(7):807-809.
    [77]A.Ferrando,E.Silvestre,J.J.Miret,et.al."Nearly zero ultraflattened dispersion in photonic crystal fiber"[J].Opt.Lett.,2000,25(1):790-792.
    [78]T.L.Wu and C.H.Chao."A novel ultraflattened dispersion photonie crystal fiber"[J].IEEE Photon.Technol.,2005,17(1):67-69.
    [79]K.Saitoh and M.Koshiba."Highly nonlinear dispersion-flattened photonie crystal fibers for supercontinuum generation in a telecommunication window"[J].Opt.Express,2004,12(10):2027-2032
    [80]P.A.Champert,S.V.Popov,J.R.Taylor."Generation of multiwatt,broadband continua in holey fibers"[J].Opt.Lett.,2002,27(2):122-124.
    [81]P.Petropoulos,H.E.Ebendorff-Heidepdem,V.F.Finazzi,et al."Highly nonlinear and anomalously dispersive lead silicate glass holey fibers"[J].Opt.Express,2003,11(26):3568-3673.
    [82]J.Y.Leong,P.Petropoulos,S.Asimakis,et.al."A Lead Silicate Holey Fiber with γ= 1820 W~(-1)km~(-1) at 1550 nm"[J].Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2005,PDP22.
    [83]N.A.Mortensen,M.D.Nielsen,J.R.Folkenberg,et.al."Improved large-mode-area endlessly single-mode photonic crystal fibers"[J].Opt.Lett.,2003,28(6):393-395.
    [84]M.J.Steel and R.M.Osgood,Jr."Elliptical-hole photonic crystal fibers"[J].Opt.Lett.,2001,26(4):229-231
    [85]A.Peyrilloux,T.Chartier,A.Hideur,et.al."Highly birefringent index-guiding photonie crystal fibers"[J].J.Lightwave Techonl.,2003,21(2):536-539.
    [86]J.Ju,W.Jin,and M.S.Demokan."Properties of a highly birefringent photonic crystal fiber"[J].IEEE Electron.Lett.,2003,15(10):1375-1377.
    [87]K.Tajima,J.Zhou,K.Nakajima."Ultra low loss and long length photonic crystal fiber"[J].J.Lightwave Technol.,2004,22(1):7-9
    [88]J.C.Knight,J.Broeng,T.A.Birks,et.al."Photonic band gap guidance in optical fibers"[J].Science,1998,282(5393):1476-1478.
    [89]J.A.West,N.Venkataraman,C.M.Smith,et.al."Photonic crystal fibers"[C].ECOC 2001,Amsterdam:Netherlonds,Paper Th.A.2.2,pp.582-585.
    [90]N.Venkataraman,M.T.Gallagher,C.M.Smith,et.al."Low loss(13dB/km) air core photonic band-gap fiber"[C].ECOC 2002,Copenhagen,PD1.1.
    [91]B.J.Mangan,L.Farr,A.Langford,et.al.."Low loss(1.7dB/km) hollow core photonic bandgap fiber"[C].Proc.Opt.Fiber Commun.Conf.,2004,paper PDP24.
    [92]P.Roberts,F.County,H.Sabert,et.al."Ultimate low loss of hollow-core photonic crystal fibers"[J].Opt.Express,2005,13(1):236-244.
    [93]T.P.Hansen,J.Broeng,and A.Bjarldev."Solid-Core Photonic Bandgap Fiber with Large Anormalous Dispersion"[J].Optical Fiber Communication Conference,2003,paper FI6.
    [94]S.F(?)vrier,R.Jamier,J.M.Blondy,et al."Low-loss singlemode large mode area all-silica photonic bandgap fiber"[J].Opt.Express,2006,14(2):562-569.
    [95]Z.Wang,T.Taru,T.A.Birks,et al."Coupling in dual-core photonic bandgap fibers:theory and experiment"[J].Opt.Express,2007,15(8):4795-4803.
    [96]J.l(?)gsgaard,K.P.Hansen,M.D.Nielsen,et.al."Photonic crystal fibers"[C].Proceeding SBMO/IEEE MTT-S IMOVC,2003,259-264.
    [97]M.Yan,X.Yu,P.Shum,et.al."Honeycomb photonic bandgap fiber with a modified core design"[J].IEEE Photon.Technol.Lett.,2004,16(9):2051-2053.
    [98]M.Yan,P.Shum,J.Hu."Design of air-guiding honeycomb photonic bandgap fiber"[J].Opt.Lett.,2005,30(5):465-467.
    [99]Yan feng Li,Chingyue Wang,Minglie Hu,et.al."Photonie bandgap fibers based on a composite honeycomb lattice"[J].IEEE Photon.Technol.Lett.,2006,18(1):262-264.
    [100]M.Y.Chen,R.J.Yu."Analysis of photonic bandgaps in modified honeycomb struetures"[J].IEEE Photon.Technol.Lett.,2004,16(3):819-821.
    [101]T.Murao,K.Saitoh,M.Koshiba."Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation"[J].Opt.Express,2006,14(6):2404-2412.
    [102]M.Yah,P.Shum."Air guiding with honeycomb photonic bandgap fiber"[J].IEEE Photon.Technol.Lett.,2005,17(1):64-66.
    [103]Y.Li,C.Wang,M.Hu,et al."Honeycomb photonie bandgap fibers with and without interstitial air holes"[J].Opt.Express,2005,13(18):6856-6863.
    [104]K.Saitoh,N.A.Mortensen,M.Koshiba."Air-core photonic band-gap fibers:the impact of surface modes"[J].Opt.Express,2004,12(3):394-400.
    [105]J.A.West,C.M.Smith,N.F.Borrelli,et al."Surface modes in air-core photonic band-gap fibers"[J].Opt.Express,2004,12(8):1485-1496.
    [106]H.K.Kim,M.J.F.Digonnet,G.S.Kino,et al."Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers"[J].Opt.Express,2004,12(15):3436-3442.
    [107]H.K.Kim,J.Shin,S.Fan et al."Designing air-core photonic-bandgap fibers free of surface modes"[J].IEEE J.Quantum.Electron.,2004,40(5):551-556.
    [108]R.Amezcua-Correa,N.G.R.Broderick,M.N.Petrovich,et al."Optimizing the usable bandwidth and loss through core designing realistic hollow-core photonic bandgap fibers"[J].Opt.Express,2006,14(17):7974-7985.
    [109]M.J.F.Digonnet,H.K.Kim,J.Shin,et al."Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers"[J].Opt.Express,2004,12(9):1864-1872
    [110]T.P.Hansen,J.Broeng,A.Bjarklev."Solid-core photonic bandgap fiber with large anomalous dispersion"[J].Optical Fiber Communications Conference(OFC),2003,12:700-701.
