用户名: 密码: 验证码:
胺苯磺隆降解菌SW4的分离、降解途径及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胺苯磺隆(Ethametsulfuron-Methyl)是美国杜邦公司成功开发的新型磺酰脲类除草剂。它具有杀草谱广、活性高、选择性强、价格低廉等优点,但在自然条件下很难快速降解,使得其在环境中的残留对后茬作物及水生生态环境具有潜在的威胁。农药残留微生物修复技术具有高效、无毒、无二次污染的特点,而且经济实用、操作简便,目前已成为去除农药残留污染的一种重要方法。
     本文以南京菜园黄棕壤为研究材料,从土壤可培养微生物及土壤酶活性两个方面探讨了除草剂胺苯磺隆对旱地土壤微生物的影响及其毒性效应。并运用富集驯化的方法从长期受胺苯磺隆污染的土壤中分离到了三株对胺苯磺隆具有较高降解能力的细菌,并对这三株细菌进行了鉴定,对其中降解能力最高的菌株SW4更是研究了其生长特性和对胺苯磺隆的降解特性,对于SW4降解胺苯磺隆过程中产生的代谢物进行了鉴定,并在此基础上推断了胺苯磺隆在SW4作用下的代谢途径。进一步研究了SW4的粗酶液对于胺苯磺隆的降解及其影响因素。此外还在实验室内模拟田间环境,建立了水体和土壤中低浓度胺苯磺隆的生物检测技术,并运用此技术研究了降解菌剂SW4在水体和土壤中对低浓度胺苯磺隆残留的降解效果。本试验结果为建立有效的胺苯磺隆污染预警指标体系、环境质量评价和胺苯磺隆降解菌剂的有效利用提供了有益的参考。本研究所获的主要结论如下:
     采用传统平板培养方法研究了胺苯磺隆对菜园黄棕壤好气性细菌、放线菌、真菌和固氮菌数量的影响及对土壤脲酶、脱氢酶、过氧化氢酶、酸性磷酸酶、蔗糖酶和土壤呼吸强度的影响。研究结果表明,只有高浓度的胺苯磺隆才表现出对土壤细菌的抑制,而且这种抑制作用在4周后就可以解除。胺苯磺隆能刺激真菌的数量,特别是在施药后1周时刺激作用显著。胺苯磺隆对放线菌具有强烈的抑制作用,即使是正常施用量(即10μg kg~(-1)干土),抑制率也达到了极显著水平;在处理30d的时候,只有低浓度处理土壤的放线菌数量得到恢复,其余的土壤仍处于被抑制状态。从毒理学角度来说,正常使用量的胺苯磺隆对放线菌的影响是短期的,但是随着浓度的增加,潜在的威胁就增大。该除草剂对固氮菌有强烈的抑制作用。总的来说,胺苯磺隆以正常田间施用量(10μg kg~(-1)干土)施用时,没有观察到对土壤中可培养的细菌和真菌具有实质性危害,对放线菌和好气性固氮菌有一定的影响。
     土壤酶学研究结果表明:胺苯磺隆低于正常使用剂量(10μg kg~(-1)干土)时在初期(7d)能显著抑制土壤脲酶,而高剂量组则是先刺激后抑制。而土壤中过氧化氢酶活性在低剂量时先刺激后抑制,而高剂量则始终处于抑制状态。土壤脱氢酶对胺苯磺隆的反应总体上表现为先轻微抑制(7d),随后(14d)具有刺激作用,最后恢复(50d)。酸性磷酸酶与土壤蔗糖酶在各个剂量水平上都处于被抑制状态上,而且在第7d两者的抑制率都与胺苯磺隆的剂量呈很好的logister回归关系。
     从胺苯磺隆除草剂生产企业生产车间表层泥土中分离筛选到三株对胺苯磺隆具有较高降解效率的细菌,编号分别为SW1、SW2、SW4,均能以胺苯磺隆为唯一氮源但不能作为唯一碳源生长。经培养特征、生理生化特征、16s rRNA基因系统发育分析表明SW1和SW4属于假单胞菌属(Pseudomonas sp.),SW2属于节杆菌属(Arthrobacte sp.)。进一步将其中降解效率最好的菌株SW4与相近的模式菌株进行DNA-DNA同源性分析,发现菌株SW4与模式菌株Pseudomonas nitroreducens IAM1439的同源性达到93.79%,因此将这一菌株命名为Pseudomonas nitroreducens SW4。SW4对复合磺胺、氨苄青霉素、头孢他啶、及链霉素具有很好的抗性。SW4对胺苯磺隆的降解效率最好,一周内对100mg L~(-1)胺苯磺隆的降解率可以达到84.6%,而且在500 mg L~(-1)胺苯磺隆的M9培养基上菌落周围可以形成肉眼可见的透明圈。
     对胺苯磺隆降解菌株Pseudomonas nitroreducens SW4的生长特性与降解特性作了详细的研究。发现SW4在C/N 2-8范围内生长都较好,以C/N 8生长最好,最适碳源为葡萄糖,最适氮源为有机氮,其中有机氮以蛋白胨为最好。通过对其他磺酰脲类除草剂的降解谱试验后发现,SW4可以利用胺苯磺隆、烟嘧磺隆、吡嘧磺隆、甲磺隆、噻磺隆、为唯一氮源生长,却不能利用苯磺隆、氯磺隆、氯嘧磺隆。SW4的最适生长温度为30℃,最适pH为8,菌株生长与装液量成负相关。静息细胞在25℃时对胺苯磺隆降解效果最好,温度过高或过低都会显著影响降解效果。静息细胞在pH值6-10范围内对胺苯磺隆都有很好的降解效果,环境pH<5时显著抑制静息细胞的降解活性。
     运用HPLC和LC-MS的手段分析了菌株SW4在以胺苯磺隆为唯一氮源的液体培养基中代谢胺苯磺隆时产生的代谢物,在对代谢物结构的分析基础上推测了SW4降解胺苯磺隆的途径,结果表明SW4降解胺苯磺隆时存在两条代谢途径,其中一条为胺苯磺隆的脲桥断裂;另一条为胺苯磺隆的三嗪环侧链发生N-脱甲基作用,生成N-脱甲基胺苯磺隆,继而发生O-脱乙基作用,生成N-脱甲基-O-脱乙基胺苯磺隆,最后发生三嗪环的开环及其他作用后生成了methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl]amino]carbonyl]amino]sulfonyl]benzoate。
     以反应前后胺苯磺隆降低量为依据,建立了菌株SW4胺苯磺隆水解酶粗酶酶促反应体系,酶的定域试验表明该酶存在于菌株SW4的细胞膜内,不受底物胺苯磺隆的诱导。该酶的最适反应pH为8.0,最适反应温度为37℃,稳定性试验表明该酶在pH7.0时最稳定,在pH<4.0或pH>10.0时都不稳定,容易失活;温度越高,酶越容易失活,当温度高于30℃时酶的稳定性明显下降,温度高于50℃时酶活力在3h内完全丧失。金属离子中1mM的Hg~(2+)、Cu~(2+)对酶活有显著的抑制效应,Mg~(2+)、Mn~(2+)、Fe~(3+)、Li~+对酶活有促进作用;SDS显著抑制胺苯磺隆水解酶活,1mM的金属螯合剂EDTA对酶活没有影响,但是当其浓度提高到10mM时对胺苯磺隆水解酶产生强烈的抑制效应,抑制率达到42.8%。
     对于低浓度的胺苯磺隆残留可以应用敏感植物-玉米鲜根重测试。对于水体样品采用砂培4d后的玉米根鲜重测定,其回归方程为y=4.1399+0.9694x,R=0.9902。对于土壤样品可以采月土培15d后的玉米根鲜重测定,其回归方程为y=3.8692+1.4437x,R=0.9687。
     SW4在降解土壤中高浓度的胺苯磺隆时,其降解作用主要发生在接种后15d内,土著微生物与SW4的联合降解要高于它们单独降解胺苯磺隆的能力。增加土壤有机碳含量以及中性或弱碱性土壤pH可以促进SW4对胺苯磺隆的降解,适当的土壤含水量对SW4降解胺苯磺隆也很重要,含水量过低(<5%)或淹水条件都会显著降低其降解性能。
Ethametsulfuron-Methyl(ESM),methyl-2-[(4-ethoxy-6-methylamino-1,3,5-triazin-2-yl) carbamoylsulfamoyl]benzoate,is a sulfonylurea herbicide that is used to control broad-leaved weeds and some grasses in cereal crops at very low application rates i.e.2-15 g ha~(-1).Because of their high phytotoxicity and the likelihood of their transportation in surface runoff,there is concern about their possible impact on aquatic ecosystems.Because of its low cost and high efficiency,ESM has been used worldwide,ultimately resulting into more serious environment pollution.Microbial activity has been deemed to be the most influential and significant cause of sulfonylurea herbicide removal and biotransformation.Microbial remediation has been deemed to be much more advantageous method than the others.So it has been an important research item for us to exploit and utilize microbial resource to remove environment pollution.
     The effects of a persistent sulfonylurea herbicide,Ethametsulfuron-Methyl(ESM), on soil microecosystem were studied in garden soil samples with a short-term treatment of ESM at different concentrations.The culturable bacteria(plate counts), soil enzyme activities;and-changes in microbial community structure were used to assess biological community in garden soil contaminated by ESM.Moreover,three bacterial strains capable of degrading ESM were isolated,identified and phylogenetically analyzed.The metabolic pathway of ESM by strain SW4 was detected and inferred basically.The results will be valuable to build up alert index systems in acetamiprid-contaminated upland soil,environmental quality evaluation and virtual utilization of acetamiprid-degrading bacterium in upland soil.
