用户名: 密码: 验证码:
火箭上面级导航、中途修正与姿态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文跟随我国运载火箭先进上面级的研究进展,从工程应用的目的出发,对先进上面级捷联惯导工具误差影响、捷联惯导/星敏感器/地球敏感器组合导航技术、中途修正技术和姿态控制问题进行了研究。
     针对发射惯性坐标系下上面级典型MEO转移轨道的飞行过程,基于考虑J2项的地球引力模型,给出了惯性导航的解算方程,推导了惯性导航方程的误差传播方程。给出了工程中应用广泛的捷联惯导测量误差模型。根据标称弹道数据模拟了上面级MEO转移轨道的轨迹发生器,并利用它验证了惯性导航解算方程的正确性。应用算例验证和分析了捷联惯导测量误差模型中的误差项系数和初始基准误差对上面级弹道偏差的影响。基于此,选取误差项系数中的关键元素计算了一条MEO特征偏差弹道,为组合导航研究奠定了基础。
     以研究上面级组合导航方案为目的,通过建立GPS导航卫星的空间可见性和导航信号的空间可用性模型,算例分析了上面级MEO转移轨道上GPS导航星可见数量,研究发现GPS导航仅能够在飞行过程中约前3150秒,高度低于7740 km时进行有效导航,而上面级MEO转移轨道最高飞行高度约为25000 km,也就是说在大部分MEO转移轨道上GPS导航是不可用的,同时也因为SINS/GPS组合导航方案姿态信息的估计精度不高,所以本文没有采用。通过分析捷联惯导/星敏感器组合导航方案知道该组合对位置和速度信息的估计精度较差,但是却可以通过其他敏感器来弥补,因此,本文提出了捷联惯导/星敏感器/地球敏感器组合的一种新的SINS/CNS组合导航方案。通过建立星敏感器的姿态测量模型和地球敏感器的地心矢量测量模型,推导了组合导航的观测方程。分别应用Kalman滤波算法和H∞滤波算法验证了SINS/CNS组合导航的有效性。
     因为地球非球形引力、大气阻力、日月引力、太阳光压等摄动和变轨时导航误差、发动机推力误差等因素的影响,上面级实际转移轨道会偏离理论计算得到的标称轨道,所以本文研究了上面级转移轨道中途修正问题。基于椭圆轨道Lambert飞行时间定理,推导了修正速度计算公式。通过分析上面级转移轨道初始误差因素来源,设计了误差协方差矩阵迭代算法以计算转移轨道终点位置和速度误差,该算法与传统基于运动方程的精密积分以计算轨道误差的方法相比,具有计算量较小、速度快的优势。利用修正速度计算公式和误差协方差矩阵迭代算法,文中以不加修正、一次修正、两次修正和三次修正为例,研究了中途修正问题中修正次数的选择,通过一次修正的结果发现修正所需的速度脉冲和最终位置误差、速度误差是一个矛盾综合体,需要对三者进行折中以选择合适的修正时间点,通过多次修正的结果确定了采用两次修正的中途修正策略。进而基于两次修正策略,利用多目标优化技术对修正时机进行优化设计。应用较多的方法是将多目标优化问题转化为单目标优化问题求解,容易丢失最优解。文章采用改进的非支配分类遗传算法,不再将以最终位置误差、速度误差和修正速度脉冲最小为目标的两次修正时机优化问题转化成单目标优化问题,得到了修正时机完整的Pareto最优解集,增加了此优化问题的灵活性。
     上面级进行多星部署释放有效载荷的过程和燃料消耗会产生较大的转动惯量变化和质心突变以及随之而来的惯性积强耦合,同时,上面级自身携带大型液体燃料贮箱会产生液体晃动。因此系统存在模型不确定性和液体晃动使得上面级姿态控制就变得比较困难。传统解决这类问题的方法多是进行通道解耦控制并设计抑制液体晃动的坎值滤波器。有限频域H∞控制不仅具有很强的鲁棒性,能够解决模型不确定性问题,而且还可以在特定的频域内进行有效的控制。而液体晃动的基频是可以确定的,那么通过给出两个特定频率使得液体晃动基频位于二者之间,进而完成液体晃动的抑制。因此,本文针对带有模型不确定性和液体晃动的上面级姿态模型,设计了有限频域H∞控制器。结合广义KYP引理及其推论、射影定理和反射影定理以及线性矩阵不等式知识,本文给出了有限频域下的状态反馈和输出反馈控制器设计方法。为突出有限频域H∞控制的优越性,给出了全频域下的状态反馈和输出反馈控制器设计方法。针对不同的系统模型
Following the research and development of Chinese launch vehicle upper stage, for the purpose of engineering application, the trajectory errors caused by the instrument coefficients and the initial azimuth bias of SINS, SINS/Star sensor/Earth sensor integrated navigation technology, midcourse correction technology of transfer orbit and attitude control are studied in this paper.
     Considering the flight of upper stage in classical MEO transfer orbit described with launch inertial coordinate system, the inertial navigation solution equations are given out and the the errors propagation models are derived. The measurement error models of SINS are given out. A trajectory simulator of MEO transfer orbit is proposed by using the nominal trajectory data. The correctness of the inertial navigation solution equations is verified via the trajectory simulator. The trajectory errors are analyzed and a characteristical trajectory with errors is composed with some key instrument coefficients, which would be a basis for studying integrated navigation.