    [111]F.Luan,A.K.George,T.D.Hedley,et.al."All-solid photonic bandgap fiber"[J].Opt.Lett.,2004,29(20):2369-2371.
    [112]Ni Yi."Large negative dispersion in square solid-core photonic bandgap fibers"[J].IEEE J.Quan.Electron.,2005,41(5):666-667.
    [113]A.Argyros,T.A.Birks,S.G.Leon-Saval,et al."Photonic bandgap with an index step of one percent"[J].Opt.Express,2005,13(1):309-314.
    [114]Z.Wang,Y.Liu,G.Kai et al."Directional couplers operated by resonant coupling in all-solid photonie bandgap fibers"[J].Opt.Express,2007,15(14):8925-8930.
    [115]Dong-I1 Yeom,P.Steinvurzel,B.J.Eggleton,et al."Tunable acoustic gratings in solid-core photonic bandgap fiber"[J].Opt.Express,2007,15(6):3513-3518.
    [116]P.Yeh,A.Yariv,and E.Marom."Theory of Bragg fiber"[J].J.Opt.Soc.Am.,1978,68(9):1196-1201.
    [117]Y.Fink,D.J.Ripin,S.Fan,et al.."Guiding optical in air using an all-dielectric structure"[J].J.Lightwave.Technol.,1999,17(11):2039-2041.
    [118]G.Vienne,Y.Xu,C.Jakobsen,et al."Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports"[J].Opt.Express,2004,12(15):3500-3508.
    [119]R.Amezcua Correa,F.Gerome,S.G.Leon-Saval,et al."Control of Surface Modes in Low Loss Hollow-Core Photonic Bandgap Fibers"[C].Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies(CLEO),2008,paper JFG3.
    [120]T.Murao,K.Saitoh,and M.Koshiba."Structural Optimization of Air-Guiding Photonic Bandgap Fibers for Realizing Ultimate Low Loss Waveguides"[J].J.Lightwave Technol.,2008,26(12):1602-1612.
    [121]F.Poletti,N.G.Broderick,D.Richardson,et al."The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers"[J].Opt.Express,2005,13(22):9115-9124.
    [122]P.Roberts,D.Williams,B.Mangan,et al."Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround"[J].Opt.Express,2005,13(20):8277-8285.
    [123]J.Hu and C.R.Menyuk."Leakage loss and bandgap analysis in air-core photonic bandgap fiber for nonsilica glasses"[J],Opt.Express,2007,15(2):339-349.
    [124]K.Saitoh and M.Koshiba."Leakage loss and group velocity dispersion in air-core photonic bandgap fibers"[J],Opt.Express,2003,11(23):3100-3109.
    [125]Saitoh K and Koshiba M."Confinement losses in air-guiding photonic bandgap fibers"[J].IEEE Photon.Technol.Lett.,2003,15(2):236-238.
    [126]M.Yan and P.Shum."Leakage Loss of Air-Guiding Honeycomb Photonic Bandgap Fiber"[J].Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2005,paper OME1.
    [127]L.Vincetti."Confinement losses in honeycomb fibers"[J].IEEE Photon.Technol.Lett.,2004,16(9):2048-2050
    [128]C.Peueheret,B.Zsigri,T.P.Hansen,et al."10Gbit/s transmission over air-guiding photonie bandgap fiber at 1550nm"[J].IEEE Electron.Lett.,2005,41(1):27-29.
    [129]T.P.Hansen,J.Broeng,C.Jakobsen,et al."Air-Guiding Photonic Bandgap Fibers:Spectral Properties,Macrobending Loss,and Practical Handling"[J].J.Lightwave Technol.,2004,22(1):11-15.
    [130]F.Luan,J.Knight,P.Russell,et al."Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonie bandgap fibers"[J],opt.Express,2004,12(5):835-840.
    [131]F.Benabid,F.Couny,J.C.Knight,et al."Compact,stable and efficient all-fibre gas cells using hollow-core photonie crystal fibers"[J].Nature,2005,434(7032):488-491.
    [132]F.Benabid,J.C.Knight,G.Antonopoulos."Stimulated raman scattering in hydrogen-fillod hollow.core photonie crystal fiber"[J].Science,2002,298(5529):399-402.
    [133]Hansen T P,Jakobsen C,Simonsen H R,et al."Air-guiding photonie bandgap fibers"[C].Proe.opt.Fiber Commun.Conf.,2005,paper OTu15.
    [134]Broeng J,SΦndergaard T,Barkou S E,et al."Waveguidance by the photonie bandgap effect in optical fibers"[J].J.Opt.A:Pure Appl.Opt.,1999,1(4):477-482.
    [135]R.Amezcua-Correa,N.G.Broderick,M.N.Petrovich,et al."Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss,wide bandwidth and dispersion controlled operation"[J].Opt.Express,2007,15(26):17577-17586
    [136]J.L(?)gsgaard and P.J.Roberts."Compression of realistic laser pulses in hollow-core photonic bandgap fibers"[J].J.Opt.Soc.Am.B,2009,26(4):783-791.
    [137]J.Laegsgaard and P.J.Roberts."Dispersive pulse compression in hollow-core photonic bandgap fibers"[J].Opt.Express,2008,16(13):9628-9644.
    [138]A.Shirakawa,M.Tanisho,and K.Ueda."Polarization-maintaining fiber pulse compressor by birefringent hollow.core photonic bandgap fiber"[J].Opt.Express,2006,14(25):12039-12048.
    [139]C.K.Nielsen,K.G.Jespersen,and S.R.Keiding."A 158fs 5.3nJ fiber-laser system at 1μm using photonic bandgap fibers for dispersion control and pulse compression"[J].Opt.Express,2006,14(13):6063-6068.
    [140]Y.Logvin,V.P.Kalosha,and H.Anis."Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation"[J].Opt.Express,2007,15(3):985-991.
    [141]Z.V(?)rallyay,K.Saitoh,J.Fekete,et al."Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers"[J].Opt.Express,2008,16(20):15603-15616.
    [142]D.Ouzounov,C.Hensley,A.Gaeta,et al."Soliton pulse compression in photonic band-gap fibers"[J].Opt.Express,2005,13(16):6153-6159.
    [143]D.G.Ouzounov,F.R.Ahmad,D.Miiller,et al."Generation of megawatt optical solitons in hollow-core photonic band-gap fibers"[J].Science,2003,301(5640):1702-1704.
    [144]G.Ouyang,Y.Xu,and A.Yariv."Theoretical study on dispersion compensation in air-core Bragg fibers"[J].Opt.Express,2002,10(17):899-908.