     The main results of this study are as follows:
     The influences of ESM on the cultural microorganisms in Yellow-brown earths, using traditional selective plating and direct viable counts methods,and soil enzymes activities were investigated.The results showed that the bacteria differed markedly in their response to ESM.The concentration of ESM applied is an important factor affecting populations of various microorganisms,except those characteristics of ESM itself.When the concentration of ESM was higher than 10μg kg~(-1) dry soil(d.w.),the total number of bacteria in the soil samples polluted by ESM was significantly lower than that in the control group.The resumed rates of bacterial number were significantly slower than that the control group during incubation.Actinomycete and aerobic nitrogen-fixing bacteria in the soil samples polluted by ESM were inhibited evidently during incubation.The fungi growth in the treatment soils was stimulated by the ESM at the concentration higher than 20μg kg~(-1) dry soil(d.w.) within the first week,and then recovered to the same level as the control group.The soil respiration was inhibited after two weeks of ESM treatment,and the higher the applied concentration was,the stronger the inhibition was observed.
     The results of enzymological studies indicated that the ESM had a great effect on urease activity in the soil samples planted with vegetable.In the first week,the urease activity was inhibited by ESM with low concentration,and then resumed to the same level as the control group,but it was stimulated at first and then restrained by ESM with high concentration.In the first week,the catalase activity was stimulated by the ESM at the concentration below safe dose,20μg kg~(-1) dry soil(d.w.),but inhibited by increasing the concentration of ESM.In addition,dehydrogenase activity was inhibited slightly after the first week of ESM treatment.From the second week,the activity of dehydrogenase was stimulated and then resumed to the normal level subsequently.However,phosphatase and sucrase were significantly restrained by ESM at all of the applied concentrations throughout the test,and there were dose-effect regression relationship at the 7th day.
     Three soil ESM-degrading bacteria,strain SW1,SW2 and SW4,were isolated from sludge collected from the bottom soil of a workshop in an herbicide factory. They can use ESM as sole nitrogen resource rather than sole carbon resource.Based on physiological characteristics,biochemical tests and a partial analysis of the 16S rRNA gene sequence,the strain SW1 and SW4 were identified as pseudomonas sp. and the strain SW2 was identified as Arthrobacte sp..Among three strains,SW4 shows the highest ESM-degrading ability.DNA-DNA hybridization showed that,SW4 has a homology of 93.79%with the type strain Pseudomonas nitroreducens IAM1439, so it was identified as Pseudomonas nitroreducens SW4.In addition,Strain SW4 showed the resistance to SXT,AMP,CAZ and STR.This bacterium could degrade 84.8%of 100mg L~(-1) ESM within 7 days.Biological properties of SW4 were also studied.The optimal growth temperature and initial pH are 30℃and 7.0,respectively. The aeration had a positive effect on the growth of strain SW4.
     The optimum carbon sources for SW4 were glucose,sucrose and maltose,and the optimal nitrogen source was organic nitrogen,and the most optimal C/N(mol atom) ratio was 8/1.It grew well under conditions of 25℃-37℃and pH 8.0.Its resting cells degraded ESM well at 25℃-30℃and pH6-10.Besides ESM,SW4 could also grow on Nicosulfuron,Pyrazosulfuron-Ethyl,Metsulfuron-methyl,and Thifensulfuronmethy using as sole nitrogen sources.The degradation products of ESM in the culture medium extracts were isolated and identified by LC/MS.Five metabolites of ESM degradation were detected.Based on the identified products,strain SW4 seemed to degrade ESM following two separate and different pathways:
     One route includes the cleavage of the sulfonylurea bridge,yielding the corresponding sulfonamide and heterocyclic amine.The other route implicates the loss of the alkyl from the triazine portion of ESM and yielding the N-desethyl Ethametsulfuron-Methyland N-desmethyl-O-desethyl Ethametsulfuron-Methyl,the later was further transformed to methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate due to the cleavage oftriazine ring.
     The ESM-degrading crude enzyme was extracted from SW4 and analysis showed that it was an intracellular enzyme.It was a constitutive and non inductive enzyme. The best reaction system was as following:incubate 30μL crude enzyme in 3 mL PBS with a pH value 7.0 for 60 min at 30℃.
