用户名: 密码: 验证码:
可靠性算法与超空泡航行体结构屈曲可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对水下超空泡航行体的结构问题研究较少,对其结构进行可靠性分析的研究则更少。与传统速度较低的水下航行体主要受全面静水压力有所不同,高速运行下的超空泡航行体所受前端空化器阻力与尾部发动机推力都非常大,而要满足流体动力学要求和完全被空泡包裹,航行体结构一般设计成细长体,因而在非常大的轴向压力与环向压力(在一定深度下航行时由通气超空泡内压力产生)作用下会发生屈曲问题,若考虑到超空泡流动参数和结构参数的不确定性,有必要对超空泡航行体结构进行可靠性分析。文中对超空泡航行体结构进行了屈曲的概率与非概率可靠性分析,主要研究内容如下:
     1、讨论了改进的一次二阶矩法迭代不收敛问题,并针对有限步长迭代法存在的不足,引入黄金分割法对步长进行一维搜索,构造了一个评价函数,提出了改进的有限步长迭代法,并与另一修正迭代算法的迭代结果比较显示其具有较好的迭代收敛性。
     2、针对结构强度集合与应力集合发生干涉与不发生干涉两种情况下,超椭球凸集合可靠性指标功能函数比值定义与体积比值定义两种指标各自存在的不足,将两指标相结合提出超椭球凸集合可靠性综合指标的概念,并提出采用改进的有限步长迭代法与Monte-Carlo法相结合计算超椭球凸集合可靠性综合指标。针对多维非线性安全余量方程体积比值定义的指标难于计算的问题,引入Monte-Carlo法计算超椭球凸集合可靠度,并通过算例验证了其计算的正确性、可行性与简便性。
     3、与超椭球凸集合类似,同样提出了非概率区间可靠性综合指标的概念,并提出采用改进的混沌优化算法与Monte-Carlo法相结合计算非概率区间可靠性综合指标。基于Skew-Tent映射给出了四个改进的混沌优化算法ST-Geczb、ST-Powell、BST-Geczb及BST-Powell,并与相应文献的搜索结果比较显示ST-Powell与BST-Powell的全局寻优率较好。比较了区间集合,及由其确定的内外接超椭球凸集合这三种不确定信息描述形式下非概率区间(超椭球凸集合)可靠性综合指标的大小及变化趋势。
     4、采用伽辽金法计算超空泡射弹变截面梁的临界屈曲载荷,推导了结构屈曲安全余量隐式方程对各随机变量的偏导矩阵,结合有限步长迭代法给出射弹变截面梁的屈曲概率可靠性指标的求解算法。将BST-Geczb混沌优化方法与Monte-Carlo法相结合,给出射弹结构屈曲非概率区间可靠性综合指标的计算方法。并结合工程算例分析了射弹底部直径与空化器直径之比与发射初速的均值对结构屈曲概率可靠性指标、非概率区间可靠性综合指标的影响,并给出了屈曲安全余量的上下界与非概率区间可靠性综合指标随各区间变量不确定程度的变化曲线。
     5、采用半解析有限元求解环肋圆柱薄壳舱段的临界屈曲载荷,给出了屈曲安全余量隐式方程对各随机变量的敏度表达式,并将随机有限元与有限步长迭代法相结合给出环肋圆柱薄壳舱段的屈曲概率可靠性指标的求解算法。当前屈曲应力由半解析有限元得出时,推导了单元几何刚阵对各不确定变量的偏导矩阵,并对环肋圆柱薄壳舱段的屈曲载荷区间进行了分析。将BST-Geczb混沌优化方法与Monte-Carlo法相结合,给出环肋圆柱薄壳舱段屈曲非概率区间可靠性综合指标的计算方法。结合工程算例对自然超空泡鱼雷圆柱薄壳舱段进行了结构屈曲概率可靠性分析,并对通气超空泡鱼雷环肋圆柱薄壳舱段进行了屈曲概率与非概率可靠性分析。
The researches are less on structure problems of supercavitating vehicles, especially the researches about structural reliability analysis of supercavitating vechiles are few. Compared to traditional underwater vehicles which mainly suffer around hydrostatic pressure due to low velocity, it is different that super- cavitating vechiles which suffer high cavitator drag and engine thrust due to high velocity. To satisfy hydrodynamics requirements and be entirely enveloped by supercavity, generally it has to be designed as slender configuration. However, the high longitudinal force and circumferential pressure caused by ventilated cavity when operation depth is large, may cause structure buckling of supercavitating vehicles. When the uncertainty of supercavitating flow and structural own parameters is considered, it is necessary to perform structural reliability analysis of supercavitating vehicle. Structural buckling probability and non-probability reliability analysis of supercavitating vehicle is performed in this paper and the main contents are as follows:
     1. Iterative non-convergence problem of modified first-order second- moment method is discussed. To promote the robustness of limit step iteration method, golden section method and a new merit function are introduced into limit step iteration method for one-dimension step search and modified limit step iteration method is presented. Compared to the iterative results of another modified iteration method, modified limit step iteration method shows better convergence.