    [145]T.Engeness,M.Ibanescu,S.Johnson,et al."Dispersion tailoring and compensation by modal interactions in OmniGuide fibers"[J].Opt.Express,2003,11(10):1175-1196.
    [146]G.Pearce,J.Pottage,D.Bird,et al."Hollow-core PCF for guidance in the mid to far infra-red"[J].Opt.Express,2005,13(18):6937-6946.
    [147]J.Shephard,W.MacPherson,R.Maier,et al."Single-mode mid-IR guidance in a hollow-core photonic crystal fiber"[J].Opt.Express,2005,13(18):7139-7144.
    [148]S.Kawanishi,M.Tanaka,M.Ohmori,et al."Photonic Bandgap Fiber for New Wavelength Range"[J].Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(OFC),2008,paper OThR3.
    [1]K.Busch and S.John."Photonic Band Gap Formation in Certain Self-organizing Systems"[J].Phys.Rev.E,1998,58(3) 3896-3908.
    [2]P.R.Villeneuve and M.Piche."Photonic band gaps in two-dimensional square and hexagonal lattices"[J].Phys.Rev.B,1992,46(8):4969-4972.
    [2]M.Qiu,S.L.He."Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap"[J].J.Opt.Soc.Am.B,2000,17(6):1027-1030.
    [3]C.Y.Kao,S.Osher,E.Yablonvitch."Maximizing band gaps in two-dimensional photonic crystals by using level set methods"[J].Appl.Phys.B,2005,81(2):235-244.
    [4]S.H.G.Teo,A.Q.Liu,M.B.Yu."Fabrication and demonstration of square.lattice two-dimensional rod-type photonic bandgap crystal optical intersections"[J].Photonics and Nanostructures,2006,4(2):103-115.
    [5]M.Plihal,A.A.Maradudin."Photonic band structure of two-dimensional systems:The triangular lattice"[J].Phys.Rev.B,1991,44(16):8565-8571.
    [6]K.Sakoda."Optical transmittance of a two-dimensional triangular photonic lattice"[J].Phys.Rev.B,1995,51(7):4672-4675.
    [7]D.Cassagne,C.Jouanin,D.Bertho."Hexagonal photonic-band-gap structures"[J].Phys.Rev.B,1996,53(11):7134-7142
    [8]Q.L.Zhou,X.Q.Lu,D.P.Chen,et al.."Band structure of photonic crystal fibers with silica rings in triangular lattice"[J].Opt.commun.,2006,267(1):98-101.
    [9]J.Y.Ye,S.Matsuo."Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5μm wavelength"[J].J.Appl.Phys.,2004,96(11):6934-6936.
    [10]J.Y.Ye,V.Mizeikis,Y.Xu,et al."Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice"[J].Opt.Commun.,2002,211(1-6):205-213.
    [11]J.B.Nielsen,T.Sondergaard,S.E.Barkou,et al."Two-dimensional Kagom(?)photonic bandgap waveguide"[J].IEEE Photon.Technol.Lett.,2000,12(6):630-632.
    [12]J.B.Nielsen,T.SΦndergaard,S.E.Barkou,et al."Two-dimensional Kagom(?) structure,fundamental hexagonal photonic crystal configuration "[J].Electron.Lett.,1999,35(20):1736-1737.
    [13]N.A.Mortensen and M.D.Nielsen."Modeling of realistic cladding structures for air-core photonic bandgap fibers"[J].Opt.Lett.,2004,29(4):349-351.
    [14]R.Buczy(?)ski,D.Pysz,T.Ritari et al.."Hollow.core photonic crystal fiber with square lattice"[J].Proceedings of SPIE,2005,5950:595015.
    [15]S.G.Johnson and J.D.Joannopoulos."Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis"[J].Opt.Express,2001,8(3):173-190.
    [16]S.Guo,S.Albin,"Simple plane wave implementation for photonic crystal calculations,"[J].Opt.Express,2003,11(2):167-175.
    [17]K.M.Leung and Y.F.Liu."Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media"[J].Phys.Rev.Lett.,1990,65(21):2646-2649.
    [18]E.Yablonovitch,T.J.Gmitter,K.M.Leung."Photonic band structure:The face-centered-cubic case employing nonspherical atoms"[J].Phys.Rev.Lett.,1991,67(17):2295-2298.
    [19]A.Mekis,S.Fan,J.D.Joannopoulos."Absorbing boundary conditions for FDTD simulations of photoniccrystal waveguides"[J].IEEE Microwave & Guided wave letters,9(12):502-504.(1999).
    [20]W.Jiang,L.Shen,D.Chen,et al."An extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers"[J].J.Lightwave Technol.,2006,24(11):4417-4423.
    [21]J.Yonekura,M.Ikeda,T.Baba."Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method"[J].J.Lightwave Technol.,1999,17(7):1500-1508.
    [22]F.Brechet,J.Marcou,D.Pagnoux et al.."Complete analysis of the characteristics of propagation into photonic crystal fibers,by the finite element method"[J].Opt.Fiber Technol.,2000,6(2):181-191.
    [23]A.Figotin and Y.A.Godin,A.Figotin and Y.A.Godin,"The computation of spectra of some 2D photonic crystals"[J].J.Comput.Phys.,1997,136(2):585-598.
    [24]陆栋,蒋平,徐至中.固体物理学[M].上海:复旦大学出版社,2002:1-32.
    [25]T.A.Birks,P.J.Roberts,P.St.J.Russell et al."Full 2-D photonic bandgaps in silica/air structure"[J].Electron.Lett.,1995,31(22):1941-1943.
    [26]A.A.Maradudin and A.g.Megurn.Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium[J].J.Mod.Opt.,1994,41(2):275-284
    [27]M.Plihal and A.A.Maradudin."Photonic band structure of two-dimensional systems:the triangular lattice"[J].Phy.Rev.B,1991,44(16):8565-8571
    [28]A.Glushko."Plane wave method for out-of-plane propagation in 2D photonic crystals"[J].11 Int.Conf.on Mathematical Methods in Electromagnetic Theory,MMIT06,2006.Kharkiv,Ukraine,pp406-408
    [29]R.F.Cregan,B.J.Mangan,J.C.Knight,et al."Single-mode photonic bandgap guidance of light in air"[J].Science,1999,285(5433):1537-1539.
    [30]J.C.Knight and P.St.J.Russell."New ways to guide light"[J].Science,2002,296(5566):276-277.
    [1]T.A.Birks,J.C.Knight,P.St.J.Russell."Endless single-mode photonic crystal fiber"[J].Opt.Lett.,1997,22(13):961-963.
    [2]J.C.Knight,T.A.Birks,P.St.J.Russell,et al."Properties of photonic crystal fiber and the effective index model"[J].J.Opt.Soc.Am.A,1998,15(3):748-752.