     The effect of temperature and pH on the crude enzyme were determined,the optimal condition of enzymatic degradation activity is 30℃and pH8.0.Metal ion and surfactants affect the activity of crude enzyme.Hg~(2+),Ca~(2+) and Cu~(2+) intensively inhibits the activity of enzyme,while the Mg~(2+),Mn~(2+),Fe~(3+) and Li~+ promote the activity of enzyme in some degree.SDS inhibits the catalytic efficiency of enzyme upto 30.9%.Chelant EDTA would inhibit enzyme activity if the adding concentration exceeds 10mM.
     Bioassay of ESM has been conducted under laboratory conditions,with the indicator of growth inhibition of maize roots.Growth inhibition of maize roots in water samples was correlative with ESM's residual concentration,and the relationship between them in water sample is y=4.1399+0.9694x,R=0.9902,and in soil sample, it is y=3.8692+1.4437x,R=0.9687,(y means the probit of the toxicity,x means the logarithmic form of the ESM).The conclusion was applied to a case study of ESM polluted soil to provide primary evidence for the bioremediation of ESM by SW4.The inoculation of strain SW4 to soil treated with ESM resulted in a higher degradation rate than in non-inoculated soil regardless of the soil is sterilized or non-sterilized. Organic carbon,opportune soil moisture and neutral or week alkalescent condition can stimulate strain SW4 to degrade ESM in soil sample.The ESM degradation of strain SW4 was restrained in flood condition or the soil with moisture less than 5%.In the optimum laboratory condition,the ESM-polluted soil resumed to the safe level after 15 days of inoculation with strain SW4.Finally,we believe strain SW4 could be applied to bioremediation of environment,water body or soil,polluted by ESM or some other sulfonylurea herbicide after further investigation.
引文
[1]曹承宇.“欧盟未来化学品政策战略白皮书”对我国农药行业的影响及对策[J].农药快讯.2003,19:21-22.
    [2]卢植新.农药研究、开发与应用概述[J].农药科学与管理.2003,24(7):22-27.
    [3]束放.2002年我国农药市场需求预测分析与展望[J].农药快讯2002,4:28-28.
    [4]张一宾2001年世界农药市场概况及2006年世界农药市场预测[J].农药快讯.2003,4:29-31.
    [5]束放等.我国农药市场需求分析与展望[J].植保技术与推广.2001,21(4):40-42.
    [6]张一宾.2001年世界农药市场概况及2006年世界农药市场预测[J].世界农药.2002,24(6):1-4.
    [7]瞿建宏,吴伟.除草剂生产废水经微生物降解前后的毒理效应[J].中国环境科学.2002,22(4):297-300.
    [8]Pimental D.Environmental and economic effects of reducing pesticide use[J].Bioscience.1991,41:402-409.
    [9]黄河,熊治廷,刘杰,Abdrahamane B.除草剂在土壤-植物系统中的环境行为与毒性效应[J].湖北农学院学报.2002,3:282-288.
    [10]李康明,李佩珍.除草剂对水产养殖的潜在威胁[J].农业环境保护.1995,14(2):75-79.
    [11]李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤,2004,36(6):577-583.
    [12]Cohen SZ,Eiden C and Lorber MN.Monitoring ground water for pesticides in the U.S.A.[J].Schriftenr Ver Wasser Boden Lufthyg,1987,68:265-295.
    [13]何光好.我国农药污染的现状与对策[J].现代农业科技,2005,12(3):57.
    [14]袁旭音,王禹,陈骏等.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境化学,2003,24(1):121-125.
    [15]吴水平,曹军,李本纲等.城区大气颗粒物中有机氯农药的含量与分布[J].环境科学研究,2003,16(4):36-39.
    [16]赵玉环,王玉文,白鸽.石家庄市大气降水中HCH残留量及其时空变化规律[J].环境科学,1985,6(5):33-36.
    [17]刘娅囡,朗畅,吴水平等.室内空气颗粒物中HCHs和DDTs的含量[J].环境化学,2004,23(5):562-567.
    [18]张建新;杜双奎;杨小姣.陕西省主要蔬菜产区多菌灵农药残留分析与评价[J].安全与环境学报,2005,5(6):78-80.
    [19]杜克久.农药与环境的可持续发展[J].自然辩证法通论,1999,21(3):33-37.
    [20]张志宽,李昭光,丁旭.农药与环境保护[J].上海农业科技,1997(6):25-29.
    [21]傅泽田,祁力均.国内外农药使用状况及解决农药超量使用问题的途径[J].农业工程学报,1998,14(2):7-11.
    [22]宋秀杰,陈博.北京市农药化肥点源污染防治的技术措施[J].环境保护,2001(9):30-31.
    [23]孟波,付微.基于Internet的管理信息系统和决策支持系统[J].决策借鉴,1998,(3):37-40.
    [24]柯建国,陈长青,柳建国等.农业生态系统智能决策支持系统初探[J].南京农业大学学报,1998,12(5):19-24.
    [25]曹永华.农业决策支持系统研究综述[J].中国农业气象,1997,18(4):46-50.
    [26]刘长江,门万杰,刘彦军等.农药对土壤的污染及污染土壤的生物修复[J].农业系统科学与综合研究,2002,18(4):291-297.
    [27]王保军,刘志培,杨惠芳.单甲眯农药的微生物降解代谢研究[J].环境科学学报,1998,18(3):296-302.
    [28]崔中利,孙志兵,李顺鹏.两株联合降解甲基对硫磷菌的分离及降解性状研究[J].应用与环境生物学报,1999,6(增刊).
    [29]Attaway H,Nelson JO,Baya AM,et.al.Bacterial detoxification of diisopropyl fluorophosphates[J].Appl.Envion.Microbiol,1987,53(7):1685-1689.
    [30]Kaneva J,Mulchandani A,Chen W.Factors influencing parathion degradation by recombinant escherichia coli with surface-expressed organophosphorus hydrolase[J].Biotechnol.Prog,1998,14(2):275-278.
    [31]Monserrate E,Hgblom MM.Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing,surfidogenic,and methanogenic conditions[J].Appl.Environ.Microbiol,1997,63(10):3911-3915.
    [32]刘玉焕,钟英长.华丽曲霉Z58有机磷农药降解酶的纯化和性质[J].微生物学学0报,2004,40(4):430-434.
    [33]石成春,郭养浩,刘用凯.环境微生物降解有机磷农药研究进展[J].上海环境科学,2003,22(12):863-867.
    [34]陈茹玉编著.有机磷农药化学[M].上海:上海科技出版社1995.
    [35]Chen CM,Ye QZ,Zhu ZM,Wanner BL,Walsh CT.Molecular biology of carbon-phosphorus bond cleavage.Cloning and sequencing of the plan(psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B[J].J Biol Chem 1990,265:4461-4471.