     2. In view of the insufficiency of both performance function ratio index and volume ratio index of super-ellipsoid convex sets under two conditions that stress sets and strength sets interfere or don't interfere with each other, super-ellipsoid convex sets reliability comprehensive index is presented by combining two above ratio definition index. Super-ellipsoid convex sets reliability comprehensive index is calculated by combined method of modified limit step iteration method and Monte-Carlo method. In view of difficulty to calculate the volume ratio definition index when limit state equation is multi-dimensional nonlinear equation, Monte-Carlo method is introduced to calculate super-ellipsoid convex sets reliability degree. The validity, feasibility and simpleness of calculation by Monte-Carlo method are proved by numerical example.
     3. As same as super-ellipsoid convex sets, non-probabilistic interval reliability comprehensive index is also presented and it is calculated by combined method of modified chaotic optimization method and Monte-Carlo method. Based on Skew-Tent mapping formula, four modified chaotic optimization methods such as ST-Geczb, ST-Powell, BST-Geczb and BST-Powell are presented. Compared to the search results of relative literature, modified chaotic optimization methods such as ST-Powell and BST-Powell show better global search optimization rate. The values and variety trends of non-probabilistic interval and super-ellipsoid convex sets reliability comprehensive index are compared under three uncertainty information described types such as interval sets, internal and external connect super-ellipsoid convex sets which are determined by interval sets.
     4. Critical buckling load of supercavitating projectile, which is simplified as variable cross-section beam, is calculated by Galerkin method. The partial matrixs of buckling safety margin implicit equation to each random variables are deduced, and structural buckling probabilistic reliability index of variable cross-section beam is calculated by combining with limit step iteration method. Structural buckling non-probabilistic interval reliability comprehensive index of super- cavitating projectile is calculated by combined method of modified chaotic optimization method BST-Geczb and Monte-Carlo method. Through the analysis of engineering numeric results, it is presented that the influence of the ratio which is defined as base diameter to the cavitation diameter and the mean value of initial launch velocity to buckling probabilistic reliability index and non-probabilistic interval reliability comprehensive index. Also it is presented that variation curves of the lower and upper bounds of buckling safety margin and non-probabilistic interval reliability comprehensive index with the variation of uncertainty degree of each interval variables.
     5. Critical buckling load of thin cylindrical shell compartment with stiffened rings is calculated by semi-analytical finite element method. The sensitivity expressions of buckling safety margin implicit equation to each random variables are presented, and structural buckling probabilistic reliability index of thin cylindrical shell compartment with stiffened rings is calculated by hybrid method of stochastic finite element and limit step length iteration method. The partial matrixs of element geometric matrix to each uncertainty variables are deduced when pre-buckling stress is calculated by semi-analytical finite element method, and the buckling load interval of thin cylindrical shell compartment with stiffened rings is analysed. Structural buckling non-probabilistic interval reliability comprehensive index of thin cylindrical shell with stiffened rings is calculated by combined method of modified chaotic optimization method BST-Geczb and Monte-Carlo method. Through the engineering numeric examples, it is analysed that structural buckling probabilistic reliability of thin cylindrical shell compartment of natural supercavitating torpedo, and structural buckling probabilistic and non-probabilistic reliability of thin cylindrical shell compartment with stiffened rings of ventilated supercavitating torpedo.