    [3]A.Peyrilloux,S.Fevrier,J.Marcou,et al."Comparison between the finite element method,the localized function method and a novel equivalent averaged index method for modelling Photonic Crystal Fibres"[J].J.Opt.A,2002,4(3):257-262.
    [4]H.Li,A.Mafi,A.Sch(?)lzgen,et al."Analysis and design of photonic crystal fibers based on an improved effective-index method"[J].J.Lightwave.Technol,2007,25(5):1224-1230.
    [5]张德生,董孝义,张伟刚,等.“用阶跃有效折射率模型研究光子晶体光纤色散特性”[J].物理学报,2005,54(3):1235-1240.
    [6]赵兴涛,侯蓝田,刘兆伦,等.“改进的全矢量有效折射率方法分析光子晶体光纤的色散特性”[J].物理学报,2007,56(4):2275-2280.
    [7]G.Steven,Johnson and J.D.Joannopoulos."Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis'[J].Opt.Express.,2001,8(3):173-190.
    [8]S.Guo and S.Albin."Simple plane wave implementation for photonic crystal calculations"[J].Opt.Express.,2003,11(2):167-175.
    [9]R.Zoli,M.Guan,D.Castaldini,et al."Reformulation of the plane wave method to model photonic cryatals"[J].Opt.Express.,2003,11(22):2905-2910.
    [10]米艳,侯蓝田,周桂耀等.“空芯光子晶体光纤光子带隙的测量与数值模拟”[J].物理学报,2008,57(6):3583-3587.
    [11]苑金辉,侯蓝田,周桂耀等.“传输可见光的空芯光子带隙光纤的研究”[J].物理学报,2008, 57(7):4230-4237.
    [12]Z.Wang,G.B.Ren,S.Q.Lou,et al."Supercell lattice method for photonic crystal fibers"[J].Opt.Express,2003,11(9):980-991.
    [13]Z.Wang,G.B.Ren,S.Q.Lou,et al."A novel supercell overlapping method for different photonic crystal fibers"[J].J.Lightwave Technol.,2004,22(3):903-916.
    [14]T.P.White,B.T.Kuhlmey,R.C.McPhedran,et al."Multipole method for microstructured optical fibers.I.Formulation"[J].J.Opt.Soc.Am.B,2002,19(10):2322-2330.
    [15]T.P.White,B.T.Kuhlmey,R.C.McPhedran,et al."Multipole method for microstructured optical fibers.I.Formulation errata"[J].J.Opt.Soc.Am.B,2003,20(7):1581-1581.
    [16]Z.M.Zhu,T.G.Brown."Multipole analysis of hole-assisted optical fibers"[J].Opt.Commun.,2002,206(4-6):333-339
    [17]B.T.Kuhlmey,T.P.White,G.Renversez,et al."Multipole method for microstructured optical fibers.Ⅱ.Implementation and results"[J].J.Opt.Soc.Am.B,2002,19(10):2331-2340.
    [18]T.White,R.McPhedran,L.Botten,et al."Calculations of Air-Guided Modes in Photonic Crystal Fibers Using the Multipole Method"[J].Opt.Express.,2001,9(13):721-732.
    [19]B.T.Kuhlmey,K.Pathmanandavel,and R.C.McPhedran."Multipole analysis of photonic crystal fibers with coated inclusions"[J].Opt.Express.,2006,14(22):10851-10864.
    [20]M.Qiu."Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method"[J].Microwave Opt.Technol.Lett.,2001,30(5):327-330.
    [21]Y.J.Zhu,Y.C.Chen,P.Huray,et al."Application of a 2D-FDTD algorithm to the analysis of photonic crystal fibers(PCFs)"[J].Microwave Opt.Technol.Lett.,2002,35(1):10-14.
    [22]W.Jiang,L.Shen,D.Chen,et al."An extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of Photonic crystal fibers"[J].J.Lightwave Technol.,2006,24(11):4417-4423
    [23]F.Ranineri,Y.Dumeige,A.Levenson,et al."Nonlinear decoupled FDTD code:phase-matching in 2D defective photonic crystal"[J].Electron.Lett.,2002,38(25):1704-1706.
    [24]D.M.Sheen,S.M.Ali,M.D.Abouzahra,et al."Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits"[J].IEEE Transactions on Microwave Theory and Techniques,1990,38(7):849-857.
    [25]Z.M.Zhu,and T.G.Brown."Full-vectorial finite-difference analysis of microstructured optical fibers"[J].Opt.Express,2002,10(17):853-864.
    [26]S.P.Guo,F.Wu,S.Albin,et al."Loss and dispersion analysis of microstructured fibers by finite-difference method"[J].Opt.Express,2004,12(15):3341-3352.
    [27]K.Saitoh,M.Koshiba."Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:Application to photonic crystal fibers"[J].IEEE J.Quant.Electron.,2002,38(7):927-933.
    [28]Y.Z.He and F.G.Shi."Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers"[J].Opt.Commun.,2003,225(1-3):151-156
    [29]L.Adamowicz and V.Q.Nguyen."Electromagnetic field in a slab of photonic crystal by BPM"[J].Optics and laser in Engineering,2001,35(2):67-78.
    [30]E Fogli,L.Saccomandi,P.Bassi,et al."Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers"[J].Opt.Express,2002,10(1):54-59.
    [31]W.P.Huang,C.L.Xu,W.Lui,et al."Perfectly matched layer(PML) boundary condition for the beam propagation method"[J],IEEE Photon.Technol.Lett.,1996,8(5):649-651.
    [32]金建铭(美)著,王建国译,葛德彪校.电磁场有限元方法[M].西安:西安电子科技大学出版社,2001:8-24,51-95,148-152,164-176.
    [33]吕英华著.计算电磁学的数值方法[M].北京:清华大学出版社,2006:176-259.
    [34]V.H.Aristizabal,F.J.Velez,and P.Torres."Modeling of photonic crystal fibers with the Scalar finite element method".Porlamar,Venezuela,2004:849-854.
    [35]A.Cucinotta,S.Selleri,L.Vincetti,et al."Holey fiber analysis through the finite-element method"[J].IEEE Photon.Technol.Lett.,2002,14(11):1530-1532.
    [36]M.Koshiba,H.Saitoh,M.Egnchi,et al."Simple scalar finite element approach to rib optical waveguides"[J],IEE Proc.J.Opto-electronics,1992,139(2)166-171.
    [37]田贺斌,杨天新,王颖等.“光子晶体光纤模式特性分析”[J].量子电子学报,2003,20(5):580-583.
    [38]F.Brechet,J.Marcou,D.Pagnoux,and P.Roy."Complete analysis of the characteristics of propagation into photonic crystal fibers,by the finite element method"[J].Optical Fiber Technology,2000,6(2):181-191.
