用户名: 密码: 验证码:
基于多尺度创新原理的工业微生物高通量筛选平台构建及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菌种是发酵技术的源头,菌种发酵水平是决定企业产品能否参与市场竞争的技术保证,因此,微生物高通量筛选技术的研究和应用是提升工业发酵技术的必由之路。本论文通过流体动力学模拟深孔板与普通摇瓶的液体流动速度与剪切力分布,研究微型化培养过程中的氧传递、物料混合等科学问题,解决高耗氧微生物的微型化培养的关键技术。论文先以高耗氧丝状真菌顶头孢霉为研究对象,构建了灵活通用型菌株高通量筛选模型,再以好氧菌红色糖多孢菌和红曲霉为高通量分析及微型化培养对象,验证了高通量筛选平台的准确与可行性,进一步推广了高通量筛选技术的应用。
     首先以顶头孢霉为研究对象,建立了提高筛选效率防止漏筛的高通量菌种筛选方法。即将所有诱变后孢子悬液等分至深孔板,同时培养与检测,先筛选出具有高产特性的存在于孔板中某一深孔中的混合菌群,再进一步从中分离纯化获得高产菌株。所构建的高通量筛选方法提供给诱变株平等的筛选机会,有效克服了传统筛选的漏筛问题。将此高通量筛选方法成功应用于头孢菌素C (CPC)高产菌株筛选,成功获得了一株顶头孢霉高产菌株W-6,在50L发酵罐上CPC产量比出发菌株1-D1提高了近2倍。接着开展了基于多尺度创新原理的菌种筛选后技术的系统研究,分别从代谢特性、菌形变化规律、酶学分析、与CPC合成相关的重要基因转录水平及定量代谢流分析等角度对获得的高产菌株与出发菌株进行了系统分析比较,初步揭示了高产菌株的高产机理。其中,酶学水平上,比较了两菌株在初级代谢过程中的四种关键酶酶活,分别是葡萄糖-6-磷酸脱氢酶、柠檬酸合成酶、异柠檬酸裂解酶和苹果酸合成酶。结果表明高产菌株的异柠檬酸裂解酶和苹果酸合成酶活性明显提高,因此在补加豆油的情况下,乙醛酸循环途径活性的明显提高是导致CPC产量提高的重要原因。我们还对CPC合成途径中的关键酶ACV合成酶、扩环酶/羟化酶、酰基转移酶的编码基因pcbAB, cefEF和cefG进行了转录水平的比较。高产菌株W-6的pcbAB、cefEF、cefG在72h的mRNA转录水平分别是出发菌株(1-D1)的5、8、1.2倍;在96h分别是1-D1的5、14、1.5倍;在120h分别是1-D1的4、50、7倍。说明进入CPC合成期后cefEF转录差异最大,扩环酶/羟化酶的限制很可能是影响CPC合成增加的重要原因,从而为进一步基因改造或优化培养条件提供了有益线索。代谢流计算结果表明,顶头孢霉菌丝体内的碳主要是在以柠檬酸循环、乙醛酸循环和回补途径进行代谢,高产菌株消耗的豆油总量较多,经过代谢分解成的C2底物浓度较高,导致其TCA循环通量较大。高产菌株W-6进入乙醛酸循环途径中的C2底物的通量是出发菌株的1.43倍,能够生成更多的草酰乙酸进入到回补途径当中去,供给CPC合成所需要的NADPH以及前体氨基酸。
     其次,以红曲霉生产菌红色糖多孢菌为研究对象建立了每次检测通量可达数千的高通量生物分析法和高通量化学分析法。高通量生物分析法最佳的检测条件为:25μl一定浓度的红霉素待测样品添加到225μ1检测培养基中,检测培养基接种5%菌悬液在37-C培养5h后,酶标仪580nm处检测。只需微升级样品,即可准确检测出低浓度产物。与管碟法、HPLC及化学显色法检测结果相比,相关系数依次为0.975,0.976,0.968。高通量化学分析法的建立需要考察样品前处理中的3个改变:反应介质的材料变化、反应体积的变化、脱水剂的变化,统计结果显示相对标准偏差均小于5%,说明样品前处理的3个改变不影响测定结果。高通量化学测定方法经可信度检定其相对标准偏差为0.324%,证明此方法充分可信。
     最后,以红曲色素生产菌红曲霉为研究对象构建了高通量菌种筛选模型,获得高产菌株D39-4,摇瓶产量为206.5U/ml;为进一步提高高产菌株D39-4红曲色素的产量,结合响应面分析软件,建立了培养基的高通量筛选。与优化前的发酵培养基相比,红曲色素摇瓶发酵产量达到265.8U/ml,提高了近1.3倍,而副产物橘霉素产量变化不明显。培养基的高通量筛选解决了传统培养基优化设计时通量的限制,提高了实验准确度和精密度。
     论文不仅建立了高通量筛选方法,还设计了与之配套的筛选装置,包括多种类型的深孔板及与其对应的具有通气、抗孔板间交叉污染的三明治盖板等,可供不同的产品建立独特的高通量筛选模型。红色糖多孢菌和红曲霉的高通量筛选技术的辐射应用,不仅验证该筛选平台的准确性与实用性,更为进一步完善和拓展高通量筛选技术奠定了基础。
Improvement of microbial strains for the high-production of industrial products has been the hallmark of all commercial fermentation processes. The construction of high-throughput screening strategy was pivotal for industrial fermentation technology. In order to realize the scale down cultivation by using microtiter plates (MTP), computational fluid dynamics (CFD) was used to simulate and compare the water superficial velocity and shear force between microtiter plates and shake flask. We solved the key problems encountered in microculture for aerobic microorganism, such as oxygen transfer rate and mixing time. In this thesis, filamentous fungi Acremonium chrysogenum was used to establish the flexible and universal high-throughput screening platform, two other aerobic microorganisms Saccharopolyspora erythraea and Monascus purpureus were used to verify the accuracy, feasibility and extensibility of the established screening platform.