    [36]Mulbyr WW,Karns JS.Parathion hydrolase specified by the Flavobacterium opd gene:relationship between the gene and protein[J].Bacteriol,1989,171(12):6740-6746.
    [37]Mcdaniel CS,Harper LL,Wild JR.Cloning and sequencing of a plasmid-brone gene(opd)encoding a phosphotriesterase[J].Bacteriol,1988,170(5):2306-2311.
    [38]Home I,Sutherland TD,Harcourt RL,Russell RJ,Oakeshott JG.Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate[J].Appl Environ Microbiol 2002,68:3371-3376.
    [39]Zhongli C,Shunpeng L,Guoping F.Isolation of methyl parathion-degrading strain M6and cloning of the methyl parathion hydrolase gene[J].Appl Environ Microbiol 2001,67:4922-4925.
    [40]Elashvili I,Defrank JJ,Culotta VC.phnE and glpT genes enhance utilization of organophosphates in Escherichia coli K-12[J].Appl Environ Microbiol 1998,64:2601-2608.
    [41]Bujacz B,Wieczorek P,Krzysko-Lupicka T,Golab Z,Lejczak B,Kavfarski P.Organophosphonate Utilization by the Wild-Type Strain of Penicillium notatum[J].Appl Environ Microbiol 1995,61:2905-2910.
    [42]潘学冬,虞云龙,花日茂.均三氮苯类除草剂微生物降解与转化(综述)[J].安徽农业大学学报,2001,28(3):246-250.
    [43]Gordon WG.The natural production of chlorinated compounds[J].Environ Sci Technol,1994,28:310-319.
    [44]Kaufman DD,Kearney PC and Sheets TJ.Simazine:degradation by soil microorganism [J].Science,1963,142:405-406.
    [45]Radosevich M,Traina SJ,Hao YL,Tuovinen OH.Degradation and mineralization of atrazine by a soil bacterial isolate[J].Appl Environ Microbiol 1995,61:297-302.
    [46]Assaf NA,Turco RF.Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil[J].Biodegradation 1994,5:29-35.
    [47]Mandelbaum RT,Allan DL,Wackett LP.Isolation and Characterization of a Pseudornonas sp.That Mineralizes the s-Triazine Herbicide Atrazine[J].Appl Environ Microbiol 1995,61:1451-1457.
    [48]Grigg CB,AssafNA and Turco RF.Removal of atrazine contamination in soi land liquid systems using bioaugmentation[J].Pestic Sci,1997,50:211-220.
    [49]Brenda S P,Todd AA,Ellen LK and Joel RC.Enhanced mineralization of[14C]atrazine in Kochia scoparia rhizospheric soil from a pesticide-contaminated site[J].Pestic Sci,1996,46:391-396.
    [50]Christian M,Chantal L,Marcel A and Veronique C.Biotransformation of s-triazine herbicide sand related degradation products in liquid cultures by the White Rot Fungus Phanerochaete chrysosporium[J].Pestic Sci,1997,49:169-177.
    [51]Venkateswarlu K,Gowda TK,Sethunathan N.Persistence and biodegradation of carbofuran in flooded soils[J].J Agric Food Chem 1977,25:533-536.
    [52]Williams IH,Pepin HS,Brown MJ.Degradation of carbofuran by soil microorganisms [J].Bull Environ Contam Toxicol 1976,15:244-249.
    [53]Felsot A,Maddox JV,Bruce W.Enhanced microbial degradation of carbofuran in soils with histories of Furadan use[J].Bull Environ Contam Toxicol 1981,26:781-788.
    [54]Atlas RM.Bacteria and bioremediation of marine oil spills[J].Cennus.1993,36(2):71.
    [55]Feng X,Ou LT,Ogram A.Plasmid-mediated mineralization of carbofuran by Sphingomonas sp.strain CF06[J].Appl Environ Microbiol 1997,63:1332-1337.
    [56]Chaudhry GR,Mateen A,Kaskar B,Sardessai M,Bloda M,Bhatti AR,Walia SK.Induction of carbofuran oxidation to 4-hydroxycarbofuran by Pseudomonas sp.50432[J].FEMS Microbiol Lett 2002,214:171-176.
    [57]武俊,徐剑宏,洪青.一株呋喃丹降解菌(CDS-1)的分离和性状研究[J].环境科学学报,2004,24(2)338-342.
    [58]Maloney SE,Maule A,Smith AR.Microbial transformation of the pyrethroid insecticides:permethrin,deltamethrin,fastac,fenvalerate,and fluvalinate[J].Appl Environ Microbiol 1988,54:2874-2876.
    [59]Maloney SE,Maule A,Smith AR.Transformation of synthetic pyrethroid insecticides by a thermophilic Bacillus sp.[J].Arch Microbiol 1992,158:282-286.
    [60]Maloney SE,Maule A,Smith AR.Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus[J].Appl Environ Microbiol 1993,59:2007-2013.
    [61]虞云龙,宋凤鸣,郑重等.一株广谱性农药降解菌的分离与鉴定[J].浙江大学学报1997,23(2):111-115.
    [62]虞云龙,盛国英,傅家谟等.杀灭菊酯的微生物降解及酶促降解[J].环境科学1997,18(2):5-8.
    [63]虞云龙,陈鹤鑫,樊德方等.拟除虫菊酯类杀虫剂的酶促降解[J].环境科学学报1998,18(2):208-211.
    [64]郑重.农药的微生物降解[J].环境科学,1990,11(2):68-72.
    [65]苏少泉.除草剂作用靶标与新品种创制[M].北京:化学工业出版社,2001:57.
    [66]刘长令.磺酰脲类除草剂[J].农药,2002,41(3):44-47.
    [67]石桂珍,王兴涌.磺酰脲类除草剂的研究进展[J].淮阴工学院学报,2005,14(3):35-38.
    [68]汪海珍.甲磺隆除草剂在土壤中的结合残留及其微生物降解研究[D].浙江大学.博士学位论文,2003.
    [69]贺永华.根际土壤中甲磺隆除草剂快速降解及其生态化学机制[D].浙江大学.博士学位论文,2006.
    [70]苏少泉,周景恺.噻磺隆在土壤中降解的研究[J].杂草学报,1990,4(1):1-7.
    [71]邓金保.磺酰脲类除草剂综述[J].世界农药,2003,25(3):24-32.
    [72]Degelmann P,Wenger J,Niessner R,Knopp D.Development of a class-specific ELISA for sulfonylurea herbicides(sulfuron screen)[J].Environ Sci Technol 2004,38:6795-6802.
    [73]张玉聚,孙化田,王春生等.除草剂及其复配与农田杂草化学防治[M].北京:中国农业科技出版社,2000.
    [74]李景,李秀峰.磺酰脲除草剂的研发进展[J].河北化工,2005(5):4-7.
    [75]Flaburiari A,Kristen U.The influence of chlorsulfuron and metsulfuron methyl on root growth and on the ultrastructure of root tips of germinating maize seeds[J].Plant & Soil,1996,180(1):19-28.