     For the integrated navigations system, a mathematical model of the visibility of GPS satellites and the availability of navigation signals is built. GPS navigation can be effective in the flight under the conditons of 3150 seconds afore or the height of less than 7740 km. On the contrary, the highest altitude of the trajectory is about 25000 km and the total flight time is 15800 s, which means the GPS navigation is not available within the most of the trajectory. Because attitude errors of SINS/GPS navigation and position errors and velocity errors of SINS/Star sensor are not accurate, a novel SINS/Star sensor/Earth sensor integrated navigation system is proposed. The observation equations are derived from attitude measurement model and the geocentric vector measurement model. The effectiveness of the novel SINS/CNS integrated navigation is verified by using the estimation errors obtained via Kalman filter and H filter.
     By the influence of non-spherical earth gravity, atmospheric drag, sun and moon gravity, solar radiation pressure and other perturbations, there are large errors between the real and the ideal transfer orbit. So the midcourse correction is studied. By the solution method of Lambert problem, the calculation method of correction velocity is derived. Considering the resourse of initial errors, an iterative algorithm with the error covariance matrix is designed, which has a superiority of small computation load and quickness compareing with the traditional calculation method of trajectory errors. Taking zero, one, two and three correction scheme as example, the choice of correction number is analyzed. The correction velocity impulse, the terminal position and velocity errors are contradictory through one correction result, which indicates that there needs to carry on a compromise. A two correction scheme is determined through multi-corrections. Then a multi-objective evolution algorithm is introduced to optimize the two correction timings. Tansforming the multi-objective optimization problem to a single objective optimization problem is a commonly used method, which can lose optimal solutions. So a modified non- dominated sorting genetic algorithm (NSGA-II) is introduced to the correction timing optimization problem, which obtains complete Pareto optimal solution set and increased flexibility of this optimization problem.
     Considering the model uncertainty and the liquid sloshing, a finite frequency domain H control algorithm is presented for the upper stage attitude control. The finite frequency omain H control not only has strong robustness for solving the uncertainty problem, but also has effective control ability in specific frequency range. Based on the generalized KYP lemma and its inference, Projection lemma, Reciprocal Projection lemma and linear matrix inequality knowledge, state feedback and output feedback controllers in finite frequency domain are designed. And to highlight the advantagesof finite frequency domain H control, design methods of state feedback and output feedback controllers in entire frequency domain are presented. The effeciveness and feasibility of finite frequency domain control are verified through the results of four examples with different model parameters and the availability of jet attitude control system.
引文
1.龙乐豪,王小军,容易.我国一次性运载火箭的发展展望.中国科学E辑:技术科学, 2009, 39(3): 460~463
    2.曲晶,葛姗姗. 2009年世界航天运载器发展回顾.导弹与航天运载技术, 2010,(1): 19-25
    3.吴燕生.中国航天运输系统的发展与未来.导弹与航天运载技术, 2007, (5): 1-4
    4. H. P. Stahl, P. Sumrall, R. Hopkins. Ares V Launch Vehicle: An Enabling Capabilityfor Future Space Science Missions. Acta Astronautica, 2009, 64(11-12): 1032-1040
    5. J. P. Sumrall, S. Creech. Update on the Ares V to Support Heavy Lift for U.S. SpaceExploration Policy. Acta Astronautica, 2010, 66(7-8): 1133-1145
    6. J. P. Sumrall, S. Creech. Refinements in the Design of the Ares V Cargo LaunchVehicle for NASA's Exploration Strategy. 44th AIAA/ASME/SAE/ASEE JointPropulsion Conference and Exhibit, Hartford, CT, July 21-23, 2008,AIAA-2008-4981: 1-6
    7. M. D. Berglund, D. Marin, M. Wilkins. The Flight Readiness and the Future of theBoeing Delta IV Heavy Expendable Launch Vehicle. Acta Astronautica, 2005,57(2-8): 422-431
    8. M. D. Berglund, C. E. Bassett, J. M. Kelso and et al. The Boeing Delta IV LaunchVehicle—Pulse-settling Approach for Second-stage Hydrogen PropellantManagement. Acta Astronautica, 2007, 61(1-6): 416-424
    9. F. A. Slazer, J. C. Harvey, R. J. Sirko and et al. Delta IV Launch Vehicle GrowthOptions to Support NASA's Space Exploration Vision. Acta Astronautica, 2005,57(2-8): 604-613
    10. D. Schmitt, L. Laurent. Launch Vehicles in Service or in Development, Ariane5—Program Status. Acta Astronautica, 2010, 66(5-6): 871-882
    11. R. Rault, L. M. Aerospatiale. Ariane 5 - Improvement and Continuity in FutureCommercial Launches. 30th ASME, SAE, and ASEE, Joint Propulsion Conferenceand Exhibit, Indianapolis, IN, June 27-29, 1994, AIAA-1994-2793: 1-12
    12. C. Soccodato, J. M. Ruault,. Ariane 5 Launch Vehicle - From Concepts to FutureEvolutions. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,Los Angeles, CA, June 20-24, 1999, AIAA-1999-2906: 1-8
    13. M. Miyazawa, Y. Fukushima. Development Status of Japan’s New Launch Vehicle: H-II Rocket. Acta Astronautica, 1991, 25(5-6): 251-264
    14. M. Nakamura. Japan Launches Venus Mission. Space Research Today, 2010, 178: 23-24
    15. A. Difrancesco, F. A. Boorady, F. Niagara and et al. The Agena Rocket Engine Story. 25th ASME, SAE, and ASEE, Joint Propulsion Conference, Monterey, CA, July 10-13, 1989:1-7
    16. K. I. Friedman, E. Stell. RF Closed Loop Checkout of the Agena Vehicle. IEEE Transactions on Aerospace, Van Nuys, California, Aug. 1963: 910 - 923
    17. W. R. Kerslake, L. R. Ignaczak. Development and Flight History of SERT 2 Spacecraft. 28th SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit, Nashville, TN, July 6-8, 1992: 1-52
    18. E. Gribben, F. Niagara, R. Driscoll and et al. Design and Test Results on Agena 2000 - A High Performance Turbopump fed 15,000 LBF Thrust Storable Bipropellant Rocket Engine. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, , Cleveland, OH, July 13-15, 1998:1-10
    19. D. A. Tito. Trajectory Design for the Mariner-Mars 1964 Mission. Journal of Spacecraft and Rockets, 1967, 4(3): 289-296
    20. E.F. Knott. The World's First Comparison of Outdoor RCS Test Ranges. IEEE Antennas and Propagation Society International Symposium, 1999, 3: 1988 - 1991
    21. D. Gunter, S. Gizinski. The Enhancement of the Transtage for the Commercial Titan Launch Vehicle. 23rd SAE, ASME, and ASEE, Joint Propulsion Conference, San Diego, CA, June 29-July 2, 1987: 1-7
