用户名: 密码: 验证码:
几类特殊随机环境下的马氏过程的统计问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为特殊的Markov过程,生灭过程,分支过程常常被用来模拟生物学,运筹学,人口统计学,工程学,经济学中的随机现象。许多数学家,生物学家,工程师等对此进行了大量的研究,建立了各种各样的模型,得到了很多深刻有趣的结果。然而,还有许多问题有待进一步研究,如转移概率分布的刻画,过程的随机模拟,部分观测样本下的统计推断,随机环境下的生灭,分枝过程等。
     本篇论文由相互独立又有联系的四部分组成。在第一部分中,我们主要讨论一类特殊的线性生灭过程—移入-生灭过程。这部分包括第一章和第二章。第一章我们利用矩母函数给出了三个精确而优美的转移概率公式。这些公式对生灭过程的随机模拟与统计推断非常有用。第二章,我们给出两种抽样方式下的最大似然估计—给定区间上的连续抽样与等间隔抽样,并利用随机模拟方法讨论估计的分布性质。
     第二部分,我们讨论另一类特殊的具有交互作用的非线性二维生灭过程—随机捕食-被捕食模型。这部分包括第三,四章。在第三章,我们建立了一类新的随机捕食-被捕食模型,并证明了新模型在平均意义上与经典的捕食-被捕食模型的等价性,讨论了其灭绝性,平衡态分布等。在第四章,我们给出了随机捕食-被捕食模型参数的最大似然估计,然后利用随机模拟方法讨论估计的分布性质。
     第三部分,即第五章,我们讨论随机环境下的移入-移出-生灭过程。在这一部分,我们将经典的生灭过程理论推广到了随机环境下,证明了对任意给定随机环境移入-移出-生灭密度矩阵q,当生率小于死率时,存在一个唯一的随机环境下的q过程—(?)(θ~*(0);t)和随机环境下的移入-移出-生灭过程(X~*,ζ~*),使得(X~*,ζ~*)严平稳,遍历,其随机转移阵为(?)(θ~*(0);t)。
     第四部分,我们讨论随机环境下的分枝链。这部分包括第六章,第七章。在第六章,我们定义了各种条件多元概率母函数,并利用条件多元概率母函数这一强有力工具研究随机环境中r-维分支链的性质,给出了其协方差阵的精确计算公式。在第七章,我们定义了随机环境中r-维分支链的Laplace泛函,讨论了随机环境中r-维分支链的各种矩问题。
A variate of phenomenon in a variate fields, such as biology, operation research, demography, economics, and engineering, can be well modeled by birth-death processes and branching processes. At the same time, the richness of the theory of birth-death process provides standard analytical methods to investigate numerous important quantities in general stochastic process and practice, such as stationary distribution, mean first passage time, etc. Motivated by this, a lot of mathematicians, biologists, engineers, etc., have made great efforts in it. Nevertheless, a lot of issues are still in the way being solved.This thesis consists of four parts. In part Ⅰ (Chapter 1-2), we focuss on investigating a special linear population process—immigration-birth-death process. First, in Chapter 1, we provide some exact, elegant formulae of the transition distribution of immigration-birth-death process by moment generating function. They are very useful in simulation and statistical inference. Second, in Chapter 2, by the exact descriptions we obtained, the maximum likelihood estimation under two sampling schemes: complete observation and equidistant observation, are given and in the end, simulations are carried out to test the bias and efficiency of our estimators.In part Ⅱ (Chapter 3-4), we deal with another special interesting nonlinear population process—prey-predator process. First, in Chapter 3, a two-dimensional interacting birth-death process is established and by means of two-dimensional moment generating function, the equivalence in mean between our model and the classic prey-predator model are proved. Also, in Chapter 4 chapter, using the properties of stochastic prey-predator model, the maximum likelihood inference under two sampling schemes are given and simulations are carried out.In part Ⅲ (Chapter 5 ), the theory of classic birth-death process is generalized to random environment. Our main result is for any immigration-emigration birth and death matrix random environment, q, with birth rate
    less than death rate, there are a unique q-process in random environment P(9*(0);t) and a bi-immigration birth and death process in random environment (X*,f) with random transition matrix P(9*{Q);t) such that P(9*(0);t) is ergodic and X* is a strictly stationary process.In part IV (Chapter 6-7), we discuss r-dimension branching chains in random environment. First, in Chapter 6, we define some probability generating functions in random environment and use them to give a exact formula of the the covariance matrix of r-dimension branching chains in random environment. Second, in Chapter 7, we define the Laplace functional of r-dimension branching chains in random environment and then discuss the moments of r-dimension branching chains in random environment.
