用户名: 密码: 验证码:
冷冻爆破制备壳聚糖溶胀体及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(1)采用正交实验法研究了甲壳素脱乙酰工艺对产物壳聚糖性质的影响,并结合实验结果设计工艺条件制备了脱乙酰度分别为64.2%(CS65)、71.9%(CS70)、76.7%(CS75)和81.4%(CS80)的壳聚糖,它们在4.8 wt%LiOH溶液中经冷冻爆破均能高度溶胀。
     (2)采用红外、XRD、SEM等方法研究了甲壳素和可溶胀壳聚糖的结构。异相-近均相脱乙酰不仅改变了甲壳素的脱乙酰度,还破坏了甲壳素的氢键及其结晶结构,使其致密的网络结构遭到破坏,表面产生许多孔洞,结构变得更加疏松无序。甲壳素的结晶度随脱乙酰度的增大先降后增,结构先变得疏松又开始变得致密,导致它们的可溶胀性CS65>CS70≈CS75>CS80。
     (3)以CS65、CS70、CS75和CS80为对象,研究了壳聚糖在碱性溶剂体系中的溶胀行为和壳聚糖在碱液中的稳定性,并对其溶胀机理进行了研究。壳聚糖对LiOH和水分的吸附对其脱乙酰度有依赖性,壳聚糖的冷冻爆破溶胀度随碱液浓度的增大先增后减,LiOH比NaOH对壳聚糖具有更好的溶胀力。在尿素浓度(?)4wt%时,尿素开始起增溶作用,且尿素对弱溶胀剂的增溶作用较强。壳聚糖在LiOH/尿素溶液中比较稳定,4.8 wt%LiOH/8.0 wt%尿素水溶液可能是壳聚糖较为理想的溶剂组成。
     (4)以甲壳素和壳聚糖为原料,制备了既能溶于碱又能溶于酸壳聚糖CSa和CSd,研究了其结构、溶解行为和溶解机理。
     根据实验结果,推测壳聚糖的溶胀和溶解机理如下:
     壳聚糖在LiOH水溶液中的溶胀或溶解从较疏松的无定形区向较致密的结晶区进行。实验室自制壳聚糖结晶度的降低、结晶结构的扩张、氢键的破坏及其更加无序和疏松的结构,都将有利于水、LiOH水合物及尿素水合物等向其内部的扩散和渗透,因而实验室自制的壳聚糖常温下能够吸附的大量的自由水和其它小分子。然后,在冷冻时壳聚糖吸附的自由水可以结晶成冰,体积膨胀,从而将壳聚糖的结构撑开,削弱壳聚糖分子间的相互作用,使小分子向壳聚糖内部的扩散更易于进行。另外,[Li(H_2O)_m]~+和[OH(H_2O)_n]~-在低温下比较稳定,能够更有效地向壳聚糖内部扩散,低温下,LiOH与壳聚糖上的乙酰基和羟基发生反应,破坏了壳聚糖的分子内和分子间氢键,最终使得壳聚糖溶胀或溶解。
     LiOH是壳聚糖溶胀或溶解的主要动力;冷冻爆破处理对改变壳聚糖本身的氢键,在LiOH和壳聚糖间形成新的相互作用上起着重要的作用;尿素与LiOH和壳聚糖形成包合配合物,提高了壳聚糖/LiOH体系的稳定性。
(1) The effect of deacetylation process conditions on the properties of the finalproduct-chitosan was investigated by orthogonal experiment,and then four chitosanwith different DD (CS65,CS70,CS75,and CS80) were prepared by the optimizedpreparing conditions according to the obtained results.The prepared chitosans canswell highly in 4.8wt% LiOH aqueous solution and form transparent gels afterfreezing-blasting treatment,with the swelling degree CS65>CS70≈CS75>CS80.
     (2) The structures of prepared chitosan were studied by FT-IR,XRD and TEM.The two-step deacetylation not only changed the DD of chitin,but also destroyed thehydrogen bonds in chitin and the crystal structure.The rigid network of chitin wasdestroyed,and numerous micro voids formed during the N-deacetylation treatment.The crystalinity of chitin first decreased and then increased with the increase of DD,and the structure of chitin grew looser at first and then became denser with theincrease of DD.
     (3) The swelling behaviors of four chitosans (CS65,CS70,CS75,and CS80) inalkali solvent system were systematically studied.The effects of several factors suchas the concentration of alkali solution,the kind of alkali solution,added smallmolecule reagents and freezing-blasting treatment on the swelling behavior ofchitosan as well as the mechanism of swelling were investigated.The results indicatedthat the absorption behavior of chitosan to LiOH and water was dependent on itsdeacetylation degree (DD).The swelling degree of chitosan grew at first with theincrease of concentration of alkali and then decreased.When the concentration of ureaincreased over 4 wt%,urea started to act as a solubilizer and urea had a strongersolubilization effect towards weak swelling agent.Chitosan was stable in LiOH/ureaaqueous solution,and 4.8 wt% LiOH/ 8.0 wt% urea solution may be potentialfavorable solvent for chitosan.
     (4)Two kinds of chitosan (CSd and CSa) were prepared from chitin or chitosan byN-deacetylation or N-acetylation,respectively,which can dissolve in both alkali andacid.Then their structures and dissolution behaviors in alkali solution were studied,as well as the mechanism of the dissolution.
     The mechanism of swelling and dissolution was concluded as following:
     The swelling of chitosan in alkali solution took place from the amorphous regionto the crystal region.Their diminished crystallinity,increased amorphous region,expanded crystal structure,destroyed inter- and intra-molecular hydrogen bonds aswell as the more disordered and much looser structures made it much easier for water,LiOH hydrate and urea hydrate to disperse and penetrate into the internal of theprepared chitosans,and therefore,the prepared chitosan can adsorb large amount offree water and small molecules.Under the freezing treatment,the free water absorbedby chitosan can freeze,with the volume of it increasing,which effectively expandedthe structure of chitosan and weakened the interaction between chitosan molecules,making it much easier for small molecules to disperse into the internal of chitosan.Moreover,[Li(H_2O)_m]~+ and [OH(H_2O)_n]~-were more stable at low temperature,they can diffuse and penetrate into the internal of chitosan more effectively.With thecomplex reaction between Li~+ and the acetyl group on the chitosan,and the additionreaction between Li~+ and OH~-on the chitosan,the hydrogen the hydrogen bonds ofthe chitosan can be destroyed,making chitosan swell or dissolute eventually.
     The main motivation of the swelling or dissolution of chitosan is the destructionof hydrogen bonds in chitosan caused by LiOH.The freezing-blasting treatment has agreat impact on the shift of hydrogen bonds between chitosan and LiOH hydrate,contributes to the swelling of chitosan.Urea improved the stability of chitosan/LiOHsystem by forming an inclusion compound with chitosan and LiOH.
引文
1. Naczk M., Synowiecki J., Sikorski Z. E. The gross chemical composition of Antarctic krill shell waste. Food. Chem., 1981, 7, 175-179.
    