    [39]M.Koshiba,S.Maruyama,K.Hirayama."A vector finite element method with the high.order mixed-interpolation-type triangular elements for optical waveguiding problems"[J].J.Lightwave Technol.,1994,12(3):495-502.
    [40]M.Koshiba,Y.Tsuji."Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems"[J].J.Lightwave Technol.,2000,18(5):737-743.
    [41]M.Koshiba,Y.Tsuji."Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems"[J].J.Lightwave Technol.,2000,18(3):409-415.
    [42]M.Koshiba."Full vector analysis of photonic crystal fibers using the finite element method"[J].IEICE Trans.Elect ron.,2002,E85..C(4):881-888
    [43]胡明列,王清月,栗岩锋.“微结构光纤的有限元分析计算法”[J].中国激光,2004,31(11):1337-1342.
    [44]张方迪,刘小毅,张民等.“全矢量有限元模型及其在光波导和光子晶体光纤中的应用”[J].光子学报,2007,36(2):209-215.
    [45]王健,雷乃光,余重秀.“椭圆空气孔微结构光纤限制损耗的分析”[J].物理学报,2007,56(2):946-951
    [46]K.Saitoh,and M.Koshiba.“Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:application to photonic crystal fibers”[J].J.Quantum.Electron.,2002,38(7):927-933.
    [47]K.Saitoh,and M.Koshiba.“Full-Vectorial Finite Element Beam Propagation Method with Perfectly Matched Layers forAnisotropic Optical Waveguides”[J].J.Lightwave Technol.,2001,19(3):405-413.
    [48]Y.Tsuji,and M.Koshiba.“Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme”[J].J.Lightwave Technol.,2000,18(4):618-623.
    [49]S.S.A.Obayya,B.M.A.Rahman,K.T.V.Grattan,et al.“Full Vectorial Finite-Element-Based Imaginary Distance Beam Propagation Solution of Complex Modes in Optical Waveguides”[J].J.Lightwave Technol.,2002,20(6):1054-1060.
    [50]S.S.A.Obayya,B.M.A.Rahman and K.T.V.Grattan.“Accurate finite element modal solution of photonic crystal fibres”[J].IEE Proc.J.Opto-electronics,2005,152(5):241-246.
    [51]S.S.A.Obayya,B.M.A.Rahman,and H.A.El-Mikati.“New full vectorial numerically efficient propagation algorithm based on the finite element method”[J].J.Lightwave Technol.,2000,18(3):409-415
    [52]S.Selleri,,L.Vincetti,A.Cucinotta,et al.“Complex FEM modal solver of optical waveguides with PML boundary conditions”[J].Opt.Quantum Electron.,2001,33:359-371.
    [53]J.P.Berengter.“A Perfectly matched layer for absorbing of electromagnetic waves”[J].J.Computational Physics,1994,114:185-200.
    [54]J.Y.Wu,D.M.Kingsland,J.F.Lee.“A comparison of anisotropic PML to Berenger's PML and its application to the finite element method for EM scattering”[J].IEEE Trans.Antennas Propagation,1999,45(1):40-50.
    [55]M.Koshiba,Y.Tsuji,S.Sasaki.“High-performance absorbing boundary conditions for photonic crystal waveguide simulations”[J].IEEE Microwave and Wireless Components Letters,2001,11(4):152-154
    [56]A.Ferrando,E.Silvestre,P.Andr(?)s,et al.“Designing the properties of dispersion-flattened photonic crystal fibers”[J].Opt.Express,2001,9(13):687-697.
    [57]F.Zolla,G.Renversez,A.Nicolet.“Foundation of photonic crystal fibers”[M].Hackensack,N.J.:World Scientific Press,2005,263-267.
    [1]arXiv:physies/0508139v2[DB/OL].
    [2]J.l(?)gsgaard,K.P.Hansen,M.D.Nielsen,et al."Photonic crystal fibers"[J].Proceeding SBMO/IEEE MTT-S IMOVC 2003,259-264.
    [3]R.F.Cregan,B.J.Mangan,J.C.Knight,et al."Single-mode photonic band gap guidance of light in air"[J].Science,1999,285(5433):1537-1539.
    [4]J.C.Knight and P.St.J.Russell."New ways to guide light"[J].Science,2002,296(5566):276-277.
    [5]C.M.Smith,N.Venkataraman,M.T.Gallagher,et al."Low-loss hollow.core silica/air photonic band-gap fibre"[J].Nature,2003,424(6949):657-659.
    [6]F.Benabid,J.C.Knight,G.Antonopoulos,et al."Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber"[J].Science,2002,298(5592):399-402.
    [7]D.G.Ouzouno,F.R.Ahmad,D.Miiller,et al."Generation of megawatt optical solitons in hollow-core photonie bang-gap fibers"[J].Science,2003,301(5640):1702-1704.
    [8]D.G.Ouzounov,C.J.Hensley,A.L.Gaeta,et al."Soliton pulse compression in photonic band-gap fibers"[J].Opt.Express,2005,13(16):6153-6159.
    [9]F.Benabid,J.C.Knight and P.S.J.Russell."Particle levitation and guidance in hollow-core photonic crystal fiber"[J].Opt.Express,2002,10(21):1195-1203.
    [10]P.Roberts,F.County,H.Sabert et al."Ultimate low loss of hollow-core photoniec crystal fibers"[J].Opt.Exp.,2005,13(1):236-244.
    [11]P.St.J.Russell."Photonie Crystal Fibcrs"[J].J.Lightwave Technol.,2006,24(12):4729-4749.
    [12]K.Nagayama,M.Kakui,M.Matsui,et al."Ultra-low-loss(0.1484 dB/km) pure silica core fibre and extension of transmission distance"[J].Electron.Lett.,2002,38(20):1168-1169.
    [13]R.Amezcua-Correa,F.G(?)r(?)me,S.G.Leon-Saval,et al."Control of surface modes in low loss hollow-core photonie bandgap fibers"[J].Opt.Exp.,2008,16(2):1142-1149.
    [14]D.C.Allan,N.F.Borrelli,M.T.Gallagher,et al."Surface modes and loss in air-core photonie band-gap fibers"[J].Proe.of SPIE,2003,5000:161-174.
    [15]A.W.James,M.S.Charlene,F.B.Nicholas,et al."Surface modes in air-core photonic band-gap fibers"[J].Opt.Exp.,2004,12(3):394-400.
    [16]J.F.D.Michel,H.K.Kim,J.Shin,et al."Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers"[J].Opt.Exp.,2004,12(9):1864-1872.
    [17]H.K.Kim,J.Shin,S.Fan,et al."Designing Air-Core Photonic-Bandgap Fibers Free of Surface Modes"[J].IEEE J.Quan.Eletron.,2004,40(5):551-553.