    [76]Sozeri,S.Effects of some sulfonylurea group herbicides on growth of melon,watermelon,cucumber,tomato and pepper[J].J.Turk.Phytopathol.1996,25:83-88.
    [77]Nicholls,PH,Evans,AA.The behavior of chlorsulfuron and metsulfuron in soils in relation to incidents of injury to sugar beet[J].Proc.Brighton Crop Protec.Conf.Weeds,1998,549-556.
    [78]魏东斌,张爱茜,韩朔睽,王连生.磺酰脲类除草剂研究进展[J].环境科学进展,1999,7(5)34-39.
    [79]张玉聚,张德胜,张俊涛,刘周扬,潘同霞,李菊梅.磺酰脲类除草剂的药害与安全应用[J].农药,1998,42(6)42-44.
    [80]黄春艳,陈铁保,王宇,孙宝宏.磺酰脲类除草剂对禾谷类作物的安全性及药害研究[J].植物保护,2005,31(1);50-54.
    [81]王敏强,李远想.玉米对磺酰脲类除草剂敏感性及土壤残留的研究[J].玉米科学,2006.14(2);78-80.
    [82]Richardson WG,West TM,Parker C.Activity and selectivity of the herbicide DPX-4189[R].Technical Report No.62,Long Ashton Research Station,Bristol,1981,44-52.
    [83]Zimdahl RL,Henson MA.Glean soil persistence 1981-1982[R].Colorado State Univ.Agric.Exp.,1983,Stn Progress Rep.5.
    [84]Alister M.A review of the activity,fate and mode of action of sulfonylurea herbicides[J].Pesticide Science,1988,22:195-219.
    [85]Friesen LF,Morrison IN,Rashid A,and Devine MD.Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides[J].Weed Science.1993,41:100-106.
    [86]王焕民.磺酰脲类及咪唑啉酮类除草剂的特性及其应用问题[J].农药科学与管理,1995(1):18-21.
    [87]Sweetser P B,Schow G S,Hutchison J M.Metabolism of chlorsulfuron by plants:biological basis for selectivity of a new herbicide for cereals[J].Pestie Biochem Physiol.1982,17:18-23.
    [88]张玉聚,张德胜,张俊涛.磺酰脲类除草剂的药害与安全应用[J].农药,2003(1);25-29.
    [89]徐建民,黄昌勇,安曼等.磺酰脲类除草剂对土壤质量生物学指标的影响[J].中国环境科学,2000,20(6):491-494.
    [90]El-Ghamry AM,Xu JM,Huang CY,Gan J.Microbial response to bensulfuron-methyl treatment in soil[J].J Agric Food Chem 2002,50:136-139.
    [91]Burnet M,Hodgson B.Differential effects of the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl on microorganisms[J].Archives of Microbiology,1991,155:521-525.
    [92]Boldt TS,Jacobsen CS.Different toxic effects of the sulfonylurea herbicides metsulfuron methyl,chlorsulfuron and thifensulfuron methyl on fluorescent Pseudomonads isolated from an agricultural soil[J].FEMS Microbiol.Lett.1998,161,29-35.
    [93]Wei L,Yu H,Sun Y,et al.The effects of three sulfonylurea herbicides and their degradation productson the green algae Chlorellapy renoidosa[J].Chemosphere,1998,37:747-751.
    [94]Wei L,Yu H,Cao J,et al.Determination and prediction of partition coefficient and toxicity for sulfonylurea herbicides and their degradation products[J].Chemosphere,1999,38:1713-1719.
    [95]方程冉,沈东升,贺永华.有机毒物甲磺隆胁迫下根际微生物种群生态的动态变化研究[J].土壤通报,2003,28(2);79-84.
    [96]Allievi L,Gigliotti C.Response of the bacteria and fungi of two soils to the sulfonylrea herbicide cinosulfuron[J].J.Environ.Sci.Health,Part B 2001,36,161-175.
    [97]张新萍,胡先文,岳霞丽,董元彦.甲磺隆对水华鱼腥藻作用机理初探[J].农药,44(10):452-456.
    [98]韦丽萍,孙越,于红霞,王连生,冯建舫.甲磺隆、氯磺隆、苄嘧磺隆及其降解产物对蛋白核小球藻生长的效应[J].环境化学,17(3),260-264.
    [99]Harvey JR,Dulka JJ,Anderson JJ.Properties of sulfometuron-methyl affecting its environmental fate:aqueous hydrolysis and Photolysis,mobility and adsorption on soil,and bioaccumulation potential[J].J.Agric.food chem.,1985,33:590-596.
    [100]Thompson DG,Holmes SB,Thomas D et al.,Impact of hexazinone and metsulfuron methyl on the phytoplankton community of a mixed-wood boreal forest lake[J].Environ.Toxicol.Chem.1993,12,1695-1707.
    [101]程薇,陈祖义,洪良平.苄嘧磺隆在土壤中的吸附与解吸研究[J].南京农业大学学报,1994,18(4);100-104.
    [102]Walker A,Cotterili EG,Sarah J et al.,Adsorption and Degradation of Chlorsulfuron and Metsulfuron-methyl in soil from Different Depths[J].Weed Res.,1989(29):281-287.
    [103]Ukrainczy KL,Ajwa HA.Primisulfuron sorption on minerals and soil[J].Sci Soc AMJ,1996,60:460-467.
    [104]孙丙耀,叶建强,黄建中,李扬汉.磺酰脲类除草剂在土壤中的行为[J].农药译丛.1996,18(2),35-39.
    [105]陈祖义,程薇,黄世乐等.绿磺隆在土壤中的迁移特性[J].南京农业大学学报,1994,17(3):121-127.
    [106]Fredrickson DR,Shea PJ.Effect on soil pH on degradation,movement,and plant uptake of chlorsulfuron[J].Weed Sci,1990,34:328-332.
    [107]Sabadie J.Behavior of four sulfonylurea herbicides in the presence of hydroxy compounds[J].J Agric Food Chem,2000,48:4752-4756.
    [108]Hemmamda S,Calmon M,Calmon JP.Kinetics and hydrolysis mechanism of chlorsulfuron and metsulfuron-methyl[J].Weed Sci,1994,40:71-76.
    [109]Sabadie J.Alcoholysis and acid chemical hydrolysis of chlorsulfuron[J].Weed Res,1991,31:309-316.
    [110]Jeffry J,Andresson J J,Dulka JJ.Environmental fate of sulfometuron methyl in aerobic soils[J].J Agric Food Chem,1985,33:596-602.
    [111]欧阳天贽,谢九皋,李学垣.磺酰脲类除草剂在土壤中吸附与降解的研究进展[J].华中农业大学学报,2004,Vol.23,No3:375-379.
    [112]Cambon JP,Bastide J.Hydrolysis kinetics of thifensulfuron methyl in aqueous buffer solutions[J].J Agric Food Chem,1996,44:333-337.