    2. Knorr D. Use of chitinous polymerw in food-A challenge for food research and development. Food. Techn., 1984, 1, 85.
    
    3. Marguerite R. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 2008, 57, 397-430.
    
    4. Hirano S. Wet-spinning and applications of functional fibers based on chitin and chitosan. Macromol. Symp., 2001, 168, 21-30.
    
    5. Khor E., Lim L. Y. Implantable applications of chitin and chitosan. Biomaterials,2003, 24, 2339-2349.
    
    6. Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008, 29,1412-1421.
    
    7. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer.Biomaterials, 2008,29, 3477-3496.
    
    8. Quemeneur F, Rinaudo M, Pepin-Donat B. Influence of polyelectrolyte chemical structure on their interaction with lipid membrane of zwitterionic liposomes.Biomacromolecules, 2008, 9,2237-2243.
    
    9. Chow K. S., Khor E. Novel fabrication of open-pore chitin matrixes,Biomacromolecules, 2000,1, 61-67.
    
    10. Cho Y. W., Cho Y. N., Chung S. H., Yoo G., Ko S. W. Water-soluble chitin as a wound healing accelerator. Biomaterials, 1999, 20, 2139-2145.
    
    11. Hon D. N. S. Chitin and chitosan: medical applications, in Polysaccharides in Medical Applications, ed. by Dumitriu S. New York: Marcel Dekker. 1996, pp631-649.
    