引文
[1] W. J. Anderson , Continuous-time Markov Chains: An Applications-Oriented Approach, 1991, Springer-Verlag.
    [2] U. D. Ancona, The struggle of existence, 1954, E. J. Brill, Londen.
    [3] K. B. Arthreya and S. Karlin, On branching processes with random environment, I Extinction probabilities, Ann.Math.Statist, 1970, 42, 1499-1520.
    [4] K. B. Arthreya and S. Karlin, On branching processes with random environment. Ⅱ: limit thoerems. Ann.Math.Statist, 1971, 42, 1843-1858.
    [5] N. T. J. Bailey, the mathematical theory of infectious diseases and its applications, 2003, London: Griffin.
    [6] R. B. Banks, Growth and diffusion phenomena : mathematical frameworks and applications, 1994, Springer-Verlag.
    [7] V. D. Barnett, the Monte-Carlo solution of a competing species problem. Biometrics, 1962, 18 , 76-103.
    [8] M. S. Barnett, On the theoretical models for competive and predator biological systems. Biometrika, 1957, 44, 27-42.
    [9] N. G. Becker, M. H. Abraham, Estimation in Epidemics with Incomplete Observations, Journal of the Royal Statistical Society, Series B, 1997 , 59 , 415-429.
    [10] N. T. Bailey, the mathematical theory of infectious diseases and its applications, 2004, London: Griffin.
    [11] N. G. Beker, On Lotka-Volterra predator models, J. Appl. Prob, 1997, 45, 375-381.
    [12] N. G. Becker and M.H. Abraham, Esitimation in epidemics with incomplete observations, J. R. Statist. Soc. B, 1997, 59, 415-429.
    [13] C. Ben, P. Phil, The extinction timn of a gerneral birth and death process with catastrophes, Applied Probability Trust, 2004, 19, 1-9.
    [14] P. J. Brockwell, Birth, immigration and catastrophe processes. Adv, Appl. Prob, 1982, 14 , 709-731.
    [15] O. Changeyuck, Approximation to the likelihood estimate in some pure birth processes, Biometrika, 1991, 78 , 295-299.
    [16] L. Chen, Advanced Topics in biomathematics, 1997, Word Scientific Press.
    [17] S. Chessa and H. F. Yashima, The stochastic equation of predator-prey popula- tion dynamics(Italian). BOH. Unione Mat. Ital. Sez. B Artic. Ric. Math. 2002, 5 , 789-804.
    [18] Y. J. Choi and N.C. Severo, An approximation for the maximu likelihood estiamtor of the infection rate in the simple stochastic epidemic, Biometrika, 1990, 75, 392-394.
    [19] P. Clifford, G. Wei, J. F. Feng Reconstructing a population processes from mortality data, preprint.
    [20] P. Clifford, G. Wei, J. F. Feng The exact likelihood of a simple populaiton process given only the times of death, preprint.
    [21] P. Clifford, G. Wei, The equivalence of the Cox process with squared radial Ornstein-Uhlenbeck intensity and the death process in a simple population model, The Annals of Applied Probability, 1993, 3 , 863-873.
    [22] R. Cogburn, Markov chains in random environments. The case of Markovian environmet, Ann. Probab, 1980, 8 , 908-916.
    [23] R. Cogburn, The ergodic theorey of Maikov chains in random environmets, Z.Wahrach. View. Grbiete, 1984, 66, 109-128.
    [24] R. Cogburn, On direct convergence and periodicity for transiton probability of Markov chains in random environmets, Ann. Probab, 1990, 18 , 642-654.