    [113]Sabadie J.Nicosulfuron:alcoholysis,chemical hydrolysis and degradation on various minereals[J].J Agric Food Chem,2002,50(3):526-531.
    [114]Smith AE,Sharma MP,Aubin AJ.Soil persistence of thiameturon(DPX M6316) and phototoxicity of the major degradation product[J].Can J Soil Sci,1990,70:485-491.
    [115]司友斌,岳永德,汤锋.磺酰脲类除草剂在硅胶G表面的光解[J].环境科学学报,2002,22(2):270-272.
    [116]Maurino V,Minero C,Pelizzetti E,et al.,.Photocatalytic transformation of sulfonylurea herbicides over irradiated titanium dioxide particles.Colloids and Surfaces A[J]:Physicochemi cal and Engineering Aspects,1999,151(1-2):329-338.
    [117]Choudhury PP,Dureja P.Photolysis of chlorimuron-ethyl[J].Toxicological and Environmental Chemistry,1997,63(1-4):71-81.
    [118]杨曦,孟庆昱,孔令仁,王连生.甲黄隆在有机溶剂中的光解[J].环境科学.1999,(5)66-70.
    [119]杨曦,王晓书,朱春媚,孔令仁,王连生.磺酰脲类除草剂在环境中的光降解研究水溶液中的光解动力学[J].环境科学1998(6)29-32.
    [120]Joshi MM,Brown HM,Romesser JA.Degradation of Chlorsulfuron by Soil Microorganism[J].Weed Science,1985,33:888-893.
    [121]Brown HM.Modes of action,crop selectivity,and soil relations of the sulfonylurea herbicides[J].Pesticide Science,1990,29:263-281.
    [122]Smith AE,Aubin AJ.Degradation of sulfonylurea herbicide[14C]amidosulfuron(HOE 075032) in Saskatchewan soils under laboratory conditions[J].J Agric Food Chem,1992,40:2500-2504.
    [123]刘辉,陶波.土壤微生物对氯磺隆降解的研究[J].农业与技术,2003,23(1):36-39.
    [124]Strek JH.Fate of chlorsulfuron in the enviroment 1.Laboratory evaluations[J].Pestic Sci,1998,52:29-51.
    [125]沈东升,方程冉,周旭辉.土壤中降解甲磺隆除草剂的微生物的分离与筛选[J].上海交通大学学报(农业科学版),2002,20(3):186-190.
    [126]Kerry K,Eric LZ,Bruce MT,et al.,Microbial Transformations of Prosulfuron[J].Agric.Food Chem.,1997,45:1479-1483.
    [127]周旭辉.土壤中甲磺隆微生物降解研究[D].浙江大学硕士论文.2000.
    [128]马文漪,孔志明,尹大强.微生物降解四种农药的毒性效应[J].南京大学学报(自然科学),1993,29(4):631-636.
    [129]Zanardini E.,Arnoldi A.,Boschin G.et al.Microbial degradation of sulfonylurea herbicides chlorsulfuron and metsulfuron-methyl[J].Microbiology of composting,2002,309-322.
    [130]Boschin G,Agostina A,Arnoldi A.Biodegradtion of chlorsulfuron and metsulfuronmethyl by Aspergillus niger in laboratory conditions[J].J Environ Sci Health B,2003,38:737-746.
    [131]邵劲松,沈标,李顺鹏.一株绿磺隆降解菌的分离鉴定及其性状研究[J].土壤学报,2003,40(6):952-956.
    [132]Yun LY,Xiao W,Yong ML.Fungal degradation of metsulfuron-methyl in pure cultures and soil[J].Chemosphere,2005,60(4),460-466.
    [133]Brown M,Hugh M.Degradation of thifensulfuron-methyl in soil:role of microbial carboxyesterase activity[J].J Agric.Food.Chem.,1997,45(5):995-961.
    [134]苏少泉.除草剂作用机制的生物化学与生物技术的应用[J]_生物工程进展,1993,14(2):30.
    [135]闻长虹.磺酰脲类除草剂的微生物降解与转化[J].池州师专学报,2004,18(5)43-46.
    [136]刘祥英,柏连阳.土壤微生物降解磺酰脲类除草剂的研究进展[J].现代农药,2006,5(1);18-22.
    [137]Kleffenbach P,Hollan T.Analysis of sufonylurea Herbicides GS-Liquid chromatography.1.Formation of thmostable derivetives of chlosulfuron and metsulfuron- methyle[J].J.Agric.Fssd Chem.,1993,:388-395
    [138]Nilve G,Knutsson M,and Jonsson JA.Liquid-chromatographic determination of sulfonylurea herbicides in natural waters after automated sample pretreatment using supported liquid membranes[J].J.Chromatogr.A.,1994,688:75-82.
    [139]Howard AL,Braue C,Taylor LT.Feasibility of thiocarbamate pesticide analysis in apples by supercritical fluid extraction and high-performance liquid chromatography[J].J Chromatogr Sci 1993,31:323-329.
    [140]Howard AL,Shah MC,Ip DP,Brooks MA,Strode JT,3rd,Taylor LT.Use of supercritical fluid extraction for sample preparation of sustained-release felodipine tablets[J].J Pharm Sci 1994,83:1537-1542.
    [141]Reiser RW,Barefoot AC,Dietrich RF,et.al.Application of microcolumn liquid chromatography continuous flow fast atom bombardment mass spectrometry in environmental studies of sulfonylurea herbicides[J]J Chromatogr.1991.554:91-101.
    [142]Zanhow EW.Analysis of the herbicide chlorsulfuron in soil by liquid chromatography[J].J Agric Food Chem,1982,30:854-857
    [143]Volmer D,Levsen K.Thermospray liquid chromatographic-mass spectrometric multiresidue determination of 128 polar pesticides in aqueous environmental samples[J].J Chromatogr,1994,660:231-248.
    [144]Shalaby LM,Bramble FQ,Lee PW.Application of thermospray LC/MS for residue analysis of sulfonylurea herbicides and their degradation Products[J].J Agric Food Chem,1992,40:513-517.
    [145]隋凯,李军,卫锋,储小刚,赵守成,王玉萍.固相萃取-高效液相色谱法同时检测大米中12种磺酰脲类除草剂的残留[J].色谱,24(2):152-156.
    [146]Kleber JW,Galloway JA,Rodda BE.GLC determination of acetohexamide and hydroxyhexamide in biological fluids.J Pharm Sci 1977,66:635-638.
    [147]Hartvig P,Fagerlund C,Gyllenhaal O.Electron-capture gas chromatography of plasma sulphonylureas after extractive methylation[J].J Chromatogr 1980,181:17-24.
    [148]Ahmad I and Crawfond G.Trace residue analysis of the herbicide chlorsulfuron in soil by gas chromatography-electron capture detection[J].J Agric Food Chem,1990,38:138-141.