引文
[1]Ashley, S.Warp-drive Underwater. Scientific American,2001,30(4):57-64 P.
    [2]曹伟,魏英杰,王聪,邹振祝,黄文虎.超空泡技术现状、问题与应用.力学进展,2006,36(4):571-579页
    [3]谭顺谋.“水下快车”—美国研制超高速潜艇.现代舰船,2007,02(A):33-34页
    [4]G. V. Logvinovich, V. N. Buyvol. Hydrodynamics of Cavitating Flows with Perturbations. Fluid Mechanics-Soviet Research,1979,8(5):1-11P
    [5]Yu. N. Savchenko, Semenenko, V. N., and Putilin, S. I. Unsteady supercavitated motion of bodies. International Journal of Fluid Mechanics Research,2000,27 (1):109-137P
    [6]A. D. Vasin. Application of the Slender Body Theory to Investigation of the Developed Axially Symmetric Cavitation Flows in a Subsonic Steam of Compressible Fliud. International Journal of Fluid Mechanics Research.2001,28(5):702-716P
    [7]V. N. Semenenko. Calculation of Two-Dimensional Unsteady Supercavities at Arbitrary Time Dependence. International Journal of Fluid Mechanics Research,2004,31(6): 621-632P
    [8]袁绪龙,张宇文,王育才等.水下航行体通气超空泡非对称性研究.力学学报.2004,36(2):146-150页
    [9]贾力平,于开平,张嘉钟,王聪等.空化器参数对空泡形成和发展的影响.力学学报.2007,39(2):210-216页
    [10]J. P. Foote, J. T. Lineberry. Investigation of aluminum particle combustion for underwater propulsion applications. ASME/SAE/ASEE,32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, July 1-3,1996.
    [11]田维平,蔡体敏,陆贺建,高波.水冲压发动机热力计算.固体火箭技术,2006,29(2):95-98页
    [12]郜冶,贺征,刘平安.超空泡推进发动机燃料能量特性比较.固体火箭技术,2009,32(1):27-32页
    [13]M. Ruzzene, R. Kamada, C.L. Bottasso, F. Scorcelletti. Trajectory Optimization Strategies for Supercavitating Underwater Vehicles. Journal of Vibration and Control, 2008,14(5):611-644P
    [14]冯光,颜开.超空泡航行体水下弹道的数值计算.船舶力学,2005,9(2):1-8页
    [15]蒋运华,安伟光,安海.初始扰动下水下超高速运动体弹道数值模拟.水动力学研究与进展,2008,23(5):571-579页
    [16]J. Dzielski, A. Kurdila. A Benchmark Control Problem for Supercavitating Vehicles and an Initial Investigation of Solutions. Journal of Vibration and Control,2003,9(7): 791-804P
    [17]魏英杰,王京华,张嘉钟等.水下超空泡航行体非线性动力学与控制.振动与冲击,2009,28(6):179-204页
    [18]赵新华,孙尧,莫宏伟,李雪莲.水下超高速航行体纵向运动的控制方法研究.工程力学,2009,26(2):242-256页
    [19]Vasin, A.D. Some Problems of Supersonic Cavitation Flows. In:Proceeding of the 4th International Symposium on Cavitation, Pasadena CA,20-23 June 2001.