    12. Ilium L., Davis S. Chitosan as a delivery system for the transmucosal administration of drugs, in Polysaccharides. Structural Diversity and Functional Versatility, 2nd edn, ed. by Dumitriu S. New York: Marcel Dekker. 2005,pp643-660.
    
    13. Thanou M., Junginger H. E. Pharmaceutical applications of chitosan and derivatives, in Polysaccharides. Structural Diversity and Functional Versatility,2nd edn, ed. By Dumitriu S. New York: Marcel Dekker. 2005, pp661-677.
    
    14. Ravi-Kumar M. N. V, Muzzarelli R. A. A., Muzzarelli C., Sashiwa H., Domb A. J.Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104,6017-6084.
    
    15. Hejazi R., Amiji M. Chitosan-based delivery systems: physicochemical properties and pharmaceutical applications, in Polymeric Biomaterials, ed. by Dumitriu S.New York: Marcel Dekker. 2002, pp213-237.
    
    16. Jin R, Teixeira LSM, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY,Feijen J. Injectable chitosan-based hydrogels for cartilage tissue engineering.Biomaterials, 2009, 30, 2544-2551.
    
    17. Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K. Adsorption of gold (III), platinum(W) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource Technol., 2008, 99, 3801-3809.
    
    18. Li Q., Dumn E. T., Grandmaison E. W. Applications and properties of chitosan, J J. Bioact. Compat. Pol., 1992, 7, 370-379.
    
    19. Shahidi F., Arachchi J. K. V., Jeon, Y. J. Food applications of chitin and chitosans,Trends Food Sci. Tech., 1999,10, 37-51.
    
    20.张文清,金鑫荣.改性壳聚糖作为保鲜剂的研究.功能高分子学报,1994,17,333-336.
    
    21. Marguerite Rinaudo, Chitin and chitosan: Properties and applications, Prog.Polym. Sci., 2006, 31, 603-632.
    
    22. Sandford, P. A. Chitosan and alginate: new forma of commercial interest, Abstr.Am. Chem. Soc, 1990, 199, 628.
    
    23. Ko M. J., Jo W. H., Kim H. C, Lee S. C. Miscibility of chitosans polyamide 6 blends, Polym. J., 1997, 29, 997-1001.
    24. Hosokawa J., Nishiyama M., Yoshihara K., Kubo T. Biodegradable film derived from chitosan and homogenized cellulose. Ind. Eng. Chem. Res., 1990, 29,800-805.
    
    25. Hasegawa M., Isogai A., Kuga S., Onabe F. Preparation of cellulose chitosan blend film using chloral dimethylformamide. Polymer, 1994, 35, 983-987.
    
    26. Abou-Aiad T. H. M., Abd-El-Nour K. N., Hakim I. K., Elsabee M. Z. Dielectric and interaction behavior of chitosan/polyvinyl alcohol and chitosan/polyvinyl pyrrolidone blends with some antimicrobial activities. Polymer,2006,47, 379-389.
    
    27. Wang X., Cui F., Feng Q., Li J., Zhang Y. Preparation and characterization of collagen/chitosan matrices as potential biomaterials, J. Bioact. Compat. Polym.,2003,18,453-467.
    
    28. Zhang M, Li X. H., Gong Y. D., Zhao N. M., Zhang X.F. Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials,2002,23,2641-2648.
    
    29. Cao W., Wang A., Jing D., GongY., Zhao N., Zhang X. Physical, mechanical and degradation properties, and Schwann cell affinity of cross-linked chitosan films. J.Biomater. Sci. Polym. Ed., 2005,16, 791-807.
    
    30. Peesan M., Rujiravanit R., Supaphol P. Electrospinning of hexanoyl chitosan/polylactide blends, J. Biomater. Sci. Polym. Ed., 2006,17, 547-565.
    
    31. Berth G., Voigt A., Dautzenberg H., Donath E., Moehwald H. Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate,Biomacromolecules, 2002, 3, 579-590.
    
    32. Nakamatsu J., Torres F. G, Troncoso O. P., Yuan M. L., Boccaccini A. R.Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules, 2006, 7, 3345-3355.
    