    22. L. T. Park, J. D. Corbin, R. D. Ernst. Titan Transtage Spacecraft Propulsion System.
    9th American Institute of Aeronautics and Astronautics and Society of Automotive Engineers, Propulsion Conference, Las Vegas, Nev., Nov5-7, 1973: 1-22
    23. D. C. Maybee, D. C. Morrisey, C. G. Skartvedt and et al. Development of the Titan III Transtage ACS Hydrazine Monopropellant Rocket Engine Modules. AIAA 5thPropulsion Jiont Specialist Conference, Colorado, June 9-13, 1969: 1-18
    24. K. L.Austad. The Common Centaur Upper Stage. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, UT, July 8-11, 2001: 1-8
    25. J. Strong, B. Morgowicz, P. Tompkins. Transport and Use of a Centaur Second Stage in Space. SpaceOps 2010 Conference, Huntsville, Alabama, Apr. 25-30, 2010, AIAA2010-2197: 1-12
    26. P. Tompkins, R. Hunt, M. D’Ortenzio. Flight Operations for the LCROSS Lunar Impactor Mission. SpaceOps 2010 Conference, Huntsville, Alabama, Apr. 25-30, 2010, AIAA 2010-1986: 1-12
    27. J. D. Kruif. Centaur Upperstage Applicability for Multi-Day Mission Durations with Minor Insulations Modifications. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, July 8-11, 2007, AIAA-2007-5845: 1-8
    28. K. Kloster, C. H. Yam, J. Longuski. Saturn Escape Options for Cassini Encore Missions. Journal of Spacecraft and Rockets, 2009, 46(4): 874-882
    29. A. Guest, W. Hofstetter. Interplanetary Transfer Vehicle Concepts for Near-Term Human Exploration Missions beyond Low Earth Orbit. AIAA SPACE 2010 Conference and Exposition, Anaheim, California, Aug. 30-2, 2010, AIAA-2010-8641: 1-9
    30. F. Taylor, R. Howard. Dream Chaser for Space Transportation: Tourism, NASA, and Military Integrated on a Atlas V. AIAA SPACE 2008 Conference and Exposition, San Diego, California, Sep. 9-11, 2008, AIAA-2008-7837: 1-8
    31. L. H. Caveny, R. L. Geisler, R. A. Ellis and T. L. Moore. Solid Rocket Enabling Technologies and Milestones in the United States. Journal of Propulsion and Power, 2003, 19(6): 1038-1066
    32. C. Hearsey. A Review Of Challenges To Corporate Expansion Into Outer Space. AIAA SPACE 2008 Conference and Exposition, San Diego, California, Sep. 9-11, 2008, AIAA-2008-7816: 1-5
    33. J. J. Frew, I. S. Currier. Titan Launch Vehicle Program Overview. 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA, July 6-9, 1997, AIAA-1997-2988: 1-9
    34. R. Goodstein, D. S. Joseph, L. B. Khazoyan and R. E. Ruprecht. Expert System Mission Support Monitoring of the Inertial Upper Stage Navigation Subsystem. Guidance, Navigation and Control Conference, Williamsburg, VA, August 18-20, 1986, AIAA-1986-2094: 385-392
    35. R. Flaherty, J. Walker, R. Zaleski and D. Shinners. 25 Years of Tracking and Data Relay Satellite-1 Operations. SpaceOps 2008 Conference, Heidelberg, Germany, May 12-16, 2008, AIAA-2008-3312: 1-7
    36. F. Zimmermann, E. Steindl, O. Kalden. Navigation System Simulation in Support ofApplication Development. SpaceOps 2008 Conference, Heidelberg, Germany, May
    12-16, 2008, AIAA-2008-3275: 1-3
    37. D. Spencer, R. Tolson. Aerobraking Cost and Risk Decisions. Journal of Spacecraftand Rockets, 2007, 44(6): 1285-1293
    38. H. Hoffman. Lessons Learned from Six Decades of Spacecraft Guidance and ControlExperiences. AIAA Guidance, Navigation and Control Conference and Exhibit,Hilton Head, South Carolina, Aug. 20-23, 2007, AIAA-2007-6333: 1-5
    39. C. A. Ordahl. The MDAC payload assist modules /PAM-A and PAM-D/. 9thCommunications Satellite Systems Conference, San Diego, CA, March 7-11, 1982:682-692
    40. R. C. White. Status and Capability of the TOS and AMS Upper Stage Family. 11thCommunication Satellite Systems Conference and Exhibits, San Diego, CA, Mar16-20, 1986, AIAA-1986-670: 1-18
    41. C. Hubert, P. Miller. The SCOTS Attitude Control System. Guidance, Navigationand Control Conference, Williamsburg, VA,Aug 18-20, 1986, AIAA-1986-2044: 1-8
    42. G. P. Sutton. History of Liquid-Propellant Rocket Engines in Russia, Formerly theSoviet Union. Journal of Propulsion and Power, 2003, 19(6): 1008-1037
    43. L. Hague. Global Launch Services Prospects in a Declining Commercial SatelliteMarket. AIAA Space 2003 Conference and Exposition, Long Beach, California, Sep.23-25, 2003, AIAA-2003-6409:1-10
    44.康开华,才满瑞,尚辉,李思思.质子号运载火箭及其运营.导弹与航天运载技术, 2006, (3): 21-27
    45. F. Duret. Staging or Upper Stage Reignition for GEO Missions. Acta Astronautica,2002, 51(1-9): 33-38
    46. P. Freeborn. The Rockot Small Launcher for Future Earth Observation Missions.SpaceOps 2010 Conference, Huntsville, Alabama, Apr. 25-30, 2010,AIAA-2010-2319: 1-7
    47. Y. Viertel, M. Kinnersley. ROCKOT - A light class launch system for reliable accessto LEO. AIAA Space 2001 - Conference and Exposition, Albuquerque, NM, Aug.28-30, 2001, AIAA-2001-4698: 1-3