    [20]Liu P L, Der Kiureghian A. Optimization algorithms for structural reliability. Structural Safety,1991,9(3):161—177P
    [21]Wang L P, Grandhi R V. Safety index calculation using intervening variables for structural reliability analysis. Computers and Structures,1996,59(6):1139-1148P
    [22]Wang L P, Grandhi R V. Efficient safety index calculation for structural reliability analysis. Computers and Structures,1994,52(1):103-111P
    [23]Lee J O, Yang Y S, Ruy W S. A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Computers and Structures,2002,80(3):257—269P
    [24]T.V. Santosh, R.K. Saraf, A.K. Ghosh, H.S. Kushwaha. Optimum step length selection rule in modified HL-RF method for structure reliability. International Journal of Pressure Vessels and Piping,2006,83:742-748P
    [25]张子明.用Lagrange乘子法求解结构可靠指标.工程力学,1994,11(1):90-98页
    [26]贡金鑫.结构可靠指标求解的一种新的迭代方法.计算力学学报,1995,12(3):369-373页
    [27]姜全海,谷耀新.计算结构可靠性指标的负梯度矢量迭代方法.辽宁工学院学报,1999,19(3):24-27页
    [28]李刚,许林,程耿东.基于ANSYS软件的大型复杂结构可靠度分析.建筑结构,2002,32(5):58-61页
    [29]徐军,郑颖人.工程结构可靠度指标计算的混沌搜索方法.工程力学,2002,19(3):6-9页
    [30]贡金鑫,仲伟秋,赵国藩.结构可靠指标计算的通用方法.计算力学学报,2003,20(1):12-18页
    [31]张新培,陈颖.结构可靠度的改进虚拟变量算法.西南交通大学学报,2003,38(1):49-52页
    [32]吴狄,关鼎.一种结构可靠性指标的搜索方法.计算力学学报,2005,22(6):788—791页
    [33]许福友,陈艾荣,张建仁.计算结构可靠指标的循环逼近法.同济大学学报(自然科学版),2004,32(4):426-430页
    [34]杨迪雄,许林,李刚.结构可靠度FORM方法的混沌动力学分析.力学学报,2005,37(6):799-804页
    [35]Dixiong Yang, Gang Li, Gengdong Cheng. Convergence analysis of first order reliability method using chaos theory. Computers & Structures,2006,84:563-571P
    [36]蒋友宝,冯健,孟少平.求解结构可靠指标的线性可行方向算法.东南大学学报(自然科学版),2006,36(2):312-315页
    [37]亢战,罗阳军,计算结构可靠度指标的修正迭代算法.工程力学,2008,25(11):20-26页
    [38]Elishakoff. I. Essay on uncertainties in elastic and viscoelastic structure:from A. M. Freudenthal's criticisms to modern convex modeling. Computers & Structures,1995, 56(6):871-895P
    [39]Ben-Haim. Y. A non-probabilistic concept of reliability. Structural Safety, 1994,14(4):227-245P
    [40]王晓军,邱志平,武哲.结构非概率集合可靠性模型.力学学报,2007,39(5):641-646页
    [41]周凌,安伟光,安海.超空泡运动体强度与稳定性的非概率可靠性分析.哈尔滨工程大学学报,2009,30(4):362-367页
    [42]Scheurkogel. A, Elishakoff. I. On ergodicity assumption in an applied mechanics problem. Journal of Applied Mechanics,1985,52:133-136.
    [43]吕震宙,冯蕴雯.结构可靠性问题研究的若干进展.力学进展,2000,30(1):21-28页
    [44]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structu ral Safety,1995,17 (2):91-109P
    [45]邱志平,陈山奇,王晓军.结构非概率鲁棒可靠性准则.计算力学学报,2004,21(1):1-6页
    [46]Elishakoff I. Discussion on:A non-probabilistic concept of reliability. Structural Safety, 1995,17(3):195-199P
    [47]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报,2002,19(3):260-264页
    [48]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报,2001,18(1):56-60页