     First, A.chrysogenum was employed to construct the high efficiency high-throughput screening strategy. The low probability was the big drawback existed in the traditional screening method. Therefore, the mixture cultivation was effectively proposed and used for the first time to realise the whole mutant library being screened after mutagenesis, which avoided those unselected mutants being unscreened. The high-yield mixture in one well of the microtiter plate was screened out first. The subsequent isolation of the desirable high-yield colonies was further selected and screened from the high-yield mixture. This new screening approach greatly increased probability of obtaining the high-yield strain compared with the conventional method, by which only the parts of treated suspension had chance to be screened by tranditional dilution-plate method. As a result, the high-yield strain W-6was successfully screened out and the cephalosporin C (CPC) titer was nearly two-fold higher than that of the wild strain in50L bioreactor. In order to decipher the mechanism of high yield strain, the performance of the two strains were compared and analysed from the perspective of metabolic properties, mycelium morphology, enzymology, transcription and metabolic flux analysis based on multi-scale study approach. Glucose-6-phosphate dehydrogenase, citrate synthase, isocitrate lyase and malate synthetase are the four key enzymes involved in the primary metabolism. Their enzyme activities were analysed and compared between two strains.The results showed that the higher activities of isocitrate lyase and malate synthetase in primary metabolism might be the reason leading to the high yield of CPC production. Therefore, it can be speculated that the glyoxylate cycle played a pivotal role in the increasement of the metabolic flux leading to CPC biosynthesis, when soybean oil was added. ACV synthetase, expandase/hydroxylase and acetyltransferase were three important enzymes involved in CPC synthesis The genes encoding these three enzymes were pcbAB, cefEF and cefG perspectively. The transcription level of these three genes was compared between strain W-6and1-D1. The mRNA transcriptional levels of pcbAB, cefEF and cefG of W-6was5,8,1.2times of1-D1at72h,5,14,1.5times of1-D1at96h and4,50,7times of1-D1at120h. The results revealed that cefEF encoding expandase/hydroxylase might be the most important gene affecting CPC biosynthesis. The metabolic flux analysis indicated that glyoxylate cycle of high-yield strain was43%higher than the parent strain, so more oxaloacetic acid could be generated and entered into the replenishment pathway, which provided more NADPH and precursor amino acid for CPC synthesis.
     Second, a rapid high-throughput microplate bioassay based on turbidimetry was developed for erythromycin quantification in the fermentation broth. The optimum detection conditions were obtained as follows:25μl certain concentration of samples were added into the225μl bioactivity assay medium mixed with5%inoculation volume of indicator bacteria suspension(OD1.5), incubated for5h at37℃. Thousands of samples could be determined simultaneously. Meanwhile, another rapid high-throughput assay based on colorimetric was established for the measurement of erythromycin chemical titer. The material of reaction medium, reaction volume and dehydrating agent were the three differences existed between microassay and colorimetric, but did not affect the outcome.
     Last, a simple high-throughput screening system was developed for medium optimization. Strain D39-4was screened out and the pigment production was265.8U/ml fermented in shake flask. This high-throughput screening approach was designed to optimize medium composition combined with statistical methods. The analysis revealed that the optimum concentrations of glucose, peptone, NaNO3, KH2P04were51.42,4.91,1.00,1.00g/L. The fermentation medium optimized was verified in shake flasks, the pigment production could be enhanced from206.5U/ml in un-optimized medium to265.8U/ml, giving nearly1.30-fold increase in production.
     In the paper, we also designed the screening device matched to high-throughput technology, included various kinds MTPs and corresponding'sandwich'lids to guarantee the minimization of fluid evaporation rate while maintain suitable aeration and gas exchange rate without cross-contamination. Different productions could select different device to construct their own high-throughput screening platform. We believe that the HTS field continues to be promising and dynamic in the future.
