用户名: 密码: 验证码:
稻麦主要调优栽培指标的遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦、水稻是我国、也是江苏省最主要的两大粮食作物,稻麦调优栽培技术在实际生产中发挥了重要作用,但稻麦生产状况的大面积监测预报技术至今较为滞后,遥感技术可以瞬时大面积地同步对稻麦的生长状态和生长环境进行监测预报,为实现大面积、低成本早期监测预报稻麦品质和产量提供了技术保障。
     针对当前大田稻麦调优栽培技术单一、栽培模式繁多等这些亟待进一步探讨和需要解决的实际问题,同时为快速、无破坏地掌握区域性稻麦长势信息,满足稻麦实际生产管理需求,最终实现优质、高产、高效、安全、生态这一稻麦种植生产目标,本研究围绕稻麦长势参数、小麦产量及主要籽粒品质参数与遥感变量间定量关系,以遥感信息为技术支撑,研究遥感技术监测稻麦主要调优栽培指标的机理和方法,探讨应用遥感技术监测稻麦长势、预测小麦籽粒品质和估算小麦产量的可行性。
     主要研究内容和结果如下:
     (1)基于Landsat TM数据的小麦长势状况遥感监测研究
     分析不同生育时期小麦理化参数间的相关性,结果表明,叶片氮含量与籽粒蛋白质、湿面筋及淀粉间均呈显著或极显著相关,但以开花期关系最为密切,说明开花期可作为遥感预测籽粒品质更为理想的时期。
     分析小麦遥感变量与长势参数间的关系,结果表明,遥感监测小麦SPAD、生物量、LAI、叶片氮含量和叶片含水量时,拔节期,分别选用B5、NDVI、DSW5、B2和RVI作为敏感遥感变量,开花期,分别选用NRI、B4、NDVI和NDWI2作为敏感遥感变量,经评价后,确定了拔节期和开花期小麦长势遥感监测模型。
     利用上述模型,输入由目标影像生成的遥感光谱变量图并进行解算,再叠加小麦种植分布图和行政边界矢量数据,参照长势参数等级标准,生成LAI、SPAD、生物量和叶片氮含量遥感监测专题图,并以LAI为主,生成拔节期和开花期具有实际农学意义的区域性小麦长势分级图。
     (2)基于Landsat TM数据的小麦籽粒品质和产量遥感监测预测研究
     分析小麦叶片氮含量与主要籽粒品质指标间、籽粒蛋白质含量及产量与遥感变量间的相关性,结果表明,开花期利用NDVI预测籽粒粗蛋白质含量和产量是最合适的。采用间接模式,利用遥感监测开花期叶片氮含量,结合叶片氮含量与籽粒粗蛋白质含量间的定量关系,构建及验证直接模式和间接模式下籽粒粗蛋白质含量和产量遥感预报模型,且精度较高。
     依据籽粒蛋白质含量和产量等级划分标准,生成不同等级籽粒蛋白质含量和产量卫星遥感预报图,以及江苏省小麦品质区划图,为相关部门及时准确地提供小麦籽粒品质和产量信息,利于企业节本增效。
     (3)基于地面光谱数据水稻理化参数的遥感监测研究
     分析水稻叶片光谱特性,结果表明,水稻叶片反射光谱与透射光谱的波形特征及趋势极为相近,而与吸收光谱相反,可见光波段因受到色素吸收的影响,导致光谱反射率和透射率都较低;近红外平台波段因受到叶片内部的多次光散射影响,导致光谱反射率和透射率都趋于50%,而吸收率极低。
     分析遥感光谱变量与水稻理化参数间的相关性,结果表明,在400-1250nm波段,可以利用叶片光谱反射率诊断LAI、SPAD和CHL,在1350-1550nm波段,诊断LWC和LNC;利用NDVI、NDWI、GreenNDVI和NRI等光谱植被指数诊断相应的叶片营养及LAI是可行的,并构建及验证了以这些遥感参量为自变量的遥感诊断模型,尤其利用NDWI(860, 1240)诊断LWC、GreenNDVI诊断SPAD更为理想,构建的诊断模型分别为:y = 74.39x + 71.702和y = 64.737x + 25.221。
     (4)水稻氮素营养高光谱遥感监测研究
     通过分析遥感光谱变量与水稻氮含量间的关系,结果表明,以796nm附近处的光谱反射率为自变量的氮含量线性模型用于诊断水稻氮素营养是可行的,以738nm附近处的一阶微分光谱反射率为自变量的氮含量指数模型诊断水稻氮素营养亦是可行的,且优于以796nm附近处的光谱反射率为基础构建的线性模型,经预测性评价后,最终提出了采用以植被指数的归一化变量(SDr-SDb)/(SDr+SDb)为自变量构建的水稻氮素营养高光谱遥感诊断模型(y = 365.871 + 639.323(SDr-SDb)/(SDr+SDb))诊断水稻氮素营养是最理想的。
     (5)调优栽培集成技术研究
     分析小麦拔节期叶片SPAD值与施氮量间的定量关系,根据小麦叶片SPAD值的遥感监测结果,有针对性地提出某一区域的氮肥施用量,再根据某一区域内不同地块的小麦叶片SPAD值,提出单个地块的氮肥施用量,综合上述分析,已初步实现卫星遥感与小麦调优栽培技术的集成,形成了一套基于卫星遥感和叶片SPAD值的小麦实时诊断和变量施肥技术,这项技术可用于小麦长势实时诊断和变量施肥调控。
     将卫星遥感影像与水稻调优栽培技术进行集成,依据LAI等级划分标准,生成水稻长穗期长势状况遥感监测分级图,并依据对水稻长穗期长势状况卫星遥感监测结果,集成水稻调优栽培技术,提出水稻长穗期生长异常的具体调控措施,建立一套基于卫星遥感与水稻长穗期LAI的调优栽培技术,这项技术可用于针对遥感监测长势状况提出配套的栽培管理措施。
Wheat and rice are the two most important food crops in our country and Jiangsu province. The optimized cultivation techniques have played an important role in the actual production of wheat and rice. However, the technology of monitoring and forecasting wheat and rice production status on large areas is the more lag so far. The growth status and environment of wheat and rice can be monitored and forecasted synchronizely at a large-scale and in real-time by remote sensing technology. It achieved to provide the technical support for large-scale, low-cost monitoring and forecasting of early quality and yield of wheat and rice.