    33. Hsieh C. Y., Tsai S. P., Wang D. M., Chang Y. N., Hsieh H. J. Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials, 2005,26, 5617-5623.
    
    34.蒋挺大,甲壳素,北京:化学工业出版社,2003,pp1-340.
    
    35. Gao Q., Wan A., Zhang Y. Effect of Reacetylation and Degradation on the Chemical and Crystal Structures of Chitosan.J.Appl.Polym.Sci.,2007,104,2720-2728.
    36.Ogawa K.,Hirano S.,Miyanishi T.,Yui T.,Watanabe T.A new polymorph of chitosan.Macromolecules,1984,17,973-975.
    37.Sakurai K.,Shibano T.,Kimura K.,Takahashi T.Crystal structure of chitosan Ⅱ.Molecular packing in unit cell of crystal.Sen-I Gakkaishi,1985,41,T-361.
    38.Samuels R.J.Solid-state characterization of the structure of chitosan films.J.Polym.Sci.Polym.Phys.,1981,19,1081-1105.
    39.Ogawa K.,Yui T.,Okuyama K.Three D structures of chitosan,Int.J.Biol.Macromol.,2004,34,1-8.
    40.Okuyama K.,Noguchi K.,Miyazawa R.,Yui T.,Ogawa K.Molecular and crystal structure of hydrated chitosan.Macromolecules,1997,30,5849-5855.
    41.Yui T.,Imada K.,Okuyama K.,Obata Y.,Suzuki K.,Ogawa K.Molecular and crystal-structure of the anhydrous form of chitosan.Macromolecules,1994,27,7601-7605.
    42.Yui T.,Ogasawara T.,Ogawa K.Miniature crystal models of the anhydrous form of chitosan.Macromolecules,1995,28,7957-7958.
    43.Cho Y.W.,Jang J.,Park C.R.,Ko S.W.Preparation and Solubility in Acid and Water of Partially Deacetylated Chitins.Biomacromolecules,2000,1,609-614.
    44.Minke R.,Blackwell J.The structure of α-chitin.J.Mol.Biol.,1978,120,167-181.
    45.Muzzarelli R.A.A.Chitin.Oxford:Pergamon Press,1977,pp105.
    46.贾之慎,李秀玲.酸碱电导滴定法测定壳聚糖脱乙酰度,分析化学,2002,30(7),845-848.
    47.Pelletier A,Lemire I,Sygusch J,Chornet E,Overend RP.Chitin/chitosan transformation by thermo-mechano-chemical treatment including characterization by enzymic depolymerization.Biotechnol.Bioeng.,1990,36,310-315.
    48.Miya M,Iwamoto R,Yoshikawa S,Mima S.I.R.spectroscopic determination of CONH content in highly deacylated chitosan.Int.J.Biol.Macromol.,1980,2,323-324.
    49. Baxter A, Dillon M, Taylor KD, Roberts GAF. Improved method for I.R.determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol.,1992, 14, 166-169.
    
    50. Muzzarelli R. A. A., Rochetti R. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym.,1985,5,461-472.
    
    51. Zhang Y., Xue C., Xue Y., Gao R., Zhang X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diDraction, Carbohydr. Res.,2005,340,1914-1917.
    
    52. Rinaudo M., Dung L. P., Gey C., Milas M. Substituent distribution on O,N-carboxymethylchitosans by ~1H and ~(13)C NMR. Int. J. Biol. Macromol., 1992, 14,122-128.
    
    53. Saito H., Tabeta R., Ogawa K. High-resolution solid-state ~(13)C NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent ~(13)C chemical shifts. Macromolecules, 1987, 20, 2424-2430.
    
    54. Guinesi L. S., Cavalheiro E. T. G. the use of DSC curves to determine the acetylation degree of chitin/chitosan samples, Thermochim. Acta, 2006, 444,128-133.
    
    55. Zhang Y, Xue C., Li Z., Zhang Y., Fu X. Preparation of half-deacetylated chitosan by forced penetration and its properties, Carbohydr. Polym., 2006, 65,229-234.
    
    56. Tolaimatea A., Desbrieres J., Rhazi M., Alagui A. Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer,2003, 44, 7939-7952.
    