引文
[1]金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用.北京:化学工业出版社,2006
    [2]诸葛健.工业微生物育种学.北京:化学工业出版社,2009
    [3]Paul LS.用重组DNA提高顶头孢霉菌的头孢菌素C产量.国外医药抗生素分册.1991,12(4):254-261
    [4]Marta RS, Lembo M, et al. Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. FEMS Microbiology Letters.2004,235:43-49
    [5]Qin XL, Qian JC, Yao GF, Zhuang YP, Ju C. GAP promoter library for fine-tuning of gene expression in pichia pastoris. Appl. Environ. Microb,2011,77(11):3600-3608
    [6]Dunn DA and Feygin I. Challenges and solutions to ultrahigh-throughputscreening assay miniaturization:submicroliter fluidhanding. DrugDiscov.Today,2000,5:84-91
    [7]Brandt DW. Multiplex nanoliter transfers for high throughputdrug screening using Biomek 2000 and the high desity replication tool. J. Biomol. Screen,1997,2:111-116
    [8]Man BG, Prasad SD A miniature bioreactor for sensing toxicity using recombinant bioluminescent E.coli cells. Biotechnol. Prog,1996,12:393-397
    [9]Leuking A, Horn M, Eickhoff H, Buessow K, Lehrach H, Walter G Protein microassays for gene expression and antibody screening.Anal. Biochem,1999,270:103-111
    [10]James N. Kyranos High-throughput analysis aids early drug discovery. Trends in Analytical Chemistry,2005,24(8):793-794
    [11]Yoo C, Cooper GG.An evaluation of a system that recommends microarray experiments to perform to discover gene regulation pathway.Artif.Intell.Med.2004,31:169-182
    [12]Kerr MK, Churchil GA. Experimental design for gene expression microassays. Trends Biotechnol,1999,17:275-281
    [13]Millar DP. Time-resolved fluorescence spectroscopy. Curr Opin. Struct Biol.1996, 6(5):637-643
    [14]Pope AJ, Haupts U. Homogenous fluorescence readouts forminiaturized high-throughput screening:theory and practice.Drug Discov. Today,1999,4,350-362
    [15]Moore K. et al. Single molecule detection technologies inminiaturized high-throughput screening:fluorescence correlation spectroscopy. J. Biomol. Screen,1999,4:335-353
    [16]Kask P. Two-dimensional fluorescence intensity distribution analysis:theory and applications. Biophys. J.2000,78:1703-1713
    [17]Burbaum JJ. The evolution of miniaturized well plates. J. Biomol. Screen,2000,5:5-8
    [18]Ramsey M. The burgeoning power of the shrinking laboratory. Nat. Biotechnol., 17:1061-1062
    [19]Julian W, Dirk U. Miniaturized HTS technologies-UTS. Drug Discovery ServicesScreening Operations,2001,6(12):637-646
    [20]James P. and Papen R. Nanolitre dispensing-a new innovationin robotic liquid handing. Drug Discov.Today,1998,3:429-430
    [21]Robert H, Mathias L, Lochen B. Characterization of gas liquid mass transfer phenomena in microtiter plates. Biotechnol. Bioeng.2003,81:178-186
    [22]Suchland RJ and Stamm WE. Simplified microtiter cell culture method of rapid immunotyping of Chlamydia trachomatis. J. clini.Microbiol,1991,29(7):1333-1338
    [23]Anaissie E. Paetznick V. Bodey G.P. Fluconazole susceptibility testing of candida albicans:microtiter method that is independent of inoculum size, temperature, and time of reading. Antimicrob. Agents Chemother,1999,35(8):1641-1646
    [24]Anandi M, Mirtha C, et al. Resazurin microtiter assay plate testing of mycobacterium tuberculosis susceptibilities to second-line drugs:rapid, simple, and inexpensive method. Antimicrob. Agents Chemother,2003,47(11):3616-3619
    [25]Dunn D. Ultra-high throughput screen of two-millionmember combinatorial compound collection in a miniaturized 1535-well assay format. J. Biomol. Screen,2000,5:177-187
    [26]Giege PZ, Konthur G., Walter A. Brennicke. An ordered Arabidopsis thaliana mitochondrial cDNA library on high-density filters allows rapid systematic analysis of plant gene expression:a pilot study. Plant J.1999,15:721-726