    [18]H.K.Kim,J.Shin,S.Fan,et al."Surface mode behavior of air-core photonic-bandgap fibers"[J].Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies(CLEO),2004,vol.2,paper CThX5.
    [19]K.Saitoh,N.A.Mortensen,M.Koshiba."Air-core photonic band-gap fibers:the impact of surface modes"[J].Opt.Exp.,2004,12(3):394-400.
    [20]F.Couny,F.Benabid,P.J.Roberts,et al."Identification of Bloch-modes in hollow-core photonic crystal fiber cladding"[J].Opt.Express,2007,15(2):325-338.
    [21]F.Benabid,P.St.J.Russell."Hollow core photonic crystal fibers:progress and prospects"[J].Proc.of SPIE,2003,5733:176-189.
    [22]P.St.J.Russell."Photonic crystal fibers"[J].Science,2003,299(5605):358-362.
    [23]N.A.Mortensen and M.D.Nielsen."Modeling of realistic cladding structures for air-core photonic bandgap fibers"[J].Opt.Lett.,2004,29(4):349-351.
    [24]M.A.Duguay,Y.Kukubun,T.L.Koch,et al."Antiresonant reflecting optical waveguides in Sio2-Si multilayer strucutures"[J].Appl.Phys.Lett.,1986,49(1):13-15.
    [25]N.M.Litchinitser,A.K.Abeeluck,C.Headley,et al."Antiresonant reflecting photonic crystal optical waveguides"[J].Opt.Lett.,2002,27(18):1592-1594.
    [26]P.J.Robertsl,D.P.Williams,B.J.Mangan,et al."Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround"[J],opt.Express,2005,13(20):8277-8285.
    [27]R.Amezcua-Correa,N.G.R.Broderick,M.N.Petrovich,et al."Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers"[J],Opt.Express,2006,14(17):7974-7985.
    [28]H.K.Kim,M.J.F.Digonnet,G.S.Kino,et al."Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers"[J],opt.Express,2004,12(15):3436-3442.
    [29]R.Amezcua-Correa,N.G.R.Broderick,M.N.Petrovich,et al."Realistic designs of silica hollow-core photonic bandgap fibers free of surface modes"[J].Optical Fiber Communication Conference,2006 and the 2006 National Fiber Optic Engineers Conference.OFC 2006,Anaheim,CA,OFC1,3pages
    [30]P.J.Roberts,F.Couny,T.A.Birks,et al."Achieving Low Loss and Low Nonlinearity in Hollow Core Photonic Crystal Fibers"[J].Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies(CLEO),2005,paper CWA7.
    [31]R.Amezcua-Correa,N.G.Broderick,M.N.Petrovich,et al."Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss,wide bandwidth and dispersion controlled operation"[J].Opt.Express,2007,15(26):17577-17586.
    [1]D.G.Ouzouno,F.R.Ahmad,D.M(u|¨)ller,et al."Generation of megawatt optical solitons in hollow-core photonic bang-gap fibers"[J].Science,2003,301(5640):1702-1704.
    [2]D.G.Ouzounov,C.J.Hensley,A.L.Gaeta,et al."Soliton pulse compression in photonic band-gap fibers"[J].Opt.Express,2005,13(16):6153-6159.
    [3]F.Benabid,J.C.Knight and P.S.J.Russell."Particle levitation and guidance in hollow-core photonic crystal fiber"[J].Opt.Express,2002,10(21):1195-1203.
    [4]R.Amezcua-Correa,F.G(?)r(?)me,S.G.Leon-Saval,et al."Control of surface modes in low loss hollow-core photonic bandgap fibers"[J].Opt.Exp.,2008,16(2):1142-1149.
    [5]D.C.Allan,N.F.Borrelli,M.T.Gallagher,et al."Surface modes and loss in air-core photonic band-gap fibers"[J].Proc.of SPIE,2003,5000:161-174.
    [6]A.W.James,M.S.Charlene,F.B.Nicholas,et al."Surface modes in air-core photonic band-gap fibers"[J].Opt.Express,2004,12(3):394-400.
    [7]R.Amezcua-Correa,N.G.Broderick,M.N.Petrovich,et al."Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers"[J].Opt.Express,2006,14(17):7974-7985.
    [8]F.Couny,F.Benabid,P.J.Roberts,et al."Identification of Bloch-modes in hollow-core photonic crystal fiber cladding"[J].Opt.Express,2007,15(2):325-338.
    [9]N.A.Mortensen and M.D.Nielsen."Modeling of realistic cladding structures for air-core photonic bandgap fibers"[J].Opt.Lett.,2004,29(4):349-351.
    [10]P.J.Roberts,D.P.Williams,B.J.Mangan,et al."Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround"[J].Opt.Express,2005,13(20):8277-8285.
    [11]H.K.Kim,M.J.F.Digonnet,G.S.Kino,et al."Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers"[J].Opt.Express,2004,12(15):3436-3442.
    [12]R.Amezcua-Correa,N.G.Broderick,M.N.Petrovich,et al."Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss,wide bandwidth and dispersion controlled operation"[J].Opt.Express,2007,15(26):17577-17586.
    [13]M.Y.Chen,R.J.Yu."Squared-structured photonic bandgap fibers"[J].Opt.Commun.,2004,235(1-3):63-67.
    [14]F.Poletti,D.J.Richardson."Hollow-core photonie bandgap fibers based on a square lattice cladding"[J].Opt.lett.,2007,32(16):2282-2284.
    [15]R.Buczy(?)ski,D.Pysz,T.Ritari,et al."Hollow-core photonie crystal fiber with square lattice"[J].Proe.SPIE,2005,5950:595015-1-8
    [16]H.zhang,Q.G.Wang,B.J.Yang,et al."Dispersion Properties of Hollow-Core Phntonic Bandgap Fibers Based on A Square Lattice Cladding"[J].Opt.Commun.,2008,281(13):3486-3491.
    [17]张虎,王秋国,杨伯君等.“基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗”[J].物理学报,2008,57(9):5722-5728.
    [18]T.Haas,S..Belau,T.Doll."Realistic Monomode Air-Core Honeycomb Photonic Bandgap Fiber With Pockets"[J].J.Lightwave Technol.,2005,23(9):2702-2706.
    [19]B.Beaudou,F.Couny,F.Benabid,et al."Large Pitch Hollow Core Honeycomb Fiber"[J].Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies(CLEO),2008,paper JFC6.
    [20]T.Murao,K.Saitoh,and M.Koshiba."Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation"[J].Opt.Express,2006,14(6):2404-2412.