     The study is in connection with the practical problems that the currently rice-wheat cultivation techniques imperfect which needed further development and solved, at the same time,it need grasping information on the regional rice-wheat crop fastly and without damage and meeting the demand of rice and wheat production management practice, and ultimately making the target of high-quality, high yield, efficient, safe, ecological cultivation of this rice-wheat production come out, Around the variables relationship between the growth of rice-wheat crop, wheat yield and the main grain quality parameters and remote sensing quantitative, this study depends on the remote sensing technology to study of tuning the mechanism and methods of integration between remote sensing technology and rice-wheat cultivating management measures. We also explore the application of remote sensing techniques to monitor the growth of rice-wheat crop, prediction of wheat grain quality and the feasibility estimating of wheat production. The main research content covers the following aspects:
     (1) The study on monitoring the growth situation of winter wheat by remote sensing based on Landsat TM data
     We analysisd the correlation between physical and chemical parameters different growth stages of wheat.The results showed that leaf nitrogen content and grain protein, wet gluten and starch significantly or very significantly correlated. But the correlation of flowering is most closely.It shows that flowering can be used as the desirable period of time for grain quality forecasted by remote sensing.
     By analysising of remote sensing variables and are the growth of wheat, the relationship between parameters showed that when monitoring wheat SPAD, biomass, LAI, leaf nitrogen content and leaf water content,in the jointing stage, we selected to B5, NDVI, DSW5, B2 and the RVI as sensitive remote-sensing variables.In the flowering period, we selected NRI, B4, NDVI, and NDWI2 as sensitive remote-sensing variables. After evaluation, the remote sensing monitoring model about the jointing stage of wheat crop is growing and flowering stages has been determined.
     With the use of the above model, we enter by the spectrum of remote sensing to map that is generated target image and solver variables, and then overlay maps of wheat and administrative boundary vector data, by taking into account parameters of grading standards are growing, generate the matic remote sensing monitoring of map of LAI, SPAD, biomass and leaf nitrogen content.It generated graded map of jointing stage and the flowering period of practical significance of the regional agricultural crop mainly with LAI.
     (2) The study on monitoring and forecasting wihter wheat grain quality and yield by Remote Sensing based on Landsat TM data
     By Analysising of leaf nitrogen content of wheat grain quality indicators of the main, the grain protein content, yield and remote sensing variables, the correlation between variables, results showed that in the flowering period by the using of NDVI predicted crude protein content and yield of grain is the most appropriate.With the Indirect model, the use of remote sensing to monitor flowering leaf nitrogen content,combined with leaf nitrogen content and grain crude protein content of the quantitative relationship .We constructed and validated the prediction model of remote sensing the direct mode and indirect mode about grain crude protein content and yield, which was high precision. Bsed on grain protein content and yield grading standards, forcasting maps and the zoning map of wheat quality in Jiangsu Province has been generated about different levels of grain protein content and yield,in order to provide wheat grain quality and yield informaition to relevant departments to help enterprises to an abriged version efficiency.
     (3) Diagnosing leaf nutrition concentration and leaf area index in rice through leaf spectra data
     The research analysised spectral characteristics of rice leaves showed that the rice leaf reflectance spectra and transmission spectra of the waveform characteristics and trends were very similar, while contrary with absorption spectra, due to the impact of the visible light absorpted by the pigment.It resulted in spectral reflectance and transmittance are comparatively low ; near-infrared bands due to being blade platform, the internal effects of multiple light scattering, resulting in spectral reflectance and transmittance have tended to be 50%, while the low absorption rate.