    [49]曹洪钧,段宝岩.基于凸集合模型非概率可靠性研究.计算力学学报,2005,22(5):546-549页
    [50]苏永华,何满潮,赵明华,刘晓明.基于区间变量的响应面可靠性分析方法.岩土工程学报,2005,27(12):1408-1413页
    [51]张新峰,赵彦,旋浒立.基于凸集的结构非概率可靠性研究.机械强度,2007,29(4):589-592页
    [52]张建国,陈建军,江涛,马孝松.关于不确定结构非概率可靠性计算的研究.机械强度,2007,29(1):58-62页
    [53]江涛,陈建军,张建国等.非概率可靠性指标的存在性研究及其半解析解法.中国机械工程,2005,16(21):1894-1898页
    [54]江涛,陈建军,姜培刚等.区间模型非概率可靠性指标的一维优化算法.工程力学,2007,24(7):23-27页
    [55]吴晓,罗佑新,文会军.非确定结构系统区间分析的泛灰求解方法.计算力学学报,2003,20(3):329-334页
    [56]张建国,陈建军,马孝松.关于不确定结构系统区间分析的泛灰数方法的讨论.机械科学与技术,2005,24(11):1272-1276页
    [57]屠义强,王景全,江克斌.基于区间分析的结构系统非概率可靠性分析.解放军理工大学学报,2003,4(2):48-51页
    [58]郭书祥,张陵,李颍.结构非概率可靠性指标的求解方法.计算力学学报,2005,28(8):227-231页
    [59]罗阳军,亢战.超椭球模型下结构非概率可靠性指标的迭代算法.计算力学学报,2008,25(6):747-752页
    [60]Aihara. K, Takabe. T, Toyoda. M. Chaotic neural networks. Physics Letter A,1990, 144(6,7):333-340P
    [61]Nozawa. H. A neural-network model as a globally coupled map and applicatiions based on chaos. Chaos,1992,2(3):3140-3145P
    [62]Kwok. T, Smith K. A. Experimental analysis of chaotic neural network models for combinatorial optimization under a unifying framework. Neural Networks.2000,13: 731-744P
    [63]Inoue. M, Nagayoshi. A. A chaos neuro-computer. Physics Letter A,1991,158(8): 373-376P
    [64]Chen. L, Aihara. K. Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks,1995,8(6):915-930P
    [65]Zhou. C, CHen. T. Chaotic annealing for optimization. Physical Review E,1997,55(3): 2580-2587P
    [66]Wang. L, Smith. K. On chaotic simulated annealing. IEEE Transactions on Neural Networks,1998,9(4):716-718P
    [67]王凌,郑大钟.一种基于退火策略的混沌神经网络优化算法.控制理论与应用,2000,17(1):139-142页
    [68]冯春,陈永.基于混沌的全局优化新方法.机械工程学报.2004,40(2):96-101页
    [69]李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用,1997,14(4):613-615页
    [70]Choi C, Lee J. Chaotic local search algorithm. Artificial Life Robotics,1998,2(1): 41-47P
    [71]钱富才,费楚红.利用混沌搜索全局最优的一种混合算法.信息与控制,1998,27(3):232-235页
    [72]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用.控制与决策,1999,14(3):285-288页
    [73]王子才,张彤,王宏伟.基于混沌变量的模拟退火优化方法.控制与决策,1999,14(4):381-384页
    [74]张春慨,徐立云,邵惠鹤.改进混沌优化及其在非线性约束优化问题中的应用.上海交通大学学报,2000,34(5):593-599页
    [75]唐巍,郭镇明,唐嘉亨,李殿璞.复杂函数优化的混沌遗传算法.哈尔滨工程大学学报,2000,21(5):1-5页
    [76]刘军,侯祥林,王丹民,王铁光Logistic映射分支值的最优化算法.东北大学学报(自然科学版),2000,21(5):580-582页
    [77]黄文培,王金诺,于兰峰.混沌-Powell混合算法在机械优化设计中的应用研究.四川大学学报(工程科学版),2001,33(5):31-34页
    [78]王登刚,刘迎曦,李守巨.非线性最优化问题的一种混合解法.工程力学,2001,18(3):61-66页
    [79]梁瑞鑫,郑德玲.基于区间套混沌搜索的混合优化方法.北京科技大学学报,2002,24(3):342-344页
    [80]王登刚,刘迎曦,李守巨.非线性二维导热反问题的混沌—正则化混合解法.应用数学和力学,2002.23(8):864-870页
    [81]李旻,胡云昌,余建星,曹宏铎.加速混沌变尺度混合优化算法.天津大学学报(自然科学与工程技术版),2002,35(1):68-70页
    [82]徐宁,周尚波,张红民,虞厥邦.一种混合混沌优化方法及其应用.系统工程与电子技术,2003,25(2):226-227页