    [27]Hersh BM, Farooq FT, Barstad DN, et al. A glutamate-dependent acid resistance gene in Escherichia coli.J.Bacteriol,1996,178:3978-3981
    [28]Takeda HH, Yamakuchi N, Ihara K, Hara T, et al. Construction of a bovine yeast artificial chromosome(YAC)library. Anim.Genet,1998,29:216-219
    [29]Wouter A. Duetz Ruedi, Robert Hermann. Method for intense aeration, growth, storage and replication of bacterial strains in microtiter plates. Appli. Environ.Microbiol.2000,66(6): 2641-2646
    [30]John GT, Kimant I, Wittmann C, Heinzle E. Integrated optical sensing of dissolved oxygen in microtiter plates:a novel tool for microbial cultivation. Biotechnol. Bioeng., 2003,81:829-836
    [31]Wolfgang M, James EB, Wouter Duetz.Streptomycetes in micro-cultures:Growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antoine van Leeuwenhoek,2000,78:297-305
    [32]Do Toit EA, Rauten M. A sensitive standardized micro-gel well diffusion assay for the determination of antimicrobial activity. J.Microbiol.Methods,2000,42:159-165
    [33]Kumar M.S,Kumar PM, Strnaik HK, Sadhukhan AK. A rapid technique for screening of lovastain-producing atrains of Aspergillus terreus by agar plus and Neurospora crassa bioassay.J.Microbiol.Methods,2000,40:99-104
    [34]Casey JT, Walsh P.K.2004 Development of a robust microtiter plate-based assay method for assessment of bioactivity. Journal of Microbiology Methods58,327-334
    [35]Rao G. Bioreactor and bioprocessing technique. US7041493B2,2006
    [36]Boccazzi P, et al. Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. Applied Micro and Biotech.,2005.68(4):518-532
    [37]Betts JI, Doig SD, Baganz F. Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnology Progress,2006.22(3):681-688
    [38]Ge XD. Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering,2005.89(3):329-334
    [39]Michael A, et al.Comparisons of optical pH and dissolved oxygenSensors with traditional electrochemical probes during mammalian cell culture.Biotechnol Bioeng.2007,97(4):833-841
    [40]Wolfbeis OS, et al.Fiber-optic chemical sensors and biosensors. Analytical Chemistry2004,76(12):3269-3283
    [41]John GT, Klimant I,Wittmann C,et al.Integrated optical sensing of dissolved oxygen in microtiter plates:A novel tool for microbial cultivation. Biotechnology and Bioengineering.2003,81(7):829-836
    [42]Ulber R, Frerichs JG, Beutel S,et al.Optical sensor systems for bioprocess monitoring.Anal Bioanal Chem.2003,376(3):342-348
    [43]Koehn J, Hunt I,et al.High-throughput Protein Production (HTPP):A Review of Enabling Technologies to Expedite Protein Production.Methods Mol Biol.2009,498:1-18
    [44]Harry B, Alexander D,Robert G. Stafford,et al.Use of a recombinant fluorescent substrate with cleavage sites for all botulinum neurotoxins in high-throughput screening of natural product extracts for inhibitors of serotypes A, B, and E.Appl Environ Microbiol.2008,74(3):653-659
    [45]Sam M,Douglas A, Carleen K, et al.A Robotic Platform for Quantitative High Throughput Screening.[J].Assay Drug Dev Technol.2008,6(5):637-657
    [46]Deshpande RR, Koch KY, et al. Microplates with integrated oxygen sensors for kinetic cell respiration measurement and cytotoxicity testing in primary and secondary cell lines. Assay Drug Dev. Technol.2005,3(3):29-307
    [47]Starkuviene V, Pepperkok R,et al.The potential of high-content high-throughput microscopy in drug discovery.Br J Pharmacol.2007,152(1):62-71
    [48]Yadav M,Contractor P,Upadhyay V.et al.Automated liquid-liquid extration based on 96-well plate format in conjunction with ultra-performance liqudi chromatography tandem mass spectrometry for the quantitation of methoxsalen in human plasma.J Chromatogr B Analyt Tehnol Biomed Life Sci.2008,872(1-2):167-171