     Through analysising the correlaition between remote sensing spectral variable physical and chemical parameters in rice. The results showed thatwe can make use of leaf spectral reflectance diagnosis LAI, SPAD and the CHL in the 400-1250nm band, diagnosis, LWC, and LNC in the 1350-1550nm band; It is feasible to use NDVI, NDWI, GreenNDVI and the NRI and other spectral vegetation index in diagnosis of the corresponding leaf nutrition and LAI.We have constructed and validated model of remote sensing variables that using these remote sensing parameters for self-diagnosis.In particular, the use of NDWI (860, 1240) diagnosis of LWC, GreenNDVI diagnosis of SPAD is desirable to construct the diagnostic model, respectively: y = 74.39x + 71.702 and y = 64.737x + 25.221.
     (4) Hyperspectral remote sensing diagnosis models for nitrogen nutrition status in rice
     The purpose of study was to analysis the correlation of remote sensing spectral variables and nitrogen content of rice .The results showed that it is feasible. We use the spectral reflectance near to 796nm as independent variables of nitrogen content in the linear model to diagnose rice nitrogen nutrition. And then, near to 738nm Department's first-order differential spectral reflectance as the independent variable nitrogen content of rice nitrogen nutrition index of model-based diagnosis is also feasible and superior to the spectral reflectance the linear model built which based on at 796.7nm. After forecasting evaluation , the final proposed to adopt a vegetation index, normalized variables (SDr-SDb) / (SDr + SDb) as independent variables built Hyperspectral remote sensing of rice nitrogen nutrition diagnosis model (y = 365.871 + 639.323 (SDr-SDb) / ( SDr + SDb)) diagnosis of nitrogen nutrition of rice is the best.
     (5) The study on integrating the optimized cultivation techniques
     By the analysis of jointing stage of wheat leaf SPAD values and the quantitative relationship between the amount of nitrogen, we have found the amount of nitrogen fertilizer in a targeted manner of a certain region according to wheat leaf SPAD value of the remote sensing monitoring results. Then according to the different plots within a region Wheat leaf SPAD value, we put forward a single block of nitrogen fertilizer. The above analysis has been initially achieved tuning of satellite remote sensing and wheat cultivation techniques of integration.Then we formed a set of satellite-based remote sensing and leaf SPAD value of the real-time diagnosis and variable fertilization of wheat technology, which can be used for real-time diagnosis of wheat crop is growing and the regulation of variable rate fertilization.
     Through integrating the satellite remote sensing images and rice cultivation techniques, we generated a long-heading stage of rice crop growth status of remote sensing classification map that based on LAI grading standards.And based on a long-heading stage of rice crop growth status of satellite remote sensing monitoring results, a rice tune excellent cultivation techniques was integrated.Long-heading stage of rice abnormal growth of the specific control measures have been figured out. The establishment of rice tuning cultivation techniques which was satellite remote sensing -based and LAI, the technology can be used for remote monitoring of bloom conditions proposed by supporting cultivation management measures.
引文
[1] Al-Abbas A H, Barr R, Hall S D, et al. Spectra of normal and nutrient deficient maize leaves[J]. Agron J., 1974,66:16-22
    [2] Anup K. Prasad, Lim Chai, et al. Crop yield estimation model for Iowa using remote sensing and surface parameters[J]. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(1):26-33
    [3] Badri B B, Armando A A, Rob M K. Relating satellite imagery with grain protein content[J]. Proceedings of the Spatial Sciences Conference, 2003,pp:22-27, Canberra
    [4] Bhatia C R, Rabson R. Bioenergetic considerations in cereal breeding for protein improvement [J]. Science (Washington, DC). 1976, 194: 1418-1421
    [5] Blackburn P, Curran J, et al. Estimating the Stem Carbon Production of a Coniferous Forest Using an Ecosystem Simulation Model Drived by the Remotely Sensed Red Edge [J]. Int. J. Remote Sens, 1998, 21 (4): 619-631