    57. Weska R. F., Moura J. M., Batista L. M., Rizzi J., Pinto L. A. A. Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. J. Food Eng., 2007, 80, 749-753.
    
    58. Beaney P. D., Gan Q., Magee T. R. A., Healy M., Mendoza J. L. Modification of chitin properties for enzymatic deacetylation. J. Chem. Technol. Biotechnol., 2007,82,165-173.
    
    59. Galed G, Miralles B., Panos I., Santiago A., Heras A. N-Deacetylation and depolymerization reactions of chitin/chitosan: Influence of the source of chitin,Carbohydr. Polym., 2005, 62, 316-320.
    
    60. Tolaimatea A., Desbrieres J., Rhazi M., Alagui A., Vincendond M., Vottero P. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 2000, 41, 2463-2469.
    
    61. Kurita K, Tomita K, Tada T, Ishii S, Nishimura SI, Shimoda K. Beta-chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. J. Polym. Sci. Part A, 1993, 31, 2393-2395.
    
    62. Sannan T., Kurita K., Iwakura Y. Effect of Deacetylation on Solubility. Makromol.Chem., 1976, 177, 3589-3600.
    
    63. Morley K. L., Chauve G., Kazlauskas R., Dupont C., Shareck F., Marchessault R.H. Acetyl xylan esterase-catalyzed deacetylation of chitin and chitosan.Carbohydr. Polym., 2006, 63, 310-315.
    
    64. Lamarque G., Viton C., Domard A. Comparative Study of the First Heterogeneous Deacetylation of a- and P-Chitins in a Multistep Process. Biomacromolecules,2004,5,992-1001.
    
    65. Lamarque G., Viton C., Domard A. Comparative Study of the Second and Third Heterogeneous Deacetylations of a- and P-Chitins in a Multistep Process.Biomacromolecules, 2004, 5, 1899-1907.
    
    66. Ottsy M. H., Virum K. M., Smidsred O. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr. Polym., 1996, 29,17-24.
    
    67. Varum K. M, Anthonsen M. W., Grasdalen H., Smidsrod O. ~(13)C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans).Carbohudr. Res., 1991, 217, 19-27.
    
    68. Varum K. M., Antohonsen M. W., Grasdalen H., Smidsrod O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohudr.Res.,1991,211, 17-23.
    69. Ng C. H., Hein S., Ogawa K., Chandrkrachang S., Stevens W. F. Distribution of D-glucosamine moieties in heterogeneously deacetylated cuttlefish chitin. Carbohydr. Polym., 2007, 69, 382-390.
    
    70. Aiba S. Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int. J. Biol. Macrom.,1991,13,40-44.
    
    71.何曼君,高分子物理,上海:复旦大学出版社,2004,pp152-184.
    
    72. Schatz C, Viton C, Delair T., Pichot C., Domard A. Typical Physicochemical Behaviors of Chitosan in Aqueous Solution. Biomacromolecules, 2003, 4,641-648.
    
    73. Brugnerotto J., Desbrieres J., Roberts G., Rinaudo M. Characterization of chitosan by steric exclusion chromatography. Polymer, 2001, 42, 9921-9927.
    
    74. Carpozza R. C. Solution of poly-(N-acetyl-D-glucosamine). U.S. Patent 3,989,535,1976.
    
    75. Vincendon M. Solution of chitin in phosphoric acid. In: Karniki SZ, editor. Chitin world. Bremerhaven, Germany: Wirtschaftsverlag NW. 1994, pp91-97.
    
    76. Gagnaire D., Saint-Martin J., Vincendon M. NMR studies of chitin and chitin derivatives. Makromol. Chem. 1982,183, 593-601.
    
    77. Vincendon M. ~1H NMR study of the chitin dissolution mechanism. Makromol.Chem., 1985, 186, 1787-1795.
    
    78. Capozza R. C. Spinning and shaping poly(N-acetyl-D-glucosamine). U.S. Patent 3,988,411,1976.
    
    79. Austin PR. Chitin solvents and solubility parameters. In: Zikakis JP, editor. Chitin and chitosan and related enzymes. Orlando: Academic Press, Inc. 1984,pp227-237.
    