    [21]J.L(?)gsgaard,N.A.Mortensen,A.Bjarldev."Mode areas and field-energy distribution in honeycomb photonic bandgap fibers"[J].J.Opt.Soc.Am.B,2003,20(10):2037-2045.
    [22]M.Yan,P.Shum,J.Hu."Design of air-guiding honeycomb photonic bandgap fiber"[J].Opt.Lett.,2005,30(5):465-467.
    [23]L.Vincetti,F.Poll,S.Selleri."Confinement Loss and Nonlinearity Analysis of Air-Guiding Modified Honeycomb Photonic Bandgap Fibers"[J].IEEE Photon.Technol.Lett.,2006,18(3):508-510.
    [24]M.Yan,P.Shum."Air guiding with honeycomb photonic bandgap fiber"[J].IEEE Photon.Technol.Lett.,2005,17(1):64-66.
    [25]A.Bjarklev,J.Broeng,S.E.Barkou,et al."Polarization properties of honeycomb-structured photonic bandgap fibres"[J].J.Opt.A,2000,2(6):584-588.
    [26]L.Vincetti,M.Maini,F.Poli,et al."Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice"[J].Opt.Quant.Electron.,2006,38(9-11):903-912.
    [27]F.Benabid,J.C.Knight,G.Antonopoulos,et al."Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber'[J].Science,2002,298(5592):399-402.
    [28]F.Couny,F.Benabid,and P.S.Light."Large-pitch kagome-structured hollow-core photonic crystal fiber"[J].Opt.Lett.,2006,31(24):3574-3576.
    [29]P.J.Roberts,F.Benabid,F.Couny,et al."Dispersion Properties of"Kagome" Hollow-Core Fibers"[J].Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonie Applications Systems Technologies(CLEO),2008,paper JFG2.
    [30]http://www.crystal-fibre.com/products/airguide.shtm
    [31]P.R.McIsaac."Symmetry-indueed modal characteristics of uniform waveguides-I:summary of results"[J].IEEE Trans.Microwave Theory Tech.,1975,MTT-23(5):421-429.
    [32]M.J.Steel,T.P.White,C.M.Sterke,et al."Symmetry and degeneracy in rnicrostructured optical fibers"[J].Opt.Lett.,2001,26(8):488-490.
    [33]T.P.White,B.T.Kuhlmey,R.C.McPhedran,et al."Multipole method for rnicrostructured optical fibers.I.Formulation"[J].J.Opt.Soc.Am.B,2002,19(10):2322-2330.
    [34]G.B.Ren,Z.Wang,S.Q.Lou,et al."Mode classification and degeneracy in photonic crystal fibers"[J].Opt.Express,2003,11(11):1310-1321.
    [35]M.J.F.Digonnet,H.K.Kim,G.S.Kino,et al."Understanding air-core photonie-bandgap fibers:analogy to conventional fibers"[J].J.Lightwave Technol.,2005,23(12):4169-4177.
    [36]Z.Wang,G.B.Ren,S.Q.Lou,et al."Novel supercell lattice method for the photonic crystal fibers"[J].Opt.Express,2003,11(9):980-991.
    [37]T.Murao,K.Saitoh,and M.Koshiba."Realization of single-moded broadband air-guiding photonic bandgap fibers"[J].IEEE Photon.Technol.Lett.,2006,18(15):1666-1668.
    [38]K.Saitoh,N.J.Florous,T.Murao,et al."Design of photonic band gap fibers with suppressed higher.order modes:Towards the development of effectively single mode large hollow-core fiber platforms'[J].Opt.Express,2006,14(16):7342-7352.
    [39]J.M.Fini."Aircore microstructure fibers with suppressed higher-order rnodes"[J].Opt.Express,2006,14(23):11354-11361.
    [40]T.Murao,K.Saitoh,N.J.Florous,et al."Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide"[J].Opt.Express,2007,15(7):4268-4280.
    [41]M.N.Petrovich,F.Poletti,A.van Brakel,et al."Robustly single rnode hollow core photonic bandgap fiber"[J].Opt.Express,2008,16(6):4337-4346.
    [42]G.P.Agrawal."Nonlinear Fiber Optics,Third Edition"[M].Boston:Academic Press,2001:7-13.
    [43]J.L(?)gsgaard,N.A.Mortensen,J.Riishede,et al."Material effects in air-guiding photonic bandgap fibers"[J].J.Opt.Soc.Am.B,2003,20(10):2046-2051.
    [44]S.E.Barkou Libori and J.L(?)gsgaard."Mode profiles and dispersion properties of silica/air photonic bandgap fibers"[J].Opt.Fiber Commun.Rep.,2004,1(3):266-282.
    [45]J.L(?)gsgaard,P.J.Roberts,M.Bache."Tailoring the dispersion properties of photonic crystal fibers"[J].Opt.Quant.Electron.,2007,39(12-13):995-1008.
    [46]G.andermann,A.Caron,D.A.Dows."Kramers-Kronig Dispersion Analysis of Infrared Reflectance Bands"[J].J.Opt.Soc.Am.,1965,55(10):1210-1212.
    [47]M.Haakestad and J.Skaar."Causality and Kramers-Kronig relations for waveguides"[J].Opt.Express,2005,13(24):9922-9934.
    [48]J.C.Knight,J.Arriaga,T.A.Birks,et al."Anomalous dispersion in photonic crystal fiber"[J].IEEE Photon.Technol.Lett.,2000,12(7):807-809.
    [49]A.Ferrando,E.Silvestre,J.J.Miret,et al."Nearly zero ultraflattened dispersion in photonic crystal fibers"[J].Opt.Lett.,2000,25(11):790-792.
    [50]A.Ferrando,E.Silvestre,E Andres,et al."Designing the properties of dispersion-flattened photonic crystal fibers"[J].Opt.Express,2001,9(13):687-697.
    [51]W.H.Reeves,J.C.Knight,P.S.J.Russell,et al."Dispersion-Flattened Photonic Crystal Fibers at 1550nm"[J].Optical Fiber Communication Conference(OFC),2003,paper FI3.
    [52]T.Matsui,J.Zhou,K.Nakajima,et al."Dispersion-Flattened Photonic Crystal Fiber With Large Effective Area and Low Confinement Loss"[J].J.Lightwave Technoi.,2005,23(12):4178-4183
    [53]S.G.Yang,Y.J.Zhang,L.He,et al."Broadband dispersion-compensating photonic crystal fiber"[J].Opt.Lett.,2006,31(19):2830-2832.
    [54]S.Q.Lou,H.Fang,H.L.Li,et al."Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber"[J].Chin.Opt.Lett.,2008,6(11):821-823.
    [55]P.J.Roberts,F.Couny,H.Sabert,et al."Ultimate low loss of hollow-core photonic crystal fibres"[J].Opt.Express,2005,13(1):236-244.