    48. R. Happersett, E. Laursen. The Angara Launch Vehicle Fleet. AIAA / ASME / SAE /ASEE Joint Propulsion Conference and Exhibit, 37th, Salt Lake City, UT, July 8-11,2001, AIAA-2001-3931: 1-7
    49. M. Kinnersley, T. Miski, I. Schumacher and P. Freeborn. The Rockot Launch Vehicle - The Competitive Launch Solution for Satellite Systems. 21st International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, Apr. 15-19, 2003, AIAA-2003-2263: 2-3
    50. E. Laursen. Proton M / Breeze M - The Next Step in Proton Evolution. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Salt Lake City, UT, July 8-11, 2001, AIAA-2001-3930: 1-10
    51. K. Karavasilis, L. Mukhin, R. Sagdeev and et al. Launch Configurations Based on Former (Now Decommissioned) Soviet ICBMs and Soyuz–Fregat, Coupled with Plasma Propulsion as Delivery Systems for Low Cost Missions Beyond Low Earth Orbits. Acta Astronautica, 2003, 52(2-6): 327-335
    52. D. Montéro, R. van Holtz. MetOp-A Launch Early Orbit Phase: Managing a LEOP Service for a Starsem Launch from Baikonur. SpaceOps 2008 Conference, Heidelberg, Germany, May 12-16, 2008, AIAA-2008-3509: 1-8
    53. Soyuz CSG User’s Manual: Issue Draft, 2006: 60-61
    54. J. M. Astorg, J. P. Haignere, B. Yarotski and et al. The Soyouz in Guyana Project: Status and Perspectives. 57th International Astronautical Congress, Valencia, Spain, Oct. 2-6, 2006, IAC-06-D2.2.5: 1-7
    55. Proton Launch System Mission Planner’s Guide, LKEB-9812-1990, Revision 6, December 2004: 5-10
    56. H. Holsten. Development of the Ariane 5 Upper Stage. Acta Astronautica, 1993, 29(2): 117-120
    57. J. P. Dutheil, G. Langel. ARIANE 5 Upper-stage Ignition Conditions Improvement, and Return to Operation with“Envisat”Payload. Acta Astronautica, 2003, 53(4-10): 585-595
    58. M. A. Llorca. The History of the Ariane Launcher in Spain. 57th International Astronautical Congress, Valencia, Spain, 2006: 1-19
    59. B. P. Miller. The Impact of Reliability on the Economics of Geostationary Commercial Communication Satellites. 17th International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, Feb. 23-27, 1998, A1998-1353: 1-4
    60. L. Jourdainne, L. Laurent. Ariane 5 ECA - Entering the Operational Phase. 57th International Astronautical Congress, Valencia, Spain, 2006: 1-7
    61. J. Grila, J. M. Bahu. Qualification Status of Ariane 5ECA Cryogenic Upper StagePropulsion After Flight 521. 41st AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit, Tucson, Arizona, July 10-13, 2005, AIAA-2005-3754: 1-5
    62. A. Lekeux, J. P. Pander, J. Mansouri. From Qualification to 4th Year of Exploitation:HM7B on Ariane 5 ECA. 45th AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit, Denver, Colorado, Aug. 2-5, 2009, AIAA-2009-5036: 1-5
    63. B. Chavagnac, C. Poincheval, D. Iranzo-Greus and et al. The Future of EuropeanLaunchers over the Next Decade. 57th International Astronautical Congress,Valencia, Spain, 2006: 1-11
    64. S. Durteste. A Transient Model of the VINCI Cryogenic Upper Stage RocketEngine. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,Cincinnati, OH, July 8-11, 2007, AIAA-2007-5531: 1-8
    65. http://defense-update.com/newscast/0610/ofeq9_launch_23062010.html
    66. http://www.spacenews.com/launch/100415isro-cryogenic-engine-fails.html
    67. P. Moraes, D. S. Carrijo, A. Garcia and et al. An Overview of the Brazilian LaunchVehicle Program Cruzeiro do Sul. 57th International Astronautical Congress,Valencia, Spain, Oct. 2-6, 2006: 1-5
    68. M. Fujita, H. Aoki, T. Nakagawa and et al. Upper Stage Propulsion System for H-IIALaunch Vehicle. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference andExhibit, Indianapolis, Indiana, July 7-10, 2002, AIAA-2002-4212: 1-7
    69. H. Sakurai, M. Sudo. Japanese H-IIA Launch Vehicle Family will be on Service forCommercial Basis, the Opening Mission MTSAT-1R. 21st InternationalCommunications Satellite Systems Conference and Exhibit, Yokohama, Japan, Apr.15-19, 2003, AIAA-2003-2258: 1-6
    70.陆象荣. CZ-2C/FP运载系统变轨发动机(FG-47).固体火箭技术, 1998, 21(4): 4-6
    71.杨珺.长二丙SM火箭发射探测1号卫星.中国航天, 2004, (1): 3
    72.龙乐豪.我国探月工程运载火箭选型问题探讨.中国工程科学, 2002, 4(9): 31-37
    73.陈新民,余梦伦.中国发射月球探测器的运载火箭方案研究.中国航天, 2002,(11): 29-32
    74.郗秀青.托举“嫦娥”的“金牌火箭”—“长征三号甲”系列火箭研制纪实.国防科技工业, 2007, (11): 55-57
    75. J. Bijker, W. Steyn. Kalman Filter Configurations for a Low-cost Loosely IntegratedInertial Navigation System on An Airship. Control Engineering Practice, 2008,16(12): 1509-1518
    76. J. F. Vasconcelos, C. Silvestre, P. Oliveira and B. Guerreiro. Embedded UAV Model and LASER Aiding Techniques for Inertial Navigation Systems. Control Engineering Practice, 2010, 18(3): 262-278
    77. P. Daly. Navstar GPS and GLONASS: Global satellite navigation systems. Acta Astronautica, 1991, 25(7): 399-406