    [6] Bonham-Carter G F. Numerical Procedures and Computer Program for Fitting an Inverted Gaussian Model to Vegettion Reflectance Data[J]. Computers & Geosciences, 1988,14(3): 339-356
    [7] Bunnik G D, MacDonald R B, Mehta N C. Satellite derived leaf area index and vegetation maps as input to global carbon cycle models: A hierarchical approach[J]. Int. J. Remote Sens, 1978, 7: 265-281
    [8] Card D H, Peterson D L, Matson P A, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy[J]. Remote Sensing of Environment, 1988, 26:123-147
    [9] Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress[J]. Int. J. Remote Sens, 1994, 15: 697-703
    [10] Curran P J, Dungan B A, Macler S E, et al. Refectance spectroscopy of fresh whole leaves for the estimation of chemical concentration[J]. Remote Sensing of Environment,1992, 39:153-166
    [11] Curran P J, Dungan J L, Gholz H I. Exploring the relationship between reflectance, red edge and chlorophyll content in slash pine[J]. Treee Physiol, 1990,7:33-48
    [12] Dalezios N R, Domenikiotis C, Loukas A, etal. Cotton yield estimation based on NOAA/AVHRR produced NDVI[J]. Physics and Chemistry of the Earth, 2001, 26(3):247-251
    [13] Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int. J. Remote Sens., 1999,20(14): 2741-2459
    [14] Dawson B, Barbarick K A, Westfall D G, et al. Tissue nitrogen levels for dryland hard red winter wheat[J]. Agron. J., 1990, 82: 561-565
    [15] Delgado J A, Ristau R J, Dillon M A, et al. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations. Commun[J]. Soil Sci. Plant Anal. 2001, 32:1321-1354
    [16] Dury S J, Jia X, Turner B J, Dibley G. From leaf to canopy: Determination of nitrogen concentration of eucalypt tree foliage using HyMap image data[J]. Proceedings of 10th Australian Remote Sensing and Photogrammetry Conference.delaide: Casual Productions, Rundle Mall, 2000, August 21–25 (pp. 875–891)
    [17] Dury S J, Jia X. Use of hybrid supervised and unsupervised classification model to determine nitrogen concentration of eucalypt tree foliage using HyMap data[J]. Proceedings of 2001 International Geoscience and Remote Sensing Symposium, Sydney, July 2001
    [18] Elvidge.Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn[J]. Computers and electronics in griculture, 2003, 38 (2): 99-124
    [19] Fernandez S, Vidal D, Simon E, et al. Radiometric Characteristics of Triticum aestivum cv. Astral under Water and Nitrogen Stress[J]. Int. J. Remote Sens., 1994,15(9): 1867-1884
    [20] Filelia I, Pe?uelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[J]. Int. J. Remote Sens.,1994, 15:1459-1470
    [21] Filella I, Serrano L, Serra J, et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminate analysis[J]. Crop Sci. 1995, 35:1400-1405
    [22] Gao J. A comparat ive study on spat ial and spect ralreso lut ions of satellite data in mapp ing mangrove fo rests [J]. Int. J. Remote Sens., 1999, 20(14) : 2823- 2833
    [23] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing Environment, 1996, 58: 289-298
    [24] Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll a using reflectance spectra: Experiments with autumn chestnut and maple leaves[J]. J. Photochem Photobiol (B), 1994a, 22: 247-252
    [25] Gong P, Pu R, Miller J R. Coniferous forest leaf area index estimation along the Oregon transect using compact airborne spectrographic imager data[J]. P E & R S, 1995, 61(9): 1107 -1117
    [26] Grossman Y L, Ustin S L, Jacquemoud S, et al. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data[J]. Remote Sensing of nvironment, 1996, 56: 182-193
    [27] Hansen P M, J?rgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression[J]. J. Agri. Sci. 2002,139:307-318
    [28] Hansen P M and Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sens. Environ, 2003, 86(4):542-553
    [29] Horler D N H, Barber J P, Ferns D C, et al. Approaches to detection of geochemical stress in vegetation[J]. Advanced Space Research, 1983, (3): 175-179
    [30] Hung T. Nguyen and Byun-Woo Lee. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. European Journal of Agronomy, 2006, 24(4):349-356