    [49]Kane SR, Letant SE, Murphy GA.et al. Rapid,high-throughput,culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates.J Microbiol Methods.2009,76(3):278-284
    [50]Ge. XD, et al.Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture.Journal of Biotechnology.2006,122(3):293-306
    [51]陈福群.头孢菌素类药品的进展.中国药业,1999,8(8):61-62
    [52]张致平.抗菌药物研究进展.中国抗生素杂志,2002,27(2):68-69
    [53]任吉民,张增梅,李华,张立.国外头孢菌素类市场发展综述.中国制药信息.2004.20(11):32-34
    [54]任吉民.国内头孢菌素类市场发展综述.中国制药信息.2004,20(11):29-32
    [55]Hodgkin DC, Maslen EN. The X-ray analysis of the structure of Cephalosporin C.1961, 79:393-402
    [56]Demain AL. Biosynthesis of cephalosporins in "Developments in Industrial Microbiology". Ed.G.pierce,1987,27:175
    [57]Santiago G. The cefG gene of C. acremonium is linked to the cefEF gene and encodes a DAC acetyltransferase closely related to homoserine O-Acetyltransferase. Journal of Bacteriology.1992,174:3056-3064
    [58]Matsumura M, Imanaka T, Yoshida T, et al. Effect of glucose and methionin consumption rates on cephalosporin C production by Cephalosporium acremonium. J. Ferment.Technol., 197856:345
    [59]Behmer CJ, Demain AL. Further studies on carbon catabolite regulation of β-Lactam antibiotic synthesis in cephalosporium acremonium. Current Microbiology 1983,8107-114
    [60]Zanca DM, Martin JF. Carbon catabolite regulation of the conversion of Penicilin N into Cephalosporin C. The Journal of Antibiotics,1983:700-708
    [61]Zhang JY, Wolfe S, Demain AL. Carbon source regulation of ACV Synthetase in Cephalosporium acremonium C-10. Current Microbiology 18(1989):361-367
    [62]Kim JH, Lim JS, Kim SW. The improvement of Cephalosporin C production by Fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnology and Bioprocess Engineering 2004,9:459-464
    [63]Kim NR, Lim JS, Hong SI, Kim SW. Optimization of feed conditions in a 2.5-1 fed-batch culture using rice oil to improve cephalosporin C production by Cephalosporium acremonium M25. World Journal of Microbiology and biotechnology 2005,21:787-789
    [64]Kim JC, Song YS, Lee DH, et al. Fatty Acids reduce the tensile strength of fungal hyphae during cephalosporin C production in Acremonium chrysogenum. Biotechnol Lett 2007, 29:51-55
    [65]Karaffa L, Sandor E, Kozma J, et al. The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum. Appl Microbiol Biotechnol 1999,51:633-638
    [66]Zhang JY.顶头孢霉C-10内ACV合成酶的碳源调节.国外医药抗生素分册,1990,11(5):331-335
    [67]徐月美.含硫化合物对头孢菌素发酵的影响.医药工业.1987,18(6):245-249
    [68]Tollnick C, Seidel G, et al.Investigations of the Production of Cephalosporin Cby Acremonium chrysogenum. Adv Biochem Engin/Biotechnol,2004,86:31
    [69]储炬,李友荣.现代工业发酵调控学.北京:化学工业出版社.2006,71,81,242
    [70]Drew SW, Demain AL. Production of Cephalosporin C by Single and Double Sulfur Auxotrophic Mutants of Cephalosporium acremonium. Antimicrobial Agents and Chemotherapy,1975, July:5-10
    [71]Velasco J, Gutierrez S, Fernandez FJ, et al. Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbAC, and cefEF genes,encoding enzymes of the cephalosprin biosynthetic pathway,in Acremonium chrysogenum. J. Bacteriology 1994, 176(4):985-991
    [72]Martin JF, Liras P. Enzymes involved in penicillin cephalosporin and cephamycin biosynthesis. Adv. Biochem. Eng.1989,39:153-187
    [73]常俊然.谈谈玉米浆.淀粉与淀粉糖2004,2:35-36
    [74]唐有根.农副化工产品生产技术.长沙:中南工业大学出版社.1998,56-62
    [75]姚明勤,张振英.膜技术提取玉米浸渍水中有机酸.淀粉与淀粉糖1991,4:38-40
    [76]孙祎敏.工业微生物及育种技术.北京:化学工业出版社.2011
    [77]季惠军,范毅颖,郑国香.紫外线和亚硝酸复合诱变在顶头孢霉菌选育中的应用.黑龙江医药.2003,16(4):283-284
    [78]季惠军,孟广慧,姚远,郑国香,张新元.微波在顶头孢霉菌选育中的应用.黑龙江医药.2002,15(3):190-191
    [79]周琪文,洪素琴.头孢菌素C产生菌产黄顶孢霉高产变株419—6的选育研究.中国抗生素杂志,1989,14(6):404-407
    [80]俞俊堂,唐孝.新编生物工艺学.第一版.北京:化学工业出版社,2004,37-38