    [25] R. Cogburn , On the central limit theorem for Markov chains in random environments, Ann. Probab, 1991, 19, 587-604.
    [26] D. R. Cox, H. D. Miller, The Theory of Stochastic Processes, Spottiswoode, 1965, Ballantyne & Co. Ltd, London and Colchester.
    [27] M. Delheli and D. J. Gendien, A simple genetic model with non-equilibrium dynamics, J. Math. Biol, 2000, 36, 550-556.
    [28] A. Dembo, Large deviations techniques and applications, 1998, New York : Springer.
    [29] R. Durrett and H. Kesten, Random walks, Brownian motion, and interacting particle systems : a festschrift in honor of Frank Spitzer, 1991, Boston : Birkhauser.
    [30] 方开泰,张尧庭.广义多元分析(M),1985,北京:科学出版社,.
    [31] G. Fayolle, R. Iasnogorodski and V. Malyshev, Random walks in the quarter plane: algebraic methods, boundary value problems, and applications, 1999, Berlin; New York: Springer.
    [32] H. Z. Freedman and R. M. Mahtesn, Persistence in predator-prey systems with ratio-dependent predator influence, Bull. Math.Biol, 1993, 4(55), 817-827.
    [33] M.L. Gree, A. Krinik etc, Transient probability functions: A sample path approach. 2003, AC, 127-136.
    [34] D. Gross, D. Miller, The Randomization Technique as a Modeling Tool and Solution Procedure for Transient Markov Processes, Operations Research. 1984, 32, 343-381.
    [35] A. Gerold, On the Galton-Watson prey-predator process, 1993, 3, 198-211.
    [36] A. Hatsings, Populations biology: Concepts and models, 1997, Springer.
    [37] S. E. Hitchcock, Extinction probabilites in predator-prey models, J. Appl. Prob. 1986, 23, 1-13.
    [38] C. P. Ho and K. S. Lin, Global stability for a class of prey-predator moldel with ration-dependence, Tun Hai Science, 2001, 3, 113-133.
    [39] L. L. Hoffman, Characterizing Linear Birth and Death Processeses, Journal of the American Statistical Association, 1992, 87,1183-1187.
    [40] P. Hogate, On stochastic predator-prey models, Proc. 9th. Internat, BIometric Conf Ⅱ, 1996, 351-365.
    [41] D. H. Hu, The theorey of denumeralbe Markov Processes, 1983, Wuhan University press.
    [42] D. H. Hu, The construction of Markov processes in random environments and equivlaence theorem, Science in China (Series A), 2004, 47, 481-496.
    [43] D. H. Hu, The existence and uniqueness of q-process in random environment, Science in China (Series A), 2004, 47, 641-658.
    [44] D. H. Hu, The consruction of denumerable q-process in random environments, preprint.
    [45] D. H. Hu, The basic concepts and existence of birth and death process in random environment, J. Wuhan Univ, 2003, 49, 1-5.
    [46] D. H. Hu and S. L. Zhang, The Ergodicity for Bi-immigration Birth and Death Processes in Random Environment, Wuhan Univ. J., 2005, 5.
    [47] D. H. Hu, The exixtence and moments of canonical branching chain in random environment, Acta Math. Sci., 2004, 24, 499-508.
    [48] D. H. Hu, The construction of Multitype canonical Markov branching process chains in random environments, preprint.
    [49] A. D. James, Large deviation techniques in decision, simulation, and estimation, 1990, New York : Wiley.
    [50] S. Karlin and H. M. Taylor, A Second Course in Stochastic Processeses, 1981, Academic Press, New York.
    [51] S. Karlin and S. Tavare, Linear birth and death processes with killing. J.Appl. Prob, 1982,19 , 447-487.
    [52] N. Keiding, Maximum Likehood Estimation in the Birth-and-Death Processes, The Annals of Statistics, 1975, 3 , 363-372.
    [53] R. Z. Khaminskii, F. C. Klebaner, Long term behaviour of solutions of the Lotaka-VOlterra systems under small pertubatios, Ann. Appl. Proba. 2001, 11, 953-963.