    78. S. Todorova, T. Hobiger, H. Schuh. Using the Global Navigation Satellite System and satellite altimetry for combined Global Ionosphere Maps. Advances in Space Research, 2008, 42(4): 727-736
    79. R. E. Stubbs, W. H. Huang, E. Schmitz. Integration of GPS into a Ballistic Missile Navigation Solution. AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, Aug. 11-13, 1997, AIAA-1997-3695: 1-20
    80. C. C. van Damme, T. Prieto-Llanos, J. Gil-Fernandez. Optical Navigation for Lunar Transportation Systems Contingency Scenarios. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008, AIAA-2008-6760: 1-15
    81. B. Montenbruck, M. Markgraf, J. Naudet and et al. Autonomous and Precise Navigation of the Proba-2 Spacecraft. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008, AIAA-2008-7086: 1-18
    82. X. L. Wang, S. Ma. A Celestial Analytic Positioning Method by Stellar Horizon Atmospheric Refraction. Chinese Journal of Aeronautics, 2009, 22(3): 293-300
    83. R. van der Merwe, E. Wan, S. Julier. Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion: Applications to Integrated Navigation. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, Aug. 16-19, 2004, AIAA-2004-5120: 1-30
    84. B. M. Quine. A Derivative-free Implementation of the Extended Kalman filter. Automatica, 2006, 42(11): 1927-1934
    85. J. Shockley, S. Zetterstrom. 50 Years of the Central Inertial and GPS Test Facility. U.S. Air Force TandE Days 2009, Albuquerque, New Mexico, Feb. 10-12, 2009, AIAA-2009-1724: 1-10
    86. F. A. Faruqi, K. J. Turner. Extended Kalman Filter Synthesis for Integrated Global Positioning/Inertial Navigation Systems. Applied Mathematics and Computation,2000, 115(2-3): 213-227
    87. H. Shi, Z. Wu, B. S. Liu. An Adaptive Filter for INS/GPS Integrated Navigation System. IMACS Multiconference on Computational Engineering in Systems Applications, Beijing, China, 4-6 Oct. 2006, 1: 651-654
    88. V. Baraniello, F. Corraro. Unconventional Integrated Navigation Systems Based on Redundancy of Traditional Navigation Sensors. AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Aug. 2-5, 2010, AIAA-2010-7758: 1-22
    89. H. W. Bian, Z. H. Jin, W. F. Tian. IAE-Adaptive Kalman Filter for INS/GPS Integrated Navigation System. Journal of Systems Engineering and Electronics, 2006, 17(3): 502-508
    90. K. Xiong, L. D. Liu, H.Y. Zhang. Modified Unscented Kalman Filtering and Its Application in Autonomous Satellite Navigation. Aerospace Science and Technology, 2009, 13(4-5): 238-246
    91. D. Geller, D. Christensen. Linear Covariance Analysis for Powered Lunar Descent and Landing. Journal of Spacecraft and Rockets, 2009, 46(6): 1231-1248
    92. S. M. Oh, E. Johnson. Development of UAV Navigation System Based on Unscented Kalman Filter. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, Aug. 21-24, 2006, AIAA-2006-6351: 1-6
    93. X. L. Huang, M. M. Li, H. D. Hu and et al. Geomagnetism GPS SINS Integrated Navigation Based on an Improved Square-Root UKF. 2nd International Conference on Intelligent Computation Technology and Automation, Changsha, Hunan, 10-11 Oct. 2009, 4: 73-76
    94. R. Li, X. J. Chen, L. Wang and et al. SINS/GPS/CNS Integrated Navigation Method Study Based on Federated Filter. 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, 10-12 Dec. 2008: 1-5
    95. H. D. Hu, X. L. Huang, Z. Y. Song. A Novel Algorithm for SINS/CNS/GPS Integrated Navigation System. Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference, Shanghai, 15-18 Dec. 2009: 1471-1475
    96. S. S. Gao, Y. M. Zhong, X. Y. Zhang, B. Shirinzadeh. Multi-sensor Optimal Data Fusion for INS/GPS/SAR Integrated Navigation System. Aerospace Science and Technology, 2009, 13(4-5): 232-237
    97. M. L. Wang, Y. W. Fu. Data Fusion of ALV GPS/DR Integrated Navigation SystemBased on BP Neural Network. 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, 10-13 Feb. 2009: 1-4
    98. H. Mamich, C. D’Souza. Orion Preliminary Navigation System Design. AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008, AIAA-2008-7295: 1-13
    99. A. Lee. Overview of a Preliminary Design of the Guidance, Navigation, and Control Subsystem of the Lunar Lander Altair. AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Aug. 2-5, 2010, AIAA-2010-7717: 1-61
    100.X. L. Ning, J. C. Fang. A New Autonomous Celestial Navigation Method for the Lunar Rover. Robotics and Autonomous Systems, 2009, 57(1): 48-54
    101.T. M. Eneev, V. V. Ivashkin, V. A. Sharov and J. V. Bagdasaryan. Space Autonomous Navigation System of Soviet Project for Manned Fly by Moon. Acta Astronautica, 2010, 66(3-4): 341-347
    102.E. G. Lightsey, A. Mogensen, P. D. Burkhart and et al. Real-Time Navigation for Mars Missions Using the Mars Network. Journal of Guidance, Control, and Dynamics, 2006, 45(3): 519-533