    [81]车振明.工科微生物学教程.成都:西南交通大学出版.2007
    [82]施巧琴,吴松刚主编.工业微生物育种学.北京:科学出版社.2006
    [83]汪天虹.微生物分子育种原理与技术.北京:化学工业出版社.2005
    [84]Duetz W, Ruedi L, Hermann R, et al.Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol,2000, 66:2641-2646
    [85]John GT, Klimant I, Wittmann C, Heinzle E Integrated optical sensing of dissolved oxygen in microtiter plates:a novel tool for microbial cultivation. Biotechnol. Bioeng.2003, 81:829-836
    [86]Sathish Kumar, Christoph Wittmann, Elmar Heinzle Minbioreactor. Biotechnology Letters,2004,26:1-10
    [87]潘娟娟.红霉素产销形势分析.上海医药情报研究.1998,4(51):13-20
    [88]Mironov VA, Sergienko OV, et al.Biogenesis and Regulation of Biosynthesis of Erythromycins in Saccharopolyspora erythraea.Applied Biochemistry and Microbiology.2004,40(6):531-541
    [89]陈岱宗.抗生素及抗感染药物.上海:上海科学技术出版社.1981,12-14
    [90]张伦.红霉素产品发展有空间.中国医药情报.2002,8(5):52-55
    [91]童雪英.西安制药厂红霉素技改工程发酵过程探讨.电器工厂设计.1997,93:21-24
    [92]张嗣良.发酵过程多水平问题极其生物反应器装置技术研究.2001年全国医药领域关键技术研讨会技术资料汇编.2001,32-45
    [93]车振明.工科微生物学教程.成都:西南交通大学出版社.2007
    [94]Bridge PD, Hawksworth DL.Biochemical testes as an aid to the identification of monascus species. Lett. Appl. Microbiol.1985,1:25-29
    [95]郭芳,郭东川,李钟庆.红曲菌的色素与产生菌.微生物学杂志,2004.11.24(6):11-14
    [96]王银叶,韦薇,李厂龄.特种红曲对鹌鹑实验性脂肪肝的治疗作用.中国临床药理学与治疗学,2002,30(3):173-175
    [97]孙明,李悠慧,严卫星.红曲降压作用的研究.卫生研究,2001,30(4):206-208
    [98]Endo, A.1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot,32:852-854
    [99]孙明,李悠慧,严卫星.红曲改善高血脂大鼠血液流变学作用的研究.卫生研究,2001,30(3):173-175
    [100]李航,李学旺,段琳.洛伐他汀对肾小球系膜细胞增殖及细胞周期时相的影响.中国医学科学院学报,2002,24(1):64-66
    [101]国风,岑建农,陈子兴.洛伐他汀对HL-60、KG-1、K562白血病细胞体外作用的研究.癌症2001,20(8):816-819
    [102]童群义.红曲霉产生的生理活性物质研究进展.食品科学,2003,24(10):163-167
    [103]Junker B, Mann Z, Gailliot P, Byrne K, Wilson J. Use of Soybean Oil and Ammonium Sulfate Additions to Optimize Secondary Metabolite Production. Biotechnol Bioeng,1998, (60):580-588
    [104]Hermann R, Lehmann M, Buchs J.Characterization of Gas-Liquid Mass Transfer Phenomena in Microtiter Plates, Biotechnol Bioeng,2003 (81):178-186
    [105]Weiss S, John GT, Klimant I, Heinzle E. Modeling of Mixing in 96-Well Microplates Observed with Fluorescence Indicators. Biotechnol Prog,2002 (18):821-830
    [106]刘桂琼.复混肥料中总氮含量的测定方法探讨.凯里学院学报,2010,28(6):83-84
    [107]王绍萍,惠洋,桑春燕.高效液相色谱法检测玉米浆中的氨基酸.中国地方病防止杂志,2003,18(1):25-26
    [108]宋文元,周淑南.玉米浆中溶磷的分光光度测定.淀粉与淀粉糖,1996,1:34-36
    [109]景丽洁,王树清,邱俊,李健秀.高效液相色谱法测定玉米浸渍水中乳酸.环境工程,2000,18(4):46-47
    [110]沈国华.玉米浆和糖蜜生物素含量测定.发酵科技通讯,2005,34(3):16-17
    [111]任传英,赵永焕,崔洪,杨志平.豆粕和米糠中植酸含量的测定方法研究.大豆通报,2007,(3):43-46
    [112]赵菊梅,李岩,田智慧,代晓静.抗生素发酵原料玉米浆水分的快速测定.化工之友,2007,3:49
    [113]高宇新,黄付玲,孙淑坤,王秀绘.高通量筛选技术应用进展.化工中间体,2009,2:18-21
    [114]郝玉有,王勇.微型生物反应器与高通量菌种筛选.生物生产技术,2009,4:53-59
    [115]刘文尧,栾新慧,赵毅民.高通量筛选的检测原理及应用.解放军药学学报,2003,19(1):63-66
    [116]韩闯,杨盛昌.高通量筛选技术及其应用.生物技术通报,2005,2:22-25
    [117]杜冠华.高通量药物筛选技术进展与新药开发策略.中国新药杂志,2002,11(1):31-36
    [118]Aaron Chen, Rajesh Chitta, David Chang, Ashraf Amanullah. Twenty-Four Well Plate Miniature Bioreactor System as a Scale-Down Model for Cell Culture Process Development. BIOTECHNOLOGY and BIOENGINEERING,2009,102(1):148-160
    [119]Kevin I, et al. Twenty-Four-Well Plate Miniature Bioreactor High-Throughput System: Assessment for Microbial Cultivations.Biotechnol BioengI,2007,98(5):1017-1028
    [120]Harms P, Kostov Y, French JA, Soliman M, et al. (2006). Biotechnol Bioeng,93,6-13
    [121]李晶,詹晓北,刘天中,郑志永,齐祥明.摇瓶反应器中流体流动的CFD数值模拟.化工学报2009,60(4):878-885
    [122]赵卫宁,潘家祯,陈双喜,张嗣良,储炬,庄英萍.生物搅拌反应器的CFD模拟及在肌苷发酵中的应用.华东理工大学学报(自然科学版)2006,32(5):548-551
    [123]侯拴弟,张政.涡轮桨流动场模拟.化工学报,2001,52(3):241-246
    [124]Lamberto D J,Alvarez MM,Muzzio FJ.Experimental and computational investigation of the laminar flow structure in a stirred tank.Chemical Engineering Science,1999,54:919-942