    [149]Cotterill EG.Determination of the sulfonylurea herbicides chlorsulfuron and metsulfuron-methyl in soil,water and plant material by gas chromatography of their pentafluorobenzyl derivatives[J].Pestic Sci,1992,34:291-296.
    [150]Thompson DG,Mac Donald LM.Trace-level quantitation of sulfonylurea herbicide in natural water[J].J AOAC Int,1992,75(6):1084-1090.
    [151]Klaffenbach P,Holland PT.Analysis of sulfonylurea herbicide by gas-liquid chromatography.2.Determination of Chlorsulfuron and metsulfuron-methyl in soil and water samples[J].J.Agric.Food Chem,1993,41:396-401.
    [152]Friendrich F,Spatny N,et al.ECOINFORMA 94 Fachtad.Ausstellung Umweltinf[J].Umweltkommun,1994,3:263-267.
    [153]Dinelli G,Vicarin A,Bonetti A.Detection and quantitation of sulfony lurea herbicides in soil at ppb level by capillary electrophoresis[J].J Chromatogr A,1995,700:201-207.
    [154]Krynitsky AJ,Douglas MS.Determination of Sulfonylurea Herbicides in Grains by Capillary Electrophoresis[J].J.AOAC International 1995,78(4):1091-1096.
    [155]Dinelli G.,vicarin A.,catizone P.Use of capillary electrophoresis for detection of Metsulfuron and Chlorsulfuron in tap water[J].Journal of Agricultural and Food Chemistry,1993,41:742-746.
    [156]Garcia F,Henion J.Fast capillary electrophoresis-ion spray mass spectrometric determination of sulfonylureas[J].Journal of Chromatography A 1992,606:237-247.
    [157]Kelley M M,Zahnow E W,Petersen W C,et al.Chlorsulfuron determination in soil extracts by enzyme immunoassay[J].J Agric Good Chem,1985,33:962-965.
    [158]刘曙照,袁树忠,徐暄.固相抗体直接竞争ELISA法测定氯黄隆在土壤中的残留动态[J].农药学学报,2(2):57-62
    [159]Rahman A,James TK.Comparative mobility of nine sulfonylurea herbicides in soil columns.Proc.Asian Pac.Weed Sci.Soc.Conf.12th[R],Taipei,Taiwan,1989,(1):213-217.
    [160]Mojasevic M,Szekacs A,Gojkovic S.Determination of recently introduced pesticides 1.Sulfonylureas and imidazolinones[J].Pesticidi,1996,11(1),23-35.
    [161]Blacklow WM,Phenlotmg PC.Sulfonylurea herbicides applied to acidic sandy soil:movement,persistence and activity within the growing season[J].Aust J Agric Res,1992,43:1157-1167.
    [162]Chivanov VD,Mishnev AK,Kravchenko NS,et.al.Study of sulfonylurea herbicides and their metabolites by time-of-flight plasma desorption mass-spec trometry with ionization by 252Cf fission fragments(TOF-PDMS).Report 2.Potential of TOF-PDMS as a method for screening plant resistance to sulfonylureas in model systems[J].Agrokhimiya,1995,11:108-118.
    [163]Chivanov VD,Mishnev AK,Kravchenko NS,et.al.Study of sulfonylurea herbicides and their metabolites by time-of-flight plasma desorption mass-spec trometry with ionization by 252Cffission fragments(TOF-PDMS).Part 1.TOF-PDMS provides a rapid method for determination of Metsulfuron-methyl and Chlorsulfuron in biological samples[J].Agrokhimiya,1995,10:114-125.
    [164]陈杰.优良的油菜田除草剂.金星[J].杂草科学,1993,4:43-44.
    [165]Finlay SB,Clarence JS,Terry JG.Postemergence Control of Weeds in Winter Rapeseed. Brassica napus,with DPX-A7881[J],Weed Science,1990,38:389-395.
    [166]仇宏伟,胡继业,周革菲.磺酰脲类除草剂在土壤及植物中行为综述[J],莱阳农学院学报,2000,17(2):132-138.
    [167]Hugh JB and Robert BM.Soil Residual Properities of DPX-A7881 under Laboratory Conditions[J].Weed Science,1989,37:412-418.
    [168]程慕如,孙致远.三种磺酰脲类除草剂的光解和水解作用[J].植物保护学报,2000,27(1):93-94.
    [169]Barrent M.Protection of corn and sorghum from imazethapy toxicity with antidotes[J].Weed Science,1989 37:296-301.
    [170]黄建中,娄群峰,叶建强.胺苯磺隆和灭草哇对水稻及玉米幼苗生长的影响[J].杂草学报,1995,9(1):38-42.
    [171]路凯,钱传范,刘曙照等.胺苯磺隆对水稻的药害研究[J].农药,1999,38(3):14-15.
    [172]唐根云.胺苯磺隆“后效应”对移栽水稻影响的观察[J].植保技术与推广,2001,21(5):28-29.
    [173]姚槐应,何振立,陈国潮,黄昌勇.红壤微生物量在土壤-黑麦草系统中的肥力意义[J].应用生态学报.1999,10(6):725-728.
    [174]廖敏,黄昌勇.镉在有机酸存在时对红壤中微生物生物量的影响[J].应用生态学报.2002,13(3):300-302.
    [175]Baath E.Effects of heavy metal in soil on microbial processes and populations:a review[J].Water Air Soil Pollution.1989,335-379.
    [176]Yu CM.Effect of four experimental insecticides on enzyme activities and levels of adenosine triphosphate in mineral and organic soils[J].J.Environ.Sci.Health,Part B.1990,25(6):78 7-800.
    [177]Jhonen BG,Drew EA.Ecological effects of pesticides of soil microorganisms[J].Soil Sci.,1977,23(5):319-324.
    [178]余柳青,徐福强,俞圣康,李扬汗,应存山.丁草胺和杀草丹对稻田土壤放线菌及其白色链霉菌的影响[J].中国农业科学.1997,30(6):81-83.
    [179]朱鲁生,张玉凤,樊得方.辛硫磷、甲氰菊酷及其混剂对土壤微生物的影响研究[J].农业环境保护.1999,18(1):25-27.
    [180]孟立君,吴凤芝.土壤酶研究进展[J].东北农业大学学报,2004,(4):622-626.
    [181]关松萌,张德生,张志明.土壤酶及其研究法[M],北京,农业出版社.1986,第1版.274-338.
    [182]范秀容,李广武,沈萍.微生物学实验[M].第二版.北京:高等教育出版社,1989.
    [183]蔡玉琪,王珊龄,蔡道基.甲基异柳磷等四种农药对土壤呼吸的影响[J].农村生态环境,1992,3:36-40.
    [184]严昶升.土壤肥力研究方法[M].北京农业出版社.1988.
    [185]朱南文,胡茂林,高廷耀.甲胺磷对土壤微生物活性的影响[J].农业环境保护,1999,18(1):4-7.