    80. Austin PR. Purification of chitin. U.S. Patent 3,879, 377, 1975.
    
    81. Rossle M., Flot D., Engel J., Burghammer M., Riekel C., Chanzy H. Fast intracrystalline hydration of B-chitin revealed by combined microdrop generation and on-line synchrotron radiation microdiffraction. Biomacromolecules, 2003, 4,981-986.
    82.Agboh O.C.,Qin Y.Chitin and Chitosan Fibers.Polym.Advan.Technol.,1996,8,355-365.
    83.吴清基,刘世英,张敏.甲壳质缝合线的制备与研究.中国纺织大学学报,1998,254,5,18-22.
    84.Kurita,K.,Kamiya,M.,Nishimura,S.Solubilization of a rigid polysaccharide-controlled partial N-acetylation of chitosan to develop solubility.Carbohydr.Polym.,1991,16,83-92.
    85.Kubota N.,Eguchi Y.Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility.Polym.J.,1997.29,123-127.
    86.Baxter S.,Zivanovica S.,Weiss J.Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan.Food Hydrocolloid.,2005,19,821-830.
    87.Kurita K.,Ikeda H.,Yoshida Y.,Shimojoh M.,Harata M.Chemoselective protection of the amino groups of chitosan by controlled phthaloylation:Facile preparation of a precursor useful for chemical modifications.Biomacromolecules,2002,3,1-4.
    88.Nordtveit R.J.,Varum K.M.,Smidstrod O.Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme.Carbohydr.Polym.,1996,29,163-167.
    89.Wang W.,Du Y.,Qiu Y.,Wang X.,Hu Y.,Yang J.,Cai J.,Kennedy J.F.A new green technology for direct production of low molecular weight chitosan.Carbohydr.Polym.,2008.74,127-132.
    90.Wasikiewicz J.M.,Yoshii F.,Nagasawa N.,Wach R.A.,Mitomo H.Degradation of chitosan and sodium alginate by gamma radiation,sonochemical and ultraviolet methods.Radiat.Phys.Chem.,2005,73,287-295.
    91.Yue W.,Yao P.,Wei Y.,Li S.,Lai F.,Liu X.An innovative method for preparation of acid-free-water-soluble low-molecular-weight chitosan(AFWSLMWC),Food Chem.,2008,108,1082-1087.
    92.Roncal T.,Oviedo A.,de Armentia I.L.,Fernandez L.,Villaran M.C.High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res., 2007, 342,2750-2756.
    
    93. Sashiwa H., Yamamori N., Ichinose Y., Sunamoto J., Aiba S. I. Michael reaction of chitosan with various acryl reagents in water. Biomacromolecules, 2003, 4,1250-1254.
    
    94. Hirano S., Moriyasu T. N-(Carboxyacyl)chitosan. Carbohydr. Res., 1981, 92,323-327.
    
    95. Yamaguchi R., Arai Y, Itoh T., Hirano S. Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohydr. Res., 1981, 88, 172-175.
    
    96. Naoji K. N., Tatsumoto N., Sano T., Toya K. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res., 2000, 324,268-274.
    
    97. Muzzarelli R. A. A., Tanfani F., Mariotti S., Emanuelli M. Preparation and characteristic properties of dihthiocarbamate chitosan, A chelating chitosan.Carbohydr. Res., 1982, 2, 235-243.
    
    98. Muzzarelli R. A. A., Tanfani F. The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydr. Polym., 1985, 5, 297-307.
    
    99. Tong P., Baba Y, Adachi Y, Kawazu, K. Adsorption of metal-ions on a new chelating ion-exchange resin chemically derived from chitosan. Chem. Lett.,1991,9,1529-1532.
    