    [31] Huete A, Didan K, M iura T, et al. Overview of theradiomet rice and biophysical perfo rmance of the MODIS vegetation indices[J]. Remote Sens. Environ, 2002, 83: 195- 213
    [32] Humburg D S, Stange K W, Robert P C, et al. Spectral properties of sugarbeets related to sugar content and quality[J]. Proceedings of the Fourth International Conference on Precision Agriculture,St. Paul, Minnesota, USA, 19-22 July 1998. PartA and PartB. 1999, 1593-1602
    [33] Inoue Y. Reflectance assessment of canopy CO2 uptake[J]. Int. J. Remote Sens., 2000, 21:3353-3356
    [34] Jiang D, Yang X,Wang N. Study on the interaction between NDVI profile and the growing status of crops[J]. Chinese Geographical Science, 2003, 13(1): 62-65
    [35] Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaafir foliage[J]. Int. J. Remote Sens., 1996,17(4):489-500
    [36] Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect[J]. Remote Sens. Environ. 1994, 47:216-230
    [37] Kimura Reiji, Okada Shuhei, Miura Hiroyuki, et al. Relationships among the leaf area index, moisture availability, and spectral reflectance in an upland rice field[J]. Agricultural Water Management, 2004,69(2):83-100
    [38] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment. 1999, 67: 267-287
    [39] Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen content[J]. Remote Sensing of Environment.2001,75: 153-161
    [40] Labus M P, Nielsen G A, Lawrence R, et al. Wheat yield estimates using multi-temporal NDVI satellite imagery[J]. Int. J. Remote Sens, 2002, 23 (20), 4169-4180
    [41] LaCapra V C, Melack J M, Gastil M,et al. Remote sensing of foliar chemistry of inundated rice with imaging spectrometry[J].Remote ensing of Environment, 1996, 55: 50-58
    [42] Liangyun Liu, Jihua Wang, Wenjiang Huang, et al. Estimating winter wheat plant water content using red edge parameters[J]. Int. J. Remote Sens, 2004, 25(17): 3331-3342
    [43] Loffler C M, Busch R H. Selection for grain protein, grain yield, and nitrogen partitioning in hard red spring wheat[J]. Crop Sci, 1982, 22: 591-595
    [44] Malthus F E, Crafts-Brandner S J, et al. Uptake, distribution and remobilization of 15N -labeled urea applied to maize canopies[J]. Agron J. 1993,77:412-415
    [45] Martin M E, Aber J D. Estimation of forest canopy lignin and nitrogen concentration and ecosystem processes by high spectral resolution remote sensing[J]. Ecol. Appl., 1997, 7:431-443
    [46] Martin M E, Newman S D, Aber J D, et al. Determining forest species composition using high spectral resolution remote sensing data[J]. Remote Sens. Environ., 1998, 65:249-254
    [47] Matson P, Johnson L, Billow C, et al. Seasonal patterns and remote ensing spectral estimation of canopy chemistry across the Oregon ransect[J]. Ecological Applications, 1994, 4:280-298
    [48] McLellan T M, Aber J D, Martin M E, et al. Determination of nitrogen, lignin, and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy[J]. Canadian Journal of Forest Research, 1991, 21: 1684–1688
    [49] McMullan P M, McVetty P B E, Urquhart A A. Dry matter and nitrogen accumulation and redistribution and their relationship to grain yield and grain protein in wheat[J]. Can. J. Plant Sci., 1988, 68: 11-322
    [50] Merzlyak A C, Mendonca A, Ferreira M E, et al. Relationship between spectroradiometric and chlorophyll measurements in green beans[J]. Commin Soil Sci and Plant Anal, 1997, 31(56):631-643
    [51] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model[J]. Int. J. Remote Sensing,1990,11(10):1755-1773
    [52] Miller J R, Wu J, Boyer M G, et al. Season patterns in leaf reflectance red edge characteristics[J]. Int. J. Remote Sens., 1991, 12: 1509-1523
    [53] Nakamara N, Kawashima S. Relation between tea quality and environmental characteristics obtained from satellite images in a tea plantation area[J]. Jap. J. Crop Sci., 1999, 68 (3): 424-432
    [54] Pate N K, Patnaik C, et al. Study of Crop Growth Parameters Using Airborne Imaging Spectrometer Data [J]. Int. J. Remote Sensing, 2001, 22(12): 2401-2411
    [55] Paul J. Curran, et al, Estimating the Foliar Biochemical Concentration of Leaves with Reflectance Spectrometry Testing the Kokaly and Clark Methodologies[J]. Remote Sensing of Environ. 2001,76: 349-359