    [83]尤勇,王孙安,盛万兴.新型混沌优化方法的研究及应用.西安交通大学学报,2003,37(1):69-72页
    [84]修春波,刘向东,张宇河.双混沌机制优化方法及其应用.控制与决策,2003,18(6):724-726页
    [85]张火明,杨建民.变尺度混沌优化方法的改进及应用.华东船舶工业学院学报(自然科学版),2004,18(4):21-26页
    [86]石鸿雁,陈治飞,孙昌志.一种混合优化算法及其收敛性证明.控制与决策,2004,19(5):546-553页
    [87]张志新,张明廉.基于并行混沌和单纯形法的混合全局优化算法.系统仿真学报,2004,16(1):35-37页
    [88]杨迪雄,李刚.非线性函数全局最优化的一种混沌优化混合算法.工程力学,2004,21(3):106-110页
    [89]杨迪雄,李刚,程耿东.非线性函数的混沌优化方法比较研究.计算力学学报,2004,21(3):257-262页
    [90]梁慧勇,顾幸生.采用并行计算的混沌优化方法.华东理工大学学报,2004,30(4):450-453页
    [91]李祥飞,邹恩,张泰山.一种模糊神经网络控制器参数的混沌优化设计.控制与决 策,2002,17(3):320-323页
    [92]唐巍.基于幂函数载波的混沌优化方法及其应用.控制与决策,2005,20(9):1043-1046页
    [93]单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法.控制与决策,2005,20(2):179-182页
    [94]费春国,韩正之.一种改进的混沌优化算法.控制理论与应用,2006,23(3):471-474贝
    [95]谭光兴,朱燕飞,毛宗源.基于Henon映射的自适应克隆选择优化算法.计算机工程与应用,2006,9:73-75页
    [96]江善和,王其申,江巨浪.一种新型SkewTent映射的混沌混合优化算法.控制理论与应用,2007,24(2):269-273页
    [97]陈烨.变尺度混沌蚁群优化算法.计算机工程与应用,2007,43(3):68-70页
    [98]陈如清,俞金寿.混沌粒子群混合优化算法的研究与应用.系统仿真学报,2008,20(3):685-688页
    [99]王德成,林辉.一种基于轨道均匀分布的混沌遗传优化算法.计算机应用研究,2009,26(4):1292-1293页
    [100]牛大鹏,王福利,何大阔,贾明兴.多目标混沌差分进化算法.控制与决策,2009,24(3):361-370页
    [101]Massimo Ruzzene. Dynamic buckling of periodically stiffened shells:application to supercavitating vehicles. International Journal of Solids and Structures,2004(41): 1039-1059P
    [102]Massimo Ruzzene. Non-axisymmetric buckling of stiffened supercavitating shells: static and dynamic analysis. Computers & Structures,2004(82):257-269P
    [103]M.Ruzzene, F.Soranna. Impact Dynamics of Elastic Stiffened Supercavitating underwater Vehicles. Journal of Vibration and Control,2004(10):243-267P
    [104]S.S.Ahn, M.Ruzzene. Optimal design of cylindrical shells for enhanced buckling stability:Application to supercavitating underwater vehicles. Finite Elements in analysis and design,2006(42):967-976P
    [105]J.Y.Choi, M.Ruzzene. Stability analysis of supercavitating underwater vehicles with adaptive cavitator. International Journal of Mechanical Sciences.
    [106]Alyanak. Edward, Venkayya. Vipperla, Grandhi. Ramana, Penmetsa. Ravi. Structural response and optimization of a supercavitating torpedo. Finite Elements Analysis 2005(6):563-582P
    [107]Alyanak. Edward, Venkayya. Vipperla, Grandhi. Ramana, Penmetsa. Ravi. Structural response of a supercavitating torpedo shell.45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference,19-22 April 2004, Palm Springs, California.
    [108]Alyanak. Edward, Venkayya. Vipperla, Grandhi. Ramana, Penmetsa. Ravi. Variable shape cavitator design for a supercavitating torpedo.10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,30 August-1 September 2004, Albany, New York.