    103.G. B. Chatterji, M. Pachter. A Midcourse Estimation and Guidance Law for Space Based Interceptors. 1990 American Control Conference, San Diego, CA, USA, 23-25 May, 1990: 2858-2862
    104.H. Leeghim, B. Jaroux. Energy-Optimal Solution to the Lambert Problem. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 1008-1010
    105.H. J. Shen, P. Tsiotras. Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 50-61
    106.Y. Z. Luo, G. J. Tang, Y. J. Li and et al. Optimization of Multiple-Impulse, Multiple-Revolution, Rendezvous - Phasing Maneuvers. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 946-952
    107.D. W. Moorman. Lunar Orbiter Velocity Control System. Journal of Spacecraft and Rockets, 1968, 5(2): 139-145
    108.W. K. Hrushow. Limitations of the Standard Method for the Midcourse Correction of Lunar Trajectories. AIAA Journal, 1970, 8(3): 424-432
    109.D. Adamo. Apollo 13 Trajectory Reconstruction via State Transition Matrices. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1772-1781
    110.P. H. Kallemeyn, P. C. Knocke, P. D. Burkhart and et al. Navigation and guidance for the Mars Surveyor’98 mission. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, MA, Aug. 10-12, 1998, AIAA-1998-4562: 471-481
    111.R. M. Staley. Performance Analysis of an Optical-Inertial Midcourse Guidance System on a Circumlunar Mission. IEEE Transactions on Military Electronics, 1963, 7(1): 70-79
    112.G. L. Slater, R. G. Stern. Simplified Midcourse Guidance Techniques. Astronautical Society, Stepping Stones to Mars Meeting, Baltimore, MD; United States; 28-30 Mar. 1966, AIAA-1966-2018: 1-12
    113.M. Robb, B. A. White, A. Tsourdos and et al. Reachability guidance: a novel concept to improve mid-course guidance. Proceedings of the 2005 American Control Conference, 8-10 June 2005, 1: 339–345
    114.Y. Xian, W. H. Si. Research on Midcourse Maneuvering Penetration Guidance Law of Ballistic Missile Based on Genetic Algorithm. IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20-22 Nov. 2009: 188-191
    115.S. H. Jalali-Naini. Modern Explicit Guidance Law for High-Order Dynamics. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 918-922
    116.Z. Q. Qi, G.D. Hu, Z.H. Yang and et al. Flight Guidance Control Using Genetic Algorithm Combined with Singular Perturbation Technique. 2003 International Conference on Machine Learning and Cybernetics, 2-5 Nov. 2003, 2: 1034-1038
    117.A. Deihoul, M. Massoumnia. A Near Optimal Midcourse Guidance Law Based on Spherical Gravity. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, Aug. 5-8, 2002, AIAA-2002-4840: 1-7
    118.S. Burns, J. Scherock. Lambert Guidance Routine Designed to Match Position and Velocity of Ballistic Target. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 989-996
    119.G. Zhang. Constrained Multiple-Revolution Lambert’s Problem. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1779-1786
    120.D. Geller. Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1404-1414 121. , . .应用, 2008, 34(6): 3-7
    122.卢山,段佳佳,徐世杰.基于蚁群算法的转移轨道中途修正问题研究.系统仿真学报, 2009, 21(14): 4400-4404
    123.卢山,徐世杰.基于遗传算法的转移轨道中途修正技术研究.全国第十二届空间及运动体控制技术学术年会,广西桂林, 2006, 8.11~14: 257-262
    124.王蒙一,江涌.多目标进化算法在航天器转移轨道中途修正中的应用.航天控制, 2009, 27(5): 52-56
    125. R. E. Roberson. Two Decades of Spacecraft Attitude Control. Journal of Guidance,Control, and Dynamics, 1979, 2(1): 3-8
    126. F. T. Dodge, D. D. Kana. Liquid Slosh Dynamics and Control Technology Program.NASA, and OAI, Conference on Advanced SEI Technologies, Cleveland, OH, Sept4-6, 1991, AIAA-1991-3547: 1-12
    127. H. Shageer, G. Tao. Zero Dynamics Analysis for Spacecraft with Fuel Slosh. AIAAGuidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, Aug.18-21, 2008, AIAA-2008-6455: 1-18
    128. R. J. Hung, K. L. Shyu, C. C. Lee. Medium-frequency Impulsive-Thrust-excitedSlosh Waves during Propellant Reorientation with a Geyser. Journal of Propulsionand Power, 1992, 8(4): 778-785
    129. R. J. Hung, Y. T. Long, G. J. Zu. Coupling of Gravity-Gradient-dominatedAcceleration-induced Slosh Reaction Torques with Spacecraft Orbital Dynamics.Control Engineering Practice, 1996, 4(7): 939-949
    130. R. J. Hung, Y. T. Long, Y. M. Chi. Slosh Dynamics Coupled with Spacecraft AttitudeDynamics. II - Orbital Environment Application. Journal of Spacecraft and Rockets,1996, 33(4): 582-593
    131. A. Baeten, A. Joerdening. Spacecraft Thruster Efficiency Optimization with Respectto Coupled Solid-Liquid Dynamics. 48th AIAA Aerospace Sciences MeetingIncluding the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan.4-7, 2010, AIAA-2010-1446: 1-15