    [56] Pe?uelas J, Filella I, Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance[J]. New Phytol. 1995, 131: 291-296
    [57] Pe?uelas J, Fredeen J A, Merino A L, et al. Reflectance indices associated with physiological changes in nitrogen- and water- limited sunflower leaves[J]. Remote Sens. Environ., 1994, 48: 135-146
    [58] Peterson D J, Aber J D, Matson P A, et al. Remote Sensing of forest canopy and leaf biochemical contents[J]. Remote Sensing of Environment, 1988, 24:85-108
    [59] Ray S S and Dadhwa V K. Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS[J]. Agricultural Water Management, 2001, 49(3): 239-249
    [60] Raymond E.E. Jongschaap. Sensitivity of a crop growth simulation model to variation in LAI and canopy nitrogen used for run-time calibration[J]. Ecological Modelling, 2007, 200(1-2):89-98
    [61] Reujean J, Breon F. Estimating PAR absorbed by vegetation from bi-directional reflectance measurements[J]. Remote Sens. Environ., 1995, 51:375-384
    [62] Richardson L L, Buisson D, Liu C J, et al. The detection of algal photosynthetic accessory pigments using airbone visible-infrared imaging spectrometer (AVIRIS) spectral data[J]. Marine technology society journal, 1994, 28(3), 10-21
    [63] Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancement of retrogradation of natural vegetation[J]. NASA/GSFC, Type III, Final Report, Greenbelt, MD, USA. 1974,1-371
    [64] Shibayama M and Akiyama T. A Spectroradiometer for Field Use. VI. Radiometric estimation for chlorophyll index of rice canopy[J]. Japanese Journal of Crop Science, 1993, 55(4): 433-438
    [65] Skinner J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer[J]. New Phytol. 1998,143:105-117
    [66] Tarpley L, Reddy K, Sassenrath-Cole F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration[J]. Crop Sci., 2000, 40:1814-1819
    [67] Tian Q, Tong Q, Pu R, et al. Spectroscopic determination of wheat water status using 1650-1850nm spectral absorption features[J]. Int. J. Remote Sens., 2001, 22(12): 2329-2338
    [68] Tian Y C, Zhu Y, Cao W X, et al. Monitoring protein and starch accumulation in wheat grains with leaf SPAD and canopy spectral reflectance[J]. Agricultural Sciences in China, 2003,2(11): 1205-1211
    [69] Tucker.Selecting Band Combinations and Multispectral Data[J]. Photogrammetric Engineering & Remote Sensing, 1980, 51(6):681-687
    [70] Vaesen S,Gilliams K. Nackaerts and Coppin P. Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice[J]. Field Crops Research, 2001, 69(1): 13-25
    [71] Vane G, Goetz A.F.H. Terrestrial imaging spectroscopy: current status, future trends[J]. Remote Sensing of Environment, 1993, 44:117-126
    [72] Vianney Houlès, Martine Guérif and Bruno Mary. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations[J]. European Journal of Agronomy, In Press, Corrected Proof, Available online 19 March 2007
    [73] Vogelmann T C. Plant tissue optics. Annu. Rev. Plant Physiol[J]. Plant Mol. Biol., 1993, 44: 231-251
    [74] Walburg G, Bauer M E, Daughtry C S T, et al. Effects of N nutrition on the growth, yield, and reflectance characteristics of corn canopies[J]. Agron. J., 1982, 74: 677-683
    [75] Wang Z J, Wang J H, Huang W J, et al. Study on nitrogen distribution in leaf, stem and sheath at different layers in winter wheat canopy and their influence on grain quality[J]. Agricultural Science in China, 2003, 2(8): 859-866
    [76] Wang Z J, Wang J H, Liu L Y, et al. Prediction of grain protein content in winter wheat using plant pigment ratio (PPR) [J]. Field Crops Research, 2004, 90(2-3): 311-321
    [77] Wang Zhijie, Wang Jihua, Huang Wenjiang, et al. Studies on the nitrogen state of leaf, culm and sheath at different layers in canopy and their relationship with grain quality in winter wheat [J]. Scientia Agricultura Sinica, 2003, 36 (12) : 1462-1468
    [78] Wessman C A, Aber J D, Peterson D J, et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems[J]. Nature, 1988, 335: 154-156
    [79] Wessman C A, Aber J D, Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry[J]. Int. J. Remote Sensing. 1989, 10: 1293-1316
    [80] White J D, Trotter C M, et al. Nitrogen Concentration in New Zealand Vegetation Foliage Derived from Laboratory and Field Spectrometry [J]. INT. J. REMOTE SENSING , 2000, 11(2):2525-2531