    [54] R. Z. Khaminskii, F. C. Klebaner, Some Results on the Lotka-VOlterra Model and its Small Random Pertumbations, Acta Appllicandae Mathtmaticae, 2003, 78 , 201-206.
    [55] Y. Kiefer, Limit theorems for random transformations and processes in random environments, Tran. Amer.Math.Soci., 1998, 45 , 1481-1518.
    [56] M. Kimmel, Branching processes in biology, 2002, Springer, New York .
    [57] K. J. Kirchberg, Genetic model optimization for Hausdorff distance-based face lacalization, In proc. Interantionsl ECCV 2002 workshop on Biometric Anthen-tication, 2002, Springer, Lncs-2359, 103-111.
    [58] F. C. Klebaner and R. Liptser, Asymptitic analysis and extinction in a stochastic Lotka-Volterra Model, Acta Appllicandae Mathtmaticae, 2003, 78 , 201-206.
    [59] V. N. Kolokoltsov, Semiclassical analysis for diffusions and stochastic processes, 2000, Berlin ; New York : Springer.
    [60] S. C. Kou and S.G.Kou Modeling growth stocks via birth-death processes. Adv.App. Prob, 2003, 35, 641-664.
    [61] M. Kot, Elements of mathematical ecology, 2001, Cambridge.
    [62] E. G. Kyriakidis, Transient solution for a simple immigration birth-death catastrophe process, Probability in the Engineering and Informational Sciences, 2004, 18 , 233-236.
    [63] N. V. Krylov, Introduction to the theory of diffusion processes, American Mathematical Society, 1995, 51, 368-391.
    [64] Lotka, Undamped oscilates derived from the law of mass actions , J. Amer, Chem, Soc, 1920, 42, 1595-1599.
    [65] S. M. Manjunath. Optimal sequential estimation ofr ergodic birth-death processes, J.R. Statist. Soc. B, 1984,46 , 412-418.
    [66] C. Maohasa, Transient probabilites functions of finite birth-death process, Master Thesis, 2003, California State University, California.
    [67] B. Matej and C. Jozef, Real Time Simultion of Random Processes, 1981, VDI-Verlag GmbH, Germany.
    [68] L. Medhi, Stochastic Model in Queueing Theory, 2003, second edtion, Academic Press, Amsterdam.
    [69] S. M. Moghadas and A. B. Gumel, An epidemic model for the transmission dynamics of HIV and another pathogen, ANZIAM ,J. 2003, 45 , 181-193.
    [70] D. D. Mooney, R. J. Swift, A Course in Mathematical Modeling. The Mathematical Association of America, 1999, Washington D.C.
    [71] D. Mukherrjee, Uniform persistence in a generalized prey-predator model with parasite infection, Biosystem, 1998, 45, 149-155.
    [72] D. Mukherrjee, persistence in a prey-predator model with disase in the prey, J. Biol System, 2003, 11 , 101-112.
    [73] J. D. Murray, Mathmatical Biology Ⅰ: Introduction, 2002, 3rd edition, Springer Press.
    [74] J. D. Murray, Mathmatical Biology Ⅱ: Spatial Models and Biomedical Applications, 2002, 3rd edition, Springer Press.
    [75] K. Nawrotaki, Discrete open system of Markov chains in random environment, Ⅰ,Ⅱ, J. Inform. Process, 1982, 18, 83-98.
    [76] S. Orey , Markov chains with stochastically stationray transiton probabilities, Ann. Probab, 1991, 19, 907-928.
    [77] J. S. Randall, A stochastic prey-predator model. Irish Math. Soc. Bulletin, 2002, 48 , 57-63.
    [78] D. Reguera, J.M.G.Vilar, J.M.Rubi, Statistical mechanics of biocomplexity, 1998, Springer.
    [79] E. Renshaw , Birth, Death and Migration Processeses, Biometrika, 1972, 59, 49-60.
    [80] P. R é v é sz, Random walks of infinitely many particles, 1994, Singapore, River Edge, NJ : World Scientific, c.
    [81] C. J. Ridler-Row, Extinticon times for certain prey-predator process, J. Appl. Prob, 1988, 25, 612-616.