    100.Park J. H., Cho Y. W., Chung H., Kwon I. C., Jeong S. Y. Synthesis and characterization of sugar-bearing chitosan derivatives: Aqueous Solubility and Biodegradability. Biomacromolecules, 2003, 4,1087-1091.
    101.Murata J. I., Ohya Y. C., Ouchi T. Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool. Carbohydr.Polym., 1996,29,69-74.
    102.Huang R. H., Chen G. H., Sun M. K., Hu Y. M., Gao C. J. Preparation and characterization of quaternized chitosan/poly(acrylonitrile) composite nanofiltration membrane from epichlorohydrin cross-linking. Carbohydr. Polym.,2007,70,318-323.
    103.Notin L.,Viton C.,Lucas J.M.,Domard A.Pseudo-dry-spinning of chitosan.Acta Biomater.,2006,2,297-311.
    104.El-Tahlawy K.,Hudson S.M.Chitosan:Aspects of fiber spinnability.J.Appl.Polym.Sci.,2006,100,1162-1168.
    105.Cai J.,Zhang L.,Zhou J.,Qi H.,Chen H.,Kondo T.,Chen X.,Chu B.Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties.Adv.Mater.,2007,19,821-825.
    106.Ruan D.,Zhang L.,Lue A.,Zhou J.,Chen H.,Chen X.,Chu B.,Kondo T.A Rapid Process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system.Macromol.Rapid Commun.,2006,27,1495-1500.
    107.Cai J.,Zhang L.,Chang C.,Cheng G.,Chen X.,Chu B.Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/ urea solution at low temperature.ChemPhysChem,2007,8,1572-1579.
    108.Lue A.,Zhang L.,Ruan D.Inclusion complex formation of cellulose in NaOH-thiourea aqueous system at low temperature.Macromol.Chem.Phys.,2007,208,2359-2366.
    109.Sannan T.;Kurita K.;Iwakura Y.Studies on chitin.Makromol.Chem.,1975,176,1191-1195.
    110.Einbu A.,Naess S.N.,Elgsaeter A.,Varum K.M.Solution Properties of Chitin in Alkali.Biomacromolecules,2004,5,2048-2054.
    111.Hu X.,Du Y.,Tang Y.,Wang Q.,Feng T.,Yang J.,Kennedy J.F.Solubility and property of chitin in NaOH/urea aqueous solution.Carbohydr.Polym.,2007,70,451-458.
    112.Zhou D.;Zhang L.;Zhou J.;Guo S.Cellulose/chitin beads for adsorption of heavy metals in aqueous solution.Water.Res.,2004,38,2643-2650.
    113.Liang S.,Zhang L.,Xu J.Morphology and permeability of cellulose/chitin blend membranes.J.Membr.Sci.,2007,287,19-28.
    114.吕佳,胡巧玲,沈家骢.三维壳聚糖材料中水的状态与其性能的关系.高分子学 报,2006,11,5,1019-1024.
    115.Weska R.F.,Moura J.M.,Batista L.M.,Rizzi J.,Pinto L.A.A.Optimization of deacetylation in the production of chitosan from shrimp wastes:Use of response surface methodology.J.Food Eng.,2007,80,749-753.
    116.Min B.M.,Lee,S.W.,Lim J.N.,You Y.,Lee T.S.,Kang,P.H.Parkb W.H.Chitin and chitosan nanofibers:electrospinning of chitin and deacetylation of chitin nanofibers.Polymers,2004,45,7137-7142.
    117.Noishiki Y.,Takami H.,Nishiyama Y.,Wada M.,Okada S.,Kuga S.Alkali-Induced Conversion ofβ-Chitin to α-Chitin.Biomacromolecules,2003,4,896-899.
    118.Feng F.,Liu Y.,Hu K.Influence of alkali-freezing treatment on the solid state structure of chitin.Carbohydr.Res.,2004,339,2321-2324.
    119.Liu Y.,Liu Z.,Pan W.,Wu Q.Absorption behaviors and structure changes of chitin in alkali solution.Carbohydr.Polym.,2008,72,235-239.
    120.方开泰,马长兴.正交与均与试验设计,北京:科学出版社,2001,pp1-51.
    121.盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,2001.12:447-454.
    122.Takai M.,Shimizu Y.,Hayashi J.In Chitin and Chitosan;Skjakbreak,G.,Anthonsen,T.,Sandford,P.,Eds.;London:Elsevier Science.1989,pp 431-436.
    123.Hudson S.M.,Smith C.Polysaccharides:chitin and chitosan.Chemistry and technology of their use as structural materials,in Biopolymers From Renewable Resources,ed.by Kaplan DL.Berlin:Springer-Verlag.1998,pp96-118.