    [81] Wiegand C L, Escobar D E, Everitt J H. Comparison of vegetation indices from aerial video and hand-held radiometer observations for wheat and corn[J]. Proc. 13th Biennial Workshop on Color Photography in the Plant Sciences and Related Fields, Orlando FL, May 6-9, 1992:98-109
    [82] Wiegand C L, Escobar D E, Lingle S E. Detecting growth variation and salt stress in sugarcane using videography[J]. Proc. 14th Biennial Workshop on Color Aerial Photography and Videography for Resource Monitoring, Logan UT, May 24-27, 1993:185-189
    [83] Wiegand C L, Rhoades J D, et al. Photographic and videographic observations for determining and mapping the response of cotton to soil salinity[J]. Remote Sensing of Environment, 1994, 49:212-223
    [84] Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota[J]. J. Plant Nutr.1998, 21: 217-233
    [85] Yang Bangjie, Pei Zhiyuan, Zhang Songling. RS/GIS/GPS based agriculture condition monitoring system satanational scale[J]. T ransactions of the CSA E, 2001, 17(1) :154- 158
    [86] Yoder B J,Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales[J]. Remote Sensing of Environment,1995, 53(3): 199-21l
    [87] Zhao C J, Wang J H, Wu H R, et al. Simulation models and deduction system for interspace description of wheat leaf shape[J]. Transactions of the CSAE,2002,18(5):221-225
    [88] Zhao C J, Huang W.J., Wang J.H, et al. The red edge parameters of different wheat varieties under different fertilization and irrigation treatments[J].Agricultural Sciences in China, 2002,1(7):745-751
    [89] Zhao Chunjiang, Liu Liangyun, Wang Jihua, et al. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal of Applied Earth Observation and Geo-information, 2005, (7):1-9
    [90]鲍艳松,王纪华,刘良云,等.不同尺度冬小麦氮素遥感监测方法及其应用研究[J].农业工程学报,2007,23(2):139-145
    [91]陈述彭,赵英时.遥感地学分析[M].北京:测绘出版社,1990
    [92]冯伟,姚霞,田永超,等.小麦籽粒蛋白质含量高光谱预测模型研究[J].作物学报,2007,33(12):1935-1942
    [93]冯伟,朱艳,田永超,等.基于高光谱遥感的小麦叶片氮积累量[J].生态学报,2008(1):23-32
    [94]宫鹏.遥感生态测量学进展[J].自然资源学报,1999,14(4):313-317
    [95]宫鹏,浦瑞良,等.不同季相针叶树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217
    [96]郭文善,封超年,严六零,等.小麦开花后源库关系分析[J].作物学报,1995,21(3):334- 340
    [97]郭文善,方明奎,王蔚华,等.氮素对小麦茎鞘物质贮运和籽粒发育的调节效应[J].江苏农业研究,2001,22(4):1-4
    [98]郭文善,严六零,封超年,等.小麦源库协调栽培途径的研究[J].江苏农业研究, 1995.1
    [99]黄敬峰.基于GIS的大面积水稻遥感佑产方法研究--以浙江省为例[D].浙江大学博士论文,1999
    [100]黄文江,王纪华,刘良云,等.冬小麦红边参数变化规律及其营养诊断[J].遥感技术与应用,2003,18(4): 206-211
    [101]黄文江,王纪华,刘良云,等.小麦品质指标与冠层光谱特征的相关性的初步研究[J].农业工程学报,2004,20(4):203-207
    [102]江东,王乃斌,杨小唤,等. NDVI曲线与农作物长势的时序互动规律[J].生态学报,2002,22(2):247-52
    [103]李存军.区域性冬小麦籽粒蛋白质含量遥感监测技术研究[D].浙江大学博士学位论文,2005
    [104]李开丽,蒋建军,茅荣正,等.植被叶面积指数遥感监测模型[J].生态学报,2005,25(6):1491-1496
    [105]李建龙,蒋平,刘培君,等.利用遥感光谱法进行农田土壤水分遥感动态监测[J].生态学报,2003,23(8):1498-1504
    [106]李卫国,王纪华,赵春江,等.基于TM影像的冬小麦苗期长势与植株氮素遥感监测研究[J].遥感信息,2007,( 2):12-16
    [107]李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995
    [108]李映雪,朱艳,田永超,等.小麦叶片氮积累量与冠层反射光谱指数的定量关系[J].作物学报,2006,32(2):203-209
    [109]李映雪,朱艳,田永超,等.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系[J].中国农业科学,2005,38(7):1332-1338
    [110]李映雪,朱艳,田永超,等.小麦叶片氮含量与冠层反射光谱指数的定量关系[J].作物学报,2006,32(3):358-362
    [111]刘良云,王纪华,黄文江,等.冬小麦品质遥感监测[J].遥感学报,2003,12(7):143-148
    [112]刘良云,张兵,童庆禧,等.利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002,21(4):269-273
    [113]刘良云,王纪华,张永江,等.叶片辐射等效水厚度计算与叶片水分定量反演研究[J].遥感学报,2007,11(3):289-295
    [114]刘良云.高光谱遥感在精准农业中的应用研究[D].中国科学院遥感应用研究所博士后出站报告,2002
    [115]刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283
    [116]刘占宇,黄敬峰,吴新宏,等.天然草地植被覆盖度的高光谱遥感估算模型[J].应用生态学报,2006,17(6):997-1002
    [117]梅安新,彭望路,秦其明,等.遥感导论[M].高等教育出版社,2001
    [118]牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-129
    [119]裴志远,杨邦杰.多时相归一化植被指数NDVI的时空特征提取与作物长势模型设计[J].农业工程学报,2000,16(5):20- 22
    [120]彭永欣,姜雪忠,郭文善,等.氮素营养对小麦籽粒产量和品质调节效应的研究.小麦栽培与生理.南京:东南大学出版社,1992:127-158
    [121]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000
    [122]浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报,1997,1(2):115-123
    [123]宋开山,张柏,王宗明,等.基于人工神经网络的大豆叶面积高光谱反演研究[J].中国农业科学,2006,39(6):138-1145
    [124]宋晓宇,黄文江,王纪华,等. ASTER卫星遥感影像在冬小麦品质监测方面的初步应用[J].农业工程学报,2006,22(9):148-153