    [125]周国忠,施力田,王英琛.搅拌反应器近桨区的计算流体预测.高校化学工程学报,2002,16(1):17-22
    [126]Lane G L, Schwarz M P, Evans G M. Predicting gas-liquid flow in a mechanically stirred tank.Applied Mathematical M odelling,2002,26:223-235
    [127]李光,杨晓钢,戴干策.鼓泡塔反应器气液两相流CFD数值模拟.化工学报2008,59(8):1958-1965
    [128]Kerdouss F,Bannari A, Proulx P.CFD modeling of gas dispersion and bubble size in a double turbine stirred tank.Chem.EngSci.2006,61:3313-3322
    [129]蒋啸靖,夏建业,赵劫,储炬,王永红,庄英萍,张嗣良.生物搅拌反应器内混合情况的CFD模拟及在发酵中的应用.化学与生物工程2008,25(7):54-57
    [130]Kerdouss F, Bannari A, Proulx P, Bannari R, Skrga M, Labrecqu e Y. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Computers and Chemical Engineering,2008,32(8):1943-1955
    [131]俞俊棠,唐孝宣,邬行彦.新编生物工艺学(上册).北京:化学工业出版社,2005
    [132]周德庆.微生物学教程.第二版.北京:高等教育出版社,2002
    [133]储炬,李友荣.现代工业发酵调控学.第二版.北京:化学工业出版社,2006
    [134]俞建瑛,蒋宇,王善利.生物化学实验技术.北京:化学工业出版社,2007
    [135]戴秀君.头孢菌素C高产菌株选育及发酵工艺研究[硕士学位论文].保存地:天津大学化工学院,2008
    [136]刘晓红.青霉素高产菌株HTS平台的建立[硕士学位论文].保存地:河北科技大学,2010
    [137]Duan SB, Yuan GQ, Zhao YL, Li HF, Ni WJ, Sang MN, Liu LM, Shi ZQ. Enhanced Cephalosporin C production with a combinational ammonium sulfate and DO-Stat based soybean oil feeding strategy. Biochem. Eng. J. doi:10.1016/j.bej.2011.11.011
    [138]Seidel G.,et al.Production of cephalosporin C by Acremonium chrysogenum in semisynthetic medium.Process Biochem,2002,38:263-272
    [139]Esther K.Schmitt,Birgit Hoff,Ulrich Kuck.Regulation of Cephalosporin Biosynthesis.Adv Biochem Engin/Biotechnol,2004,88:1-43
    [140]Gutierrez SG, et al. Characterization of the Cephalosporium acremonium pcbAB Gene Encoding ot-Aminoadipyl-Cysteinyl-Valine Synthetase, a Large Multidomain Peptide Synthetase:Linkage to the pcbC Gene as a Cluster of Early Cephalosporin Biosynthetic Genes and Evidence of Multiple Functional Domains. J.Bacteriol,173(7):2354-2365
    [141]张玉芝,李玉芳,张敏.谈影响玉米浆质量的因.赤峰学院院报,2007,23(4):91-100
    [142]Gao Y, Yuan YJ. Comprehensive Quality Evaluation of Corn Steep Liquor in 2-Keto-L-gulonic Acid Fermentation.J. Agric. Food Chem.2011,59,9845-9853
    [143]Srere, P.A. (1969), Methods in Enzymology, ⅩⅢ,1-11
    [144]Noltmann EA,et al. Glucose 6-Phosphate Dehydrogenase (Zwischenferment). Journal of Biological Chemistry,1961,236:1225-1230
    [145]Chell RM, et al. A.E.Isolation and Characterization of Isocitrate Lyase from a Thermophilic Bacillus sp. Chell.Biochemical Journal,1978,173:165-177
    [146]Silverstein, R.M.The determination of the molar extinction coefficient of reduced DTNB.Analytical Biochemistry.1975,63,281-282
    [147]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods,2001,25(4):402-408
    [148]淀粉与淀粉糖杂志编辑部.发酵用玉米浆的关键指标.淀粉与淀粉糖,2003,3:44-45
    [149]佟春侠,李福,王高升.生物氮素在头孢菌素C发酵生产上的替代应用.黑龙江医药,2004,17(2):125-127
    [150]Philippe M. Apparent induction of key enzymes of the glyoxylic acid cycle in barley leaves. Plant.1998,176:548-550
    [151]Eugenio Perdiguero. Role of Mg2+ Ions Kinetics and Evidence for a Histidine Residue in the Active Site of the Enzyme. Biochemistry.1995,34:6059-6068
    [152]郭元昕,李景森.豆油对头孢菌素C发酵影响的初步研究.中国抗生素杂志.2010,35(10):747-750
    [153]Henry C.Function of malate synthetase and isocitritase in the growth of bacteria on two-carbon compounds. Bacteriol.Journal of Bacteriology.1962,83 (3):597
    [154]Christophe F.Soybean (Glycine max. L.) and bacteria glyoxylate cycle activities during nodular senescence. Journal of Plant Physiology.2004,161:183-190
    [155]Sandor.Cyanide-Resistant Respiratory Pathway in A. chrysogenum.Food Technol. Biotechnol.2003,41 (1):43-47
    [156]Li JH,Ju C. Quantitative metabolic flux analysis revealed uneconomical utilization of ATP and NADPH in Acremonium chrysogenum fed with soybean oil. Bioprocess Biosyst Eng. 2010,33(9):1119-1129