    132. W. Tam, I. Ballinger, D. Jaekle. Tank Trade Study - An Overview. 44thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT,July 21-23, 2008, AIAA-2008-5105: 1-19
    133. M. Vergalla, G. Livesay, D. Kirk and H. Gutierrez. Experimental and NumericalInvestigation of Reduced Gravity Fluid Slosh Dynamics. 44thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, July 21-23, 2008, AIAA-2008-4667: 1-9
    134.D. D. Kana. A Model for Nonlinear Rotary Slosh in Propellant Tank. Journal of Spacecraft. 1987, 24(2): 169~177
    135.C. Nichkawde, P. M. Harish, N. Ananthkrishnan. Stability analysis of a Multibody System Model for Coupled Slosh–Vehicle Dynamics. Journal of Sound and Vibration, 2004, 275(3-5): 1069-1083
    136.S. Chintalapati, D. Kirk. Parametric Study of a Propellant Tank Slosh Baffle. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, July 21-23, 2008, AIAA-2008-4750: 1-11
    137.M. Uo, K. Shirakawa, T. Hashimoto and et al. Attitude Control Challenges and Solutions for Hayabusa Spacecraft. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, Aug. 21-24, 2006, AIAA-2006-6534:
    138.Y. N. Zhao, E. Collins, F. Alvi and D. Dores. Design and Implementation of Feedback Control for Counterflow Thrust Vectoring. Journal of Propulsion and Power, 2005, 21(5): 815-821
    139.L. L. Show; J. C. Juang; C. T. Lin and Y. W. Jan. Spacecraft Robust Attitude Tracking Design: PID Control Approach. Proceedings of the 2002 American Control Conference, 2002, 2: 1360-1365
    140.N. G. Cui, L. B. Zhang, J. L. Pu. Attitude Controller Design for the Advanced Upper Stage. 2009 IEEE International Conference on Mechatronics and Automation, Changchun, China, August 9– 12, 2009: 4376-4380
    141.J. D. Saugen, J. M. Adler. Adaptive Control of Propellant Slosh for a Launch Vehicle with Multiple Tanks. AIAA Guidance, Navigation and Control Conference, New Orleans, LA, Aug 12-14, 1991, AIAA-1991-2818: 1-5
    142.R. Venugopal, D. S. Bernstein. State Space Modeling and Active Control of Slosh. Proceedings of the 1996 IEEE International Conference on Control Applications, 15-18 Sep 1996: 1072 - 1077
    143.E. Weerdt, E. Kampen, D. Gemert and et al. Adaptive Nonlinear Dynamic Inversion for Spacecraft Attitude Control with Fuel Sloshing. AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008 , AIAA-2008-7162: 1-24
    144.T. Burk. Attitude Control Performance During Cassini Trajectory CorrectionManeuvers. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, Aug. 15-18, 2005, AIAA-2005-6270: 1-23
    145.T. Burk, D. Bates. Cassini Attitude Control Operations: Flight Rules and How They are Enforced. AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21, 2008, AIAA-2008-6808: 1-15
    146.A. Lee, G. Hanover. Cassini Spacecraft Attitude Control System Flight Performance. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, Aug. 15-18, 2005, AIAA-2005-6269: 32-83
    147.F. Nagi, S.K. Ahmed, A. A. Z. Abidin, F.H. Nordin. Fuzzy bang-bang relay controller for satellite attitude control system. Fuzzy Sets and Systems, 2010, 161(15): 2104-2125
    148.Y. W. Liang, S. D. Xu, C. L. Tsai. Study of VSC Reliable Designs With Application to Spacecraft Attitude Stabilization. IEEE Transactions on Control Systems Technology, 2007, 15(2): 332-338
    149.H. C. Bang, C. K. Ha, J. H. Kim. Flexible Spacecraft Attitude Maneuver by Application of Sliding Mode Control. Acta Astronautica, 2005, 57(11): 841-850
    150.H. Shageer, G. Tao. Modeling and Adaptive Control of Spacecraft with Fuel Slosh: Overview and Case Studies. AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, Aug. 20-23, 2007, AIAA-2007-6434: 1-19
    151.B. L. Wu, X. B. Cao, Z. X. Li. Multi-objective output-feedback control for microsatellite attitude control: An LMI approach. Acta Astronautica,2009, 64(11-12): 1021-1031
    152.P. Y. Cui, H. Y. Zhu. Nonlinear H normal matrix attitude control of spacecraft. 2009 Chinese Control and Decision Conference, Guilin, 17-19 June 2009: 1404 - 1409
    153.T. Nagashio, T. Kida. Robust Control of Flexible Mechanical Systems by Utilizing Symmetry and Its Application to Large Space Structures. IEEE Transactions on Control Systems Technology, 2009, 17(3): 671-680
    154. , . PID . ,2007, (4): 26-30
    155.A. Baeten. Prediction of Spacecraft Fuel Dynamics in Microgravity. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan. 5-8, 2009, AIAA-2009-1320: 1-19
    156.K. Dong, N. M. Qi, J. J. Guo and et al. An Estimation Approach for Propellant Sloshing Effect on Spacecraft GNC. 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China, 10-12 Dec. 2008: 1-6
    157.N. M. Qi, K. Dong, X. L. Wang and et al.Spacecraft Propellant Sloshing Suppression Using Input Shaping Technique. 2009 International Conference on Mechatronics and Automation, Changchun, China, 9-12 Aug. 2009: 2571-2575.