    [125]谭昌伟,郭文善,王纪华,等.小麦籽粒品质遥感预测研究综述[J].安徽农业科学,2009,37(17):8292-8293
    [126]谭昌伟,郭文善,朱新开,等.不同条件下夏玉米冠层反射光谱响应特性的研究[J].农业工程学报,2008,24(9):131-135
    [127]谭昌伟,黄义德,黄文江,等.夏玉米叶面积指数的高光谱遥感植被指数法研究[J].安徽农业大学学报,2004,3(4):392-397
    [128]谭昌伟,王纪华,黄文江,等.夏玉米叶片全氮、叶绿素及叶面积指数的光谱响应研究[J].西北植物学报,2004,24(6):1041-1046
    [129]谭昌伟,王纪华,黄文江,等.不同株型夏玉米群体冠层反射光谱特征及其应用研究[J].遥感技术与应用,2004,19(4):225-231
    [130]谭昌伟,王纪华,黄文江,等.不同氮素水平下夏玉米冠层光辐射特征的研究[J].南京农业大学学报,2005,28(2):12-16
    [131]谭昌伟,周清波,齐腊,等.水稻氮素营养高光谱遥感诊断模型[J].应用生态学报,2008,19(6):1261-1268
    [132]谭昌伟,庄恒扬,周清波.水稻叶片营养的光谱诊断研究[J].扬州大学学报,2009,30(2):50-53
    [133]唐延林,王人潮,王秀珍,等.水稻叶面积指数和叶片生化成分的光谱法研究[J].华南农业大学学报(自然科学版), 2003,1:4-7
    [134]唐延林,黄敬峰.农业高光谱遥感研究的现状与发展趋势[J].遥感技术与应用,2001,16 (4):248-251
    [135]田国良,项月琴.遥感估算水稻产量[J].环境遥感,1989,4(1):73-80
    [136]田庆久,闵祥军.植被指数研究进展[J].地球科学进展. 1998,(4):327-333
    [137]田永超,朱艳,曹卫星,等.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累[J].中国农业科学,2004,37(6):808-813
    [138]童庆禧,郑兰芬,王晋年.湿地植被成像光谱遥感研究[J].遥感学报,1997,1(1):50-58
    [139]童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990
    [140]王长耀,林文鹏.基于MODIS EVI的冬小麦产量遥感预测研究[J].农业工程学报,2005,21(10):90-94
    [141]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标的研究[J].遥感学报,2003b,7(4):277-284
    [142]王纪华,黄文江,赵春江,等.遥感地面农学参数测试规范化初探[J].高技术通讯,2000,10(增):91-95
    [143]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):104-107
    [144]王纪华,赵春江,黄文江,等.《农业定量遥感基础与应用》[M].北京:科学出版社,2008
    [145]王纪华,赵春江,刘良云,等.作物水分和氮素的遥感监测[J].第三届全国青年作物栽培作物生理学研讨会论文集.北京中国农业大学出版社,2003a:56-62
    [146]王纪华,李存军,刘良云,等.作物品质遥感监测预报研究进展[J].中国农业科学,2008,41(9):2633-2640
    [147]王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究[J].I.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报,1993,19(增刊):7-14
    [148]王人潮,黄敬峰.水稻遥感估产[M].北京:农业出版社,2002
    [149]王人潮.水稻单产遥感建模研究[J].遥感学报,1998,2(2):119-124
    [150]王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306
    [151]王秀珍,黄敬峰,李云梅,等.水稻农学参数与高光谱数据之间的相关分析[J].浙江大学学报(农业与生命科学版),2002,28(3):283-288
    [152]王延颐.南方稻区遥感水稻长势监测和估产研究[J].遥感技术与应用,1991,6(3):1-6
    [153]吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498-513
    [154]吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):25-35
    [155]吴长山,项月琴,郑兰芬,等.利用高光谱数据对作物群体叶绿素密度估算的研究[J].遥感学报,2000,4(3):228-232
    [156]项月琴.遥感估算水稻产量[J].环境遥感,1988,3(4):308-316
    [157]小西教夫,志賀弘行,安積大治,等.美味しいお米を作るリモートセンシング[J].測量,2000,(7):14-20
    [158]邢素丽,张广录.我国农业遥感的应用现状与展望[J].农业工程学报,2003,19(6):174-178
    [159]徐新刚.农作物单产模型研究[D].中国科学院博士学位论文,2007
    [160]薛利红,曹卫星,罗卫红,等.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003,36(7):807-812
    [161]薛利红,朱艳,张宪,等.利用冠层反射光谱预测小麦籽粒品质指标的研究[J].作物学报,2004,30(10):1036-1041
    [162]杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报. 1999, 15(3): 214-218
    [163]颜春燕,刘强,牛铮,等.冠层光谱的多项式分析及生化参量反演[J].中国科学D辑地球科学,2005,35(9):881-890
    [164]杨敏华,刘良云,刘团结,等.小麦冠层理化参量的高光谱遥感反演试验研究[J].测绘学报,2002,31(4):316-321
    [165]杨敏华,赵春江,赵永超,等.用航空成像光谱数据获取田间小麦信息[J].中国农业科学,2002,35(6):626-631
    [166]易秋香,黄敬峰,王秀珍,等.玉米全氮含量高光谱遥感估算模型研究[J].农业工程学报,2006,22(9):138-143
    [167]于振文,王月福,潘庆民,等.优质专用小麦品种及栽培[M].北京:中国农业出版社,2001
    [168]张峰,吴炳方,刘成林,等.利用时序植被指数监测作物物候的方法研究[J].农业工程学报,2004,20(1):155-159
    [169]张宏彦,刘全清,张福锁.养分管理与农作物品质[M].中国农业出版社,2009
    [170]张金恒,王珂,王人潮.高光谱评价植被叶绿素含量的研究进展[J].上海交通大学学报,2003,21(1):75-80
    [171]张金恒.光谱遥感诊断水稻氮素含量营养机理与方法研究[D].浙江大学博士学位论文,2003
    [172]张仁华.实验遥感模型及地面基础[M].北京:科学出版社,1996:45-47
    [173]张霞,刘良云,赵春江,等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报, 2003,7(3):176-182
    [174]张晓阳,黄进良.江汉平原水稻长势遥感监测及估产模型[J].华中师范大学学报(自然科学版),1997,31(4):482-487
    [175]赵春江,黄文江,王纪华,等.不同品种肥水条件下冬小麦光谱红边参数研究[J].中国农业科学,2002,35(8):980-987
    [176]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003
    [177]赵永超.高光谱遥感中典型地物目标的光谱特征分析和信息提取模型[D].中国科学院遥感应用研究所博士后研究工作报告,2001
    [178]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取的分析研究[J].环境遥感,1992,7(1):49-58
    [179]中村憲知,川島茂人.衛星画像から得られた茶産地の環境特性と品質との関係[J]. Japanese Journal of Crop Science,2001,68(3):424-432
    [180]周启发,王人潮.水稻氮素营养水平与光谱特征的关系[J].浙江农业大学学报,1993,19(增):40-46
    [181]周清波.国内外农情遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14
    [182]周忠轩,吴钢,邵国凡.遥感探测土地植被覆盖指数的准确度评估[J].应用生态学报,2004,15(1):36-38
    [183]朱新开,盛海君,顾晶,等.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究[J].麦类作物学报,2005,25 (2):46-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700