    [56]T.A.Birks,D.M.Bird,T.D.Hedley,et al."Scaling laws and vector effects in bandgap-guiding fibres"[J].Opt.Express,2004,12(1):69-74.
    [57]X.Yu,P.Shum,G.B.Ren,et al."Photonic crystal fibers with high index infiltrations for refractive index sensing"[J].Opt.Commun.,2008,281(18):4555-4559.
    [1]T.Larsen,A.Bjarklev,D.Hermann and J.Broeng,"Optic devices based on liquid crystal photonic bandgap fibres," Opt.Express 11(20),2589-2596(2003).
    [2]T.T.Alkeskjold,J.L(?)gsgaard,A.Bjarldev,et al."All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers"[J].Opt.Express,2004,12(24):5857-5871.
    [3]M.W.Haakestad,T.T.Alkeskjold,M.D.Nielsen,et al."Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber"[J].IEEE Photon.Technol.Lett.,2005,17(4):819-821.
    [4]L.Scolari,T.T.Alkeskjold,J.Riishede,et al."Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers"[J].Opt.Express,2005,13(19):7483-7496.
    [5]L.Scolari,T.T.Alkeskjold,A.O.Bjarklev."Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre"[J].Electron.Lett.,2006,42(22):1270-1271.
    [6]D.Noordegraaf,L.Scolari,J.L(?)gsgaard,et al."Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers"[J].Opt.Express,2007,15(13):7901-7912.
    [7]J.Weirich,J.Laegsgaard,L.Scolari,et al."Biased liquid crystal infiltrated photonic bandgap fiber"[J].Opt.Express,2009,17(6):4442-4453.
    [8]T.Ritari,J.Tuominen,H.Ludvigsen,et al."Gas sensing using air-guiding photonic bandgap fibers"[J].Opt.Express,2004,12(17):4080-4087.
    [9]F.Benabid,P.S.Light,F.Couny,et al."Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF"[J].Opt.Express,2005,13(15):5694-5703.
    [10]S.Ghosh,J.E.Sharping,D.G.Ouzounov,et al."Resonant optical interactions with molecules confined in photonic band-gap fibers"[J].Phys.Rev.Lett.,2005,94:093902-1 -093902-4.
    [11]J.Henningsen,J.Hald,J.C.Peterson."Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers"[J].Opt.Express,2005,13(26):10475-10482.
    [12]F.Benabid,F.Couny,J.C.Knight,et al."Compact,stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres"[J].Nature,2005,434(7032):488-491.
    [13]P.S.Light,F.Couny,F.Benabid."Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber"[J].Opt.Lett.,2006,31(17):2538-2540.
    [14]R.Thapa,K.Knabe,K.L.Corwin,et al."Are fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells"[J].Opt.Express,2006,14(21):9576-9583.
    [15]R.Thapa,K.Knabe,M.Faheem,et al."Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber"[J].Opt.Lett.,2006,31(16):2489-2491.
    [16]N.Gayraud,L.W.Komaszewski,J.M.Stone,et al."Mid-infrared gas sensing using a photonic bandgap fiber"[J].Appl.Opt.,2008,47(9):1269-1277.
    [17]A.Gaeta."Nonlinear Optics in Gas-Filled Photonic Band-Gap Fibers"[C].Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,2008,paper JFC1.
    [18]F.Luan,A.K.George,T.D.Hedley,et al."All-solid photonic bandgap fiber"[J].Opt.Lett.,2004,29(20):2369-2371.
    [19]A.Argyros,T.Birks,S.Leon-Saval,et al."Photonic bandgap with an index step of one percent"[J].Opt.Express,2005,13(1):309-314.
    [20]G.Bouwmans,L.Bigot,Y.Quiquempois,et al."Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region(< 20 dB/km) around 1550 nm"[J].Opt.Express,2005,13(21):8452-8459.
    [21]P.Steinvurzel,C.M.de Sterke,B.J.Eggleton,et al."Mode field distributions in solid core photonie bandgap fibers"[J].Opt.Commun.,2006,263(2):207-213.
    [22]T.A.Birks,F.Luan,G.J.Pearce,et al."Bend loss in all-solid bandgap fibres"[J].Opt.Express,2006,14(12):5688-5698.
    [23]S.F(?)vrier,R.Jamier,J.-M.Blondy,et al."Low-loss singlemode large mode area all-silica photonic bandgap fiber"[J].Opt.Express,2006,14(2):562-569.
    [24]A.Wang,G.J.Pearee,F.Luan,et al."All solid photonic bandgap fiber based on an array of oriented rectangular high index rods"[J].Opt.Express,2006,14(12):10844-10850.
    [25]S.F(?)vrier,R.Jamier,P.Viale,et al."Solid-core bandgap fibers"[J].Proc.of SPIE,2007,6453:64531A-1-64531A-11
    [26]L.Jin,Z.Wang,Y.Liu,et al."Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers"[J].Opt.Express,2008,16(25):21119-21131.
    [27]F.Poletti and D.J.Richardson."Hollow-core photonic bandgap fibers based on a square lattice cladding"[J].Opt.lett.,2007,32(16):2282-2284,
    [28]P.St.J.Russell,E.Marin,A.Diez,et al."Sonic band gaps in PCF preforms:enhancing the interaction of sound and light"[J].Opt.Express,2003,11(20):2555 -2560.
    [29]R.Buczy(?)ski,D.Pysz,T.Ritari,et al."Hollow-core photonic crystal fiber with square lattice"[J].Proc.SPIE,2005,5950:595015-1-8
    [30]T.Murao,K.Saitoh,N.J.Florous,et al."Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide"[J].Opt.Express,2007,15(7):4268-4280.
    [31]k.Saitoh,N.J.Florous,T.Murao,et al."Design of photonic band gap fibers with suppressed higher-order modes:Towards the development of effectively single mode large hollow-core fiber plafforms"[J].Opt.Express,2006,14(16):7342-7352.
    [32]J.L(?)gsgaard,P.J.Roberts,M.Bache."Tailoring the dispersion properties of photonic crystal fibers"[J].Opt.Quant.Electron.,2007,39(12-13):995-1008.
    [33]J.L(?)gsgaard,N.A.Mortensen,J.Riishede,et al."Material effects in air-guiding photonic bandgap fibers"[J].J.Opt.Soc.Am.B,2003,20(10):2046-2051.
    [34]T.Birks,D.Bird,T.Hedley,et al."Scaling laws and vector effects in bandgap-guiding fibres"[J].Opt.Express,2004,12(1):69-74.
    [35]F.Zolla,G.Renversez,A.Nicolet."Foundation of photonic crystal fibers"[M].Hackensack,N.J.:World Scientific Press,2005,263-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700