    [82] G. Rouzbch and R. Ejlehadi, A history-dependence stochastic predator-prey model: chaos and its eliminations, J.Math.Anal.Appl, 2004, 258 , 650-673.
    [83] R. Ryszard, Long-time behaviour of a stochastic prey-predator model, Stochastic processes and their applications, 2003, 108, 93-107.
    [84] R. B. Schinazi, On the importance of risky behavior in the transimmition of sexually transmitted disease, Mathematical Bioscience, 2001, 173 , 25-33.
    [85] R. B. Schinazi, Horizontal versus Vertical transmission of parasites in a sotch- asitc spatial model, Mathematical Bioscience, 2000, 168 , 1-8.
    [86] R. B. Schinazi, On the rolde of reinfection in the transimisission of infectious disease, preprint.
    [87] F. Spitzer, Principles of random walk, 2001, New York : Springer.
    [88] J. R. Swift and H. C. Tuckwell, Elementary Applications of Probability Theory , 1995, Chapman Hall, London .
    [89] W. A. Rida, Asymptotic properties of some estimators for the infection reate in general stochastic epidemic model, J. R. Statstc. Soc. B., 1991, 53 , 269-283.
    [90] M. M. Rao, Stochastic processes : inference theory, 2000, Kluwer Academic Publishers, Boston, c.
    [91] M. J. Rhelan, Asymptotic likelihood estimation from birth and death on a flow, Th Annals of Statistics, 1999, 30 , 1161-1184.
    [92] D.N. Shanbhag, C.R. Rao, Stochastic processes : modelling and simulation, 2003, Elsevier, Boston.
    [93] R. H. Smith and R. Mead, Age structure and stability in models of predatorprey systems. Theoret. Popn Biol, 1974, 6,308-322.
    [94] R. H. Smith and R. Mead, On predicting extinction im simple population models Ⅰ. Stochatis linearzation. J. Theroret Biol, 1980, 80, 189-203.
    [95] G. Takimoto, A determinstic genetic model for symptotic speciation by sexual selection, 2000, 6, 1870-1881.
    [96] H. M. Taylor and S. Karlin, An introduction to stochatic modelling, 1982, Orland, Academic Press.
    [97] E. A. Van Doom and A. I. Zeifman, Birth-death process with killing. 2004, preprint.
    [98] E. A. Van Doom and A. I. Zeifman, Extinction probability in a birth-death processes with killing, 2004, preprint.
    [99] V. Volterra, Variazionie fulttuasioni del numero d'inviui in specie animali conviventi. Mem. Acad. Lincei., 1926, 2, 101-113.
    [100] N. R. Wasmima, Asymptotic properties of some estimator for the infections rate in the general stochasic epidemic model, J.R. Statist. Soc. B, 1991, 53, 269-283.
    [101] G. Wei, P. Clifford and J. F. Feng, On Population Sequences and Cox Processes Driven by Interacting Feller Diffusions, J. Phys. A: Math, 2002, 35, 9309-9331.
    [102] G. Wei, S. L. Zhang and Y. Z. Sun, Analysis and Simulation for Linear Population Processes, submmited.
    [103] 魏正红,张术林,日交易量与股票日收益GARCH效应,运筹与管理,2005,5.
    [104] E. W. Weissner Multiype branching processes in a random environment(J). Adv. Appl. Probab., 1981, 13, 464-497.
    [105] Y. Xiao and L. Chen, Modeling and analysis of predator-prey model with disease in the prey, Math. Biosci, 2001, 171, 59-82.
    [106] Y. Xiao and L. Chen, Analysis of a three species Eco-Epidemiological model, J.Math.Anal.Appl, 2001, 258, 733-754.
    [107] S. L. Zhang, Stochastic Prey-Predator Models, submmited.
    [108] S. L. Zhang, Statistical Inference for Prey-Predator Model, submmited.
    [109] S. L. Zhang, Statistical Inference for Linear Population Process, preprint.
    [110] 张术林,随机环境中r维分支链的协方差计算,数学杂志,2005,5.
    [111] Y.Y Zheng, X. L Chao and X. M. Ji, F, Probability in the Engineering and Informational Sciences, 2004, 18, 141-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700