    158.P. P. Menon, I. Postlethwaite, S. Bennani and et al. Robustness Analysis of a Reusable Launch Vehicle Flight Control Law. Control Engineering Practice, 2009, 17(7): 751-765
    159.G. Calvagno, D. C. Munson. A Frequency-domain Approach to Interpolation from a Nonuniform Grid. Signal Processing. 1996, 52(1):1-21
    160.T. Iwasaki, G. Meinsma, M. Fu. Generalized S-procedure and Finite Frequency KYP Lemma. Mathematical Problems in Engineering, 2000, 6:305-320
    161.T. Iwasaki, S. Hara. Generalized KYP Lemma: Unified Frequency Domain Inequalities with Design Applications. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59
    162.T. Iwasaki, S. Hara, H. Yamauchi. Dynamical System Design from a Control Perspective: Finite Frequency Positive-realness Approach. IEEE Transactions on Automatic Control, 2003, 50(1):1337-1354
    163.S. Hara, T. Iwasaki. Sum-of-Squares Decomposition via Generalized KYP Lemma. IEEE Transactions on Automatic Control, 2009, 54(5):1025-1029
    164.H. G. Hoang, H. D. Tuan, T. Q. Nguyen. Frequency-Selective KYP Lemma, IIR Filter, and Filter Bank Design, IEEE Transcations on Signal Processing, 2009, 57(3): 956-965
    165.B. Hencey, A. G. Alleyne. A KYP Lemma for LMI Regions. IEEE Transactions on Automatic Control, 2007, 52(10):1926-1930
    166.C. L. Dua, L. H. Xie, G. X. Guo and et al. A Generalized KYP Lemma Based Approach for Disturbance Rejection in Data Storage Systems. Automatica, 2007, 43(12):2112-2118
    167.X. N. Zhang, G. H. Yang. Control Synthesis via State Feedback with Finite Frequency Specifications for Time-delay Systems. Int. J. Control, 2009, 82(3): 508-516
    168.H. Wang, G. H. Yang. A Finite Frequency Approach to Filter Design for UncertainDiscrete-time Systems. Int. J. Adaptive Control and Signal Processing, 2008, 22:533-5550
    169. Y. Kim. Satellite Attitude Determination and Estimation Using Two Star Trackers.AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Aug. 2-5,2010, AIAA-2010-8447: 1-23
    170. S. Sleesongsom. Multiobjective Optimization with Even Pareto Filter. FourthInternational Conference on Natural Computation, 18-20 Oct. 2008, 1: 92-96
    171. L. Wang, S. W. Xiong, J. Yang, J. S. Fan. An Improved Elitist StrategyMulti-Objective Evolutionary Algorithm. 2006 International Conference on MachineLearning and Cybernetics, Dalian, China, 13-16 Aug. 2006: 2315 - 2319
    172. S. K. Mandal, R. N. Mahapatra. PowerAntz: Distributed Power Sharing Strategy forNetwork on Chip. 2008 ACM/IEEE International Symposium on Low PowerElectronics and Design, Bangalore, 11-13 Aug. 2008: 177-182
    173. N. Wang, X. Li, L. J. Liu. An Adaptive Multi-objective Image Watermarking Schemefor QIM Using NSGA-II. International Conference on Computational Intelligenceand Security, Beijing, 11-14 Dec. 2009, 2: 273-277
    174. K. P. Kumar, S. Sharath, G. R. D’Souza and et al. Memetic NSGA - aMulti-objective Genetic Algorithm for Classification of Microarray Data.International Conference on Advanced Computing and Communications, Guwahati,Assam, 18-21 Dec. 2007: 75-80
    175.俞立.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社, 2002:8-9
    176. P. Apkarian, H. D. Tuan, J. Bernussou. Continuous-Time Analysis, EigenstructureAssignment, and H2 Synthesis with Enhanced Linear Matrix Inequalities (lmi)Characterizations. IEEE Transactions on Automatic Control, 2001,42(12):1941-1946
    177. J. Doyle, B. D. Francis, A. Tannenbaum. Feedback Control Theory. MacmillanPublishing Co. 1990
    178.周克敏,J. Doyle, K. Glover.鲁棒与最优控制.北京:国防工业出版社. 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700