用户名: 密码: 验证码:
X13CrMnMoN18-14-3高氮奥氏体不锈钢的力学行为及尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X13CrMnMoN18-14-3 (1.4452)作为一种新型的高氮无镍奥氏体不锈钢,因其具有高强、高韧等优异的力学性能,具有广泛的应用前景,尤其是在医疗器械上的应用。且随着微成形技术的发展,这种不锈钢在微机电系统中亦将有一番作为。但是,当材料的尺寸减小到一定程度时,材料的机械性能、破坏行为等方面会表现出明显的尺寸效应。因此对微尺度高氮钢的力学性能和尺寸效应进行系统研究具有十分重要的理论意义和重大的应用价值。
     室温下通过材料的单轴拉伸试验,获得了100μm高氮奥氏体不锈钢的基本力学性能参数,通过循环载荷试验考察了材料的棘轮行为特性和疲劳特性。对比发现材料具有明显的强度和疲劳尺寸效应,随材料的尺寸减小材料的强度得到提高、疲劳寿命延长。根据目前尺寸效应理论模型对高氮奥氏体不锈钢的尺寸效应进行了描述,改进了Weibull缺陷统计理论模型,对冷变形高氮奥氏体高氮钢进行了强度尺寸效应模拟;采用分形理论方法对退火高氮奥氏体不锈钢的疲劳尺寸效应进行了解析。从而预测特定尺寸高氮奥氏体不锈钢试样的强度和疲劳尺寸效应。
     本文还对高氮奥氏体不锈钢进行了冷变形研究,发现材料具有很强的冷变形硬化能力,从微观角度并结合材料自身的高氮特性分析了材料的硬化机理。
X13CrMnMoN18-14-3 (1.4452) is a new type of high-nitrogen austenitic stainless steel without nickel element. As its high strength, high toughness and such excellent mechanical properties, it has wide application prospect, especially in the field of medical device applications. With the development of micro-fabrication technology, high-nitrogen stainless steel can be applied to micro-electro- mechanical system. However, there is an obvious size effect, that is to say, when the size decreases to a certain extent, the mechanical properties of materials will manifest a clear size effect, maybe increase or decrease. Therefore, a systematic investigation on the mechanical properties of microscale high-nitrogen and the size effect is needed for great theoretical significance and plays a very critical role in application value.
     Uniaxial tensile test was performed on 100μm high-nitrogen austenitic stainless steel at room temperature to obtain the basic parameters of mechanical properties through the test and examine the ratcheting properties and fatigue behavior through uniaxial cyclic test. By contrast, a clear size effect on strength and fatigue was found. The smaller the size is, the higher the strength and the longer the fatigue life. According to the current theoretical model, the size effect of high-nitrogen austenitic stainless steel was described. Weibull defects statistical theory model was improved to simulate size effect on strength of cold-deformed high-nitrogen austenitic steel. The fractal theory was employed to analyze the size effect on fatigue of annealing high-nitrogen austenitic steel, so as to predict the strength and fatigue life for specific size of specimens.
     This thesis has carried out the studies on cold deformation of high-nitrogen austenitic steel. It was found that the material performed a strong ability of cold deformation hardening. In addition, the hardening mechanism from the perspective of microstructure combined with the high-nitrogen characteristics was analyzed.
引文
[1] Speidel M.O., Properties and applications of High-nitrogen steels, HNS-88, Lond- on, The Institute of Metals, 1989:92
    [2] Gavriljuk V.G., Berns H., High Nitrogen Steels, Berlin, Springer, 1999:192
    [3] Rashev T., High-nitrogen steels. Metallurgy under Pressure, Academic Publishing House, M. Drinov, 1995:253
    [4] Katada Y., Effect of temperature on tensile behavior and microstructure evolution of nitrogen alloyed austenitic stainless steel, Han Dong, Jie Su, M.O. Speidel, Int. Conf. On High Nitrogen Steel, HNS-2006, Beijing: Metallurgical Industry Press, 2006:52
    [5] Balachandram G., Kamachi M.U., Raj B., High Nitrogen Steels and Stainless Steels, Narosa Publishing House, New Delhi, 2004:87
    [6] Andrew J.H., Nitrogen in Iron, Carnegie Scholarship Memoirs, 1912, 11: 236
    [7] Franks R., Binnder W.O., Thompson J., Austenitic Chromium-Manganese-Nickel Steels Containing Nitrogen. Trains. ASM, 1995, 47:231
    [8] Frehser H., Kubisch C., Metallurgie und Eigenschaften Unter Hohem Druck Erschmolzener-Stickstoff haltiger Stahle, Bergund Huttenmannische Monatshefte, 1963, 108 (11): 369~380
    [9] Stein G., The development of New Material for Nonmagnetizable Retaining Rings and Other Application in the Power Generating Industry, Nisbett E.G., Melilli A.S., Steel Forgings, ASTM-STP903. American Society for Testing and Materials, Philadelphia, 1986: 237~257
    [10] Berns H., Lueg L., Trojahn W., Zoch H., High Nitrogen Steels, HNS-90. Stahleisen, Dusseldorf, 1990: 425~429