    [186]尹睿,张华勇,黄锦法等.保护地菜田与稻麦轮作田土壤微生物学特征的比较.植物营养与肥料学报,2004,10(1):57-62.
    [187]Perucci P,Casucci C,Dumontet S.An improved method to evaluate the o-diphenol oxidase activity of soil[J].Soil Biology and Biochemistry,2000,32(13):1927-1933.
    [188]Mougel C,Thioulouse J,Perriere G,and Nesme X.A mathematical method for determining genome divergence and species delineation using AFLP[J].Int.J.Syst.Evol.Microbiol.,2002,52:573-586.
    [189]Zeigler DR.Gene sequences useful for predicting relatedness of whole genomes in bacteria[J].Int J Syst Evol Microbiol 2003,53:1893-1900.
    [190]Stoesser G,Sterk P,Tuli M A,et al The EMBL Nuleotidei Sequence Database[J].Nucleic Acid Res,1997 25(1):7-13.
    [191]Rheinwald JG,Chakrabarty AM,Gunsalus IC.A transmissible plasmid controlling camphor oxidation in Pseudomonas putida[J].Proc Natl Acad Sci U S A 1973,70:885-889.
    [192]Chakrabarty AM,Chou G,Gunsalus IC.Genetic regulation of octane dissimilation plasmid in Pseudomonas[J].Proc Natl Acad Sci U S A 1973,70:1137-1140.
    [193]李伟波.降解胺苯磺隆真菌的筛选及降解特性研究[D].湖南农业大学.硕士学位论文,2006.
    [194]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [195]Buchanan RE,Gibbons NE.Bergey's Manual of Determinative Bacteriology.9th edition[M].USA,1994,The Williams & Wilkins Company.
    [196]DeLey J,Cattoir H,Reynaerts A.The quantitative measurement of DNA hybridization from renaturation rates[J].Eur J Biochem,1970,12:133-142.
    [197]Miller SA,Dykes DD & Polesky HF(1988) A simple salting out procedure for extracting DNA from human nucleated cells[J].Nucleic.Acids.Res.16:1215.
    [198]Wilson KH,Blitchington RB & Green RC(1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction[J].J.Clin.Microbiol.28:1942-1946.
    [199]Inoue H,Nojima H & Okayama H(1990) High efficiency transformation of Escherichia coli with plasmids[J].Gene.96:23-28.
    [200]Sambrook J,Fritsch EF & Maniatis T.Molecular cloning:a laboratory manual,2nd ed (pp 908-910)[M].Cold Spring Harbor Laboratory Press,1989,Cold Spring Harbor,New York.
    [201]Xiao-Zhou Zhang,Zhong-Li Cui,Qing Hong,Shun-Peng Li.High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800[J].Applied and Environmental Microbiology,2005,71(7):4101-4103.
    [202]Zhong-Li Cui,Xiao-Zhou Zhang,Zhong-Hui Zhang,Shun-Peng Li.Construction and application of a promoter trapping vector with methyl parathion hydrolase gene mpd as the reporter[J].Biotechnology Letters,2004,26(14):1115-1118.
    [203]刘智,洪青,张晓舟,徐剑宏,李顺鹏.甲基对硫磷降解菌DLL-E4降解对-硝基苯酚特性[J]_中国环境科学,2003,23(4):435-439.
    [204]代先祝,胡江,蒋建东,徐玮,李顺鹏.污染土壤中原位阿特拉津降解菌的分离和鉴定[J].土壤学报,2006,43(3):465-472.
    [205]Joseph S and David WR.Molecular cloning:a laboratory manual[M],3nd.New York:Cold Spring Harbor Laboratory Press,2002.93-96.
    [206]Si Y,Wang S,Zhou J,Hua R,Zhou D(2005) Leaching and degradation of Ethametsulfuron-Methylin soil[J].Chemosphere 60(5):601-609.
    [207]Blair AM,Martin TD.Review of the activity fate and mode of action of sulfonylurea herbicide[J].Pestic.Sci.,1988,22:195-219.
    [208]Munnecke DM.Hydrolysis of organophosphate pesticides by an immobilized enzyme system[J].Biotechol Bioeng,1979,22:2247-2261.
    [209]Nannipieri P,Bollag JM.Use of enzyme to detoxify pesticides contaminated soils and waters[J].J Environ Qual,1991,20:510-517.
    [210]Chen JA,Shu WQ,Zhang XK,et al.Biodegradation of di(2-ethylhexyl) phthlate(DEHP)by enzyme[J].Chin J Appl Environ Biol,2004,10(4):471-474.
    [211]Neu HC,Heppel LA.The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts[J].J Biol Chem 1965,240:3685-3692.
    [212]戴树桂,庄源益,陈勇生,等.两种假单胞菌中二氯酚降解酶活性及其定域研究[J].环境科学学报,1996,16(2):173-178.
    [213]Garcia-Gonzalez V,Govantes F,Porrua O,Santero E.Regulation of the Pseudomonas sp.strain ADP cyanuric acid degradation operon[J].J Bacteriol 2005,187:155-167.
    [214]郭勇.酶工程(第2版)[M].北京:科学出版社,2004.
    [215]Lichtner FT,Dietrich RF,Brown HM.Etharnetsulfuron methyl metabolism and crop selectivity in spring oilseed rape(Brassica napus L.)[J].Pestic Biochem Physiol,1995,52:12-24
    [216]Vaneerd LL,Hall JC.Metabolism and fate of 14C Ethametsulfuron-Methylin rutabaga (Brassica napobrassica Mill)[J].J Agric Food Chem 2000,48:2977-2985.
    [217]Veldhuis LJ,Hall LM,O'Donovan JT,Dyer W,Hall JC.Metabolism-based resistance of a wild mustard(Sinapis arvensis L.) biotype to Ethametsulfuron-Methyl[J].J Agric Food Chem,2000,48:2986-2990
    [218]Roberts T.Metabolic Pathways of Agrochemicals[M].Part 1:Herbicide and Plant Growth Regulators, The Royal Society of Chemistry, London, 1998, pp 503-506.
    [219] Li YT, Zimmerman WT,Gorman MK,et al. Aerobic soil metabolism of metsulfuron- methyl[J]. Pestic. Sci., 1999, 55: 434 - 445.
    [220] Kim J, Liu KH, Kang SH, Koo SJ, Kim JH. Degradation of the sulfonylurea herbicide LGC-42153 in flooded soil[J]. Pest Manag Sci, 2003, 59: 1037-1042.
    [221] Menniti C, Cambon JP, Bastide J. Soil transformation of prosulfuron. J Agric Food Chem, 2003,51:3525-3527.
    [222] Morrica P, Giordano A, Seccia S, Ungaro F, Ventriglia M. Degradation of imazosulfuron in soil[J]. Pest Manag Sci, 2001, 57(4):360-365.
    [223] Sarmah AK, Sabadie J. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: a review[J]. J Agric Food Chem, 2002, 50(22): 6253-6265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700