    124.Rempe S.B.,Pratt L.R.,Hummer G.,Kress J.D.,Martin R.L.,Redondo A.The hydration number of Li+ in liquid water.J.Am.Chem.Soc.,2000,122,966-967.
    125.Hunt J.P.,Friedman H.L.Aquo complexes of metal-ions.Prog.Inorg.Chem.1983,30,359- 387.
    126.Saito Y.,Okano T.,Gaill F.,Chanzy H.,Putaux J.-L.Structural data on the intra-crystalline swelling ofβ-chitin.Int.J.Biol.Macromo.,2000,28,81-88.
    127.Fan M.,Hu Q.L.Chitosan-LiOH-urea aqueous solution— a novel water-based system for chitosan processing. Carbohydr. Res., 2009,doi:10.1016/j.carres.2009.03.002
    128.Fan M., Hu Q.L. Preparation and structure of chitosan soluble in wide pH range. Carbohydr. Polym., 2009, doi:10.1016/j.carbpol.2009.03.031
    129.Tuckerman M. E., Marx D., Parrinello M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature, 2002,417, 925-929.
    130.Wada M., Saito Y. Lateral thermal expansion of chitin crystals. J. Polym. Sci.Polym. Phys., 2001, 39, 168-174.
    131.Vasanthan N., Shin I. D., Tonelli A. E. Structure, conformation, and motions of poly(ethylene oxide) and poly(ethylene glycol) in their urea inclusion compounds.Macromolecules, 1996, 29, 263-267.
    132.Graber T. A., Morales J. W., Robles P. A., Galleguillos H. R., Taboada M. E.Behavior of LiOH·H_2O crystals obtained by evaporation and by drowning out.Cryst. Res. Technol., 2008,43, 616-625.
    133.Li J., Revol, J. F., Marchessault, R. H. Effect of degree of deacetylation of chitin on the properties of chitin crystallites. J. Appl. Polym. Sci., 1997, 65, 373-380.
    134.Marechal Y., Chanzy H. (2000). The hydrogen bond network in 1_β cellulose as observed by infrared spectrometry. J. Mol. Struct., 523,183-196.
    135.Ngono Y, Marechal Y, Mermilliod N. Epoxy-amine reticulates observed by infrared spectrometry. I: Hydration process and interaction configurations of embedded H_2O molecules. J. Phys. Chem. B, 1999, 103, 4979-4985.
    136.Blackwell J. Physical methods for the determination of chitin structure and conformation. In Methods in Enzymology. San Diego: Academic. 1988,pp.435-442.
    137.Focher B., Naggi A., Torn G, Cosanni A., Terbojevich M. Chitosans from euphausia superba. 2: Characterization of solid state structure. Carbohydr. Polym.,1992,18,43-49.
    138.Varum K. M., Antohonsen M. W., Grasdalen H. Smidsrod O. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohudr. Res., 1991,211,17-23.
    139.Rinaudo M., Pavlov G, Desbrieres J. Solubilization of chitosan in strong acid medium. Int. J. Polym. Anal. Ch., 1999, 5, 267-276
    140.Kumar M. N. V. R. A review of chitin and chitosan applications. React. Funct.Polym., 2000,46, 1-27.
    141.Fangkangwanwong J., Akashi M., Kida T., Chirachanchai S.Chitosan-Hydroxybenzotriazole Aqueous Solution: A Novel Water-Based System for Chitosan Functionalization. Macromol. Rapid Commun., 2006, 27, 1039.
    142.Kubota N., Tatsumoto N., Sano T., Toya K. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents.Carbohydr. Res., 2000, 324, 268-274.
    143.Hasegawa M., Isogai A., Onabe F., Usuda M. (1992). Dissolving states of cellulose and chitosan in trifluoroacetic acid. J. Appl. Polym. Sci., 45, 1857-1863.
    144.Eaton P., Vasanthan N., Shin I. D., Tonelli A. E. Formation and characterization of polypropylene urea inclusion compounds. Macromolecules, 1996, 29,2531-2536.
    145.Harada A., Kamachi M. Complex-formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 1990, 23, 2821-2823.
    146.Knill C. J., Kennedy J. F. Degradation of cellulose under alkaline conditions.Carbohydr. Polym., 2003, 51, 281-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700