    [157]Vallino J,et al Metabolic flux distributionsin Coryynebacrerium glutarnicurn during growth and lysine overproduction.Biotechnol Bioeng.1993,41:633-646
    [158]Henriksen CM, Christensen LH, Villadsen J, Villadsen J. Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum. J Biotechnol.1996,45: 149-164
    [159]Karaffa LK.A.The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Cephalosporium acremonium. Appl Microbiol Biotechnol.1999,51:633-638
    [160]Reardon, K. F., Scheper, T.H., Bailey, J. E. Metabolic pathwayrates and culture fluorescence in batch fermentations of Clostridium acetoburylieurn. Biotechnol.1987, Prog.3: 153-167
    [161]梁世平,刘可中.玉米浸泡质量与玉米浆质量关系的探讨.淀粉与淀粉糖,2001,1:36-37
    [162]陈璥.玉米浆质量和浸渍工艺的关系.淀粉与淀粉糖,2006,1:39-40
    [163]张部昌,赵志虎,马清钧.红霉素生物合成的分子生物学.生物技术通讯.2001,12(2):142-147
    [164]俞俊棠,唐孝宣.生物工艺学上海:华东理工大学出版社.1992,244-246
    [165]王晓辉,许先栋.红霉素类大环内酯抗生素结构改造和抗菌活性研究的最新进展.国外医药抗生素分册.2000,21(1):1-2
    [166]张全国,王敏,高洪军等.红霉素高产菌株的选育.中国抗生素杂志,2003,28(3):181-182
    [167]姜怡,杜冠华,孙秋,彭云霞,李凌枫,徐丽华.放线菌生物活性物质的高通量筛选.云南大学学报(自然科学版),2004,26(4):364-366
    [168]李哲媛,康勇,范兵.微生物比浊法测定硫酸庆大霉素注射液的效价.中国药业,2005,14(3):38-39
    [169]中华人们共和国卫生部药典委员会.中华人民共和国药典[Z].北京:化学工业出版社,2000.
    [170]范代娣,党政.红霉素摇瓶发酵实验工艺条件.西北大学学报(自然科学版),2000,30(1):42-46
    [171]杜进祥.分析化学中的检出限、测定限与检测限.化学工业出版社,北京,2003
    [172]田强兵.分析化学中检出限和测定下限的探讨.化学分析计量,2007,16(3):72-73
    [173]白玲,倪永年,任建敏,李铭芳.K比例H点标准加入分光光度法同时测定铁钴镍的研究.南昌大学学报(理科版),2001,25(2):147-150
    [174]远藤章(日).胆固醇合成抑制剂莫纳可林K--关联物质的探索.陈瑞娟译.酿酒科技,1999,33(3):81-83
    [175]Blanc PJ, Laussac JP, Bars JL, etal. Characterization of monascidin Afrom Monascus as citrinin. Int J Food Microbiol,1995(27):201-203
    [176]许赣荣,李凤琴,陈蕴等.红曲霉橘霉素的检测方法及红曲霉产橘霉素的判别方法.微生物学通报,2004,31(3):16-20
    [177]黄祖新,林应椿,郑广乐等.HPLC法测定福建红曲中的橘霉素.福建师范大学学报:自然科学版,2003,19(4):71-73
    [178]Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S. Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol.2008,126:20-23
    [179]Xv BJ, Jia XQ, Gu LJ, Sung CK. Review on the qualitative and quantitative analysis of the mycotoxin citrinin. Food Control.2006,17:271-285
    [180]雷萍.红曲中生物活性物质研究进展.食品工业科技.2003,24(9):86-89
    [181]CU Broder. Pigments produced by Monascus purpureus with regard to quality and quantity[J]. Journal of Food Science.1980,45(3):567-569
    [182]崔莉,张德权,张培正.红曲色素的研究现状分析.食品科技.2008,8:115-119
    [183]Micheletti M, Barrett T, Doig SD, et al. Fluid mixing in shaken bioreactors: Implications for scale-up predictions from microliter-scale microbial and mammalian cell cultures. Chem Eng Sci.2006,61:2939-2949
    [184]Weuster-Botz D. Parallel reactor systems for bioprocess development. Adv Biochem Eng/Biotechnol.2005,92:125-143
    [185]Doig S, Pickering S, Lye G, Woodley J. The use of microscale processing technologies for quantification of biocatalytic baeyer-villiger oxidation kinetics. Biotechnol Bioeng.2002, 80:42-49
    [186]Harms P, Kostov Y, French JA, et al. Design and performance of a 24-station high throughput microbioreactor.Biotechnol Bioeng.2006,93:6-13.
    [187]Puskeiler R, Kaufmann K, Weuster-Botz D. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design. Biotechnol Bioeng.2005,89:512-523
    [188]Ghorbania F,Younesia H,Ghasempouria SM. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae.Chem Eng J.2008,145(2):267-275
    [189]Mirhosseini H, Tan CP, Hamid NS. A characterization of the influence of main emulsion components on the physicochemical properties of orange beverage emulsion using response surface methodology.Food Hydrocolloid.2009,23(2):271-280
    [190]Li YQ, Jiang HX, Xu YQ. Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp.M18G using response surface method. Appl Microbiol Biotechnol.2008,77(6):1207-1217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700