    [109]Alyanak. Edward, Grandhi. Ramana, Penmetsa. Ravi. Optimum design of a supercavitating torpedo considering overall size, shape, and structural configuration. International Journal of Solids and Structures,2006(43):642-657P
    [110]J.H. Choi, R.C. Penmetsa and R.V. Grandhi, Shape optimization of the cavitator for a supercavitating torpedo. Struct Multidisc Optim,2005(29):159-167P
    [111]杨传武,王安稳.超空泡水下航行体振动特性分析.海军工程大学学报,2008,20(4):12-14页
    [112]杨传武,王安稳.动态轴向载荷对超空泡航行体振动特性的影响.华中科技大学学报,2008,36(12):71-74页
    [113]杨传武,刘刚,王安稳.超空泡体结构响应问题的有限元分析.海军工程大学学报,2008,20(2):101-104页
    [114]杨传武,王安稳.冲击载荷作用下超空泡水下航行体的结构响应.华中科技大学学报,2008,36(7):129-132页
    [115]Edward Alyanak et al. Cavitator Design for a Supercavitating Torpedo using Evidence Theory for Reliability Estimation. Multidisciplinary Design Optimization for High Reliability and Robustness,2006:42-50P
    [116]顾永维,安伟光,安海.水下高速运动体的抗弯稳定可靠性分析.哈尔滨工程大学学报,2008,29(7):683-686页
    [117]安伟光,顾永维,安海.初偏心影响下的水下高速运动体的抗弯稳定性及可靠性分析.兵工学报,2008,29(7):824-828页
    [118]Tian, Guang-ping; An, Wei-guang; Zhou, Ling. Structure reliability analysis based on supercavity vehicle steady motion. Journal of Harbin Institute of Technology (New Series).2009,16(2):251-254P
    [119]AN Wei-guang, ZHOU Ling, AN Hai. Structure buckling and non-probabilistic reliability analysis of supercavitating vehicles. Journal of Harbin Institute of Technology (New Series),2009,16(4):561-569P
    [120]王光远.工程软设计理论.北京:科学出版社,1992:5-6页
    [121]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996:1-15页
    [122]赵维涛,安伟光,严心池.二次二阶矩可靠性指标.哈尔滨工程大学学报,2004,25(2):240-242页
    [123]Hasofer A. M, Lind N. C. An exact and invariant first order reliability format. Journal of Engineering Mechanics Division,1974,100(1):111-121P
    [124]Rackwitz. R, Fiessler. B. Structural reliability under combined load sequences. Computer & Structure,1978,9(5):489-494P
    [125]安伟光,朱卫兵,严心池.随机有限元法在不确定性分析中的应用.哈尔滨工程大学学报,2002,23(1):132-135页
    [126]贡金鑫.工程结构可靠度计算方法.大连:大连理工大学出版社,2003:129-130页
    [127]陈卫东,蔡荫林,于诗源.工程优化方法.哈尔滨:哈尔滨工程大学出版社,2006:31-33页
    [128]邱志平.非概率集合理论凸方法及其应用.北京:国防工业出版社,2005:6-7页
    [129]王新刚,张义民,王宝艳,闻邦椿.凸方法和区间法在可靠性设计中的对比分析.东北大学学报(自然科学版),2008,29(10):1467-1469页
    [130]乔心州,仇原鹰,孔宪光.一种基于椭球凸集的结构非概率可靠性模型.工程力学,2009,26(11):203-208页
    [131]易平.对区间不确定性问题的可靠性度量的探讨.计算力学学报,2006,23(2):152-156页
    [132]郭书祥.非随机不确定结构的可靠性方法和优化设计研究.西北工业大学博士学位论文,2002
    [133]杨为民,盛一兴.系统可靠性数字仿真.中国航空学会科普与教育工作委员会,1984
    [134]Semenenko, V.N. Dynamic processes of supercavitation and computer simulation. RTO AVT Lecture Series on Supercavitating Flows, Von Karman Institute, Brussels, Belgium, February 2001.
    [135]刘东常,赵瑜.半解析有限元法分析环向加筋圆柱壳外压稳定性.工程力学,1992,9(1):104-114页
    [136]陈文,任文敏,张维.环加肋圆柱壳屈曲分析的有限条法.工程力学,1994,11(3):12-17页
    [137]Yamaki, N. Elastic stability of circular cylindrical shells. Amsterdam: North-Holland,1984:1-8P
    [138]Cook, R.D., Malkus, D.S., Plesha, M.E.. Concepts and applications of finite element analysis. New York:John Wiley & Sons,2002:252-260P
    [139]陈铁云,沈惠申.结构的屈曲.上海:上海科学技术文献出版社,1993:201-222页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700