    [11] Frisk K.,氮在钢中的某些有益作用,高氮钢译文集(1),上海钢铁研究所, 1990:1~21
    [12] Stein G., Huchlenbroich I., Manufacturing and application of high nitrogen steels. Master and Manufacturing Processes, 2004, 19:7
    [13] Anon, Metal Powder Report, 1997, 52(11): 24
    [14] ASME Boiler and Pressure Vessel Code, Section III, American Society of Mechanical Engineers, New York, 2005
    [15] Kerntechnischer Ausschuβ(KTA), Sicherheitstechnische Regel des KTA; Teil: Auslegung, Konstruktion und Berchnung, Regeladerungsentwurf, 1995
    [16] Design Rules for Class I Equipment. RCC-MR, June, 1985, RB3000
    [17] Mizuno M., Mima Y., Abdel-Kairm M., Ohno N., Uniaxial ratcheting of 316FR steel at room temperature, I: Experiments. ASME J Eng Mate Tech, 2000, 122: 29
    [18] Chaboche J.L., On some modification of kinematic hardening to improve the description of ratcheting effects, International Journal of Plasticity, 1991,7: 661~678
    [19] Chaboche J.L., Modeling of ratcheting: evaluation of various approaches, European Journal of Mechanics, A/Solids, 1994, 13: 501~518
    [20] McDowell D.L., Stress state dependence of cyclic ratcheting behavior of two rail steels. Int. J. Plast. 1995, 11:397~421
    [21] Kang G.Z., Gao Q., Yang X.J., Uniaxial cyclic ratcheting and plastic flow properties of SS304 stainless steel at room and elevated temperatures. Mech Mater, 2002, 34: 145~159
    [22] Hassan T., Kyriakides S., Ratcheting of cyclically hardening and softening materials, Part I: Uniaxial behavior. Int. J. Plast. 1994, 10(2): 149~184
    [23] Hassan T., Kyriakides S., Ratcheting of cyclically hardening and softening materials, Part II: Uniaxial behavior. Int. J. Plast. 1994, 10(2): 185~212
    [24] Yang X.J., A viscoplastic model for 316L stainless steel under Uniaxial cyclic straining and stressing at room temperature. Mech Mater, 2004, 36: 1073~1086
    [25] Chen X., Hui S.C. Ratcheting behavior of PTFE under cyclic compression. Polym Test. 2005, 24: 829~833
    [26] Yaguchi M., takahashi Y., Ratcheting of viscplastic material with cyclic softening, Part I: Experiments on modified 9Cr-1Mo steel, International Journal of Plasticity, 2005, 21(1): 43~65
    [27] Yaguchi M., takahashi Y., Ratcheting of viscplastic material with cyclic softening, Part II: Application of constitutive models, International Journal of Plasticity, 2005, 21(4): 835~860
    [28]蔡力勋,程兆年,描述不锈钢材料单轴棘轮行为的一元参量体系,金属学报,2002, 38(9): 966~973
    [29] Fu C., McDowell D.L., Ume I..C., A finite element procedure of a cyclic thermoviscoplasticity model for solder and copper interconnects, ASME Journal of Electronic Packaging, 1998, 120(1): 24~34
    [30] Yang. X.J., Chow C.L., Lau K.J., Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy. Int. J. Fatigue 2003, 25: 533~546
    [31] Chen X., Yu D.H., Kim K.S., Experimental study on ratcheting behavior of eutectic tin-lead solder under multiaxial loading. Mate. Sci. Eng A. 2005, 406: 86~94
    [32] Kang G.Z., Kan Q.H., Zhang J., Experimental study on the uniaxial cyclic deformation of 25CDV4.11steel. J. Mater Sci. Technol., 2005, 21(1):5~9
    [33] Jansson S., Leckie F.A., Mechanical behavior of a continuous fiber enforce aluminum matrix composite subjected to transverse and thermal loading. J. Mech. Phys Solid 1992, 12:593~612
    [34] Zhang H., Daehn G.S., Wagoner R.H., The temperature-cycling deformation of particle reinforced metal matrix composites: a finite element study. Scripta Metallurgica et Materialia 1990, 24: 2151~2155
    [35] Zhang H, Daehn G.S., Wagoner R.H., Simulation of the plastic response of whisker reinforced metal matrix composites under thermal cycling conditions, Scripta Metallurgica et Materialia .1991, 25: 2285~2290
    [36] Xia Z., Kujawki D., Ellyin F., Effect of mean stress and ratcheting strain on fatigue life of steel. Int. J. Fatigue, 1996, 18: 335~341
    [37] Kang G.Z., Uniaxial time-dependent ratcheting of SiC/606Al alloy composites at room and high temperature. Compos Sci Technol. 2006, 66: 1418~30
    [38] Kang G.Z., Liu Y.J., Uniaxial and multiaxial cyclic deformation behaviors of SiC/606Al alloy composites at room temperature. Key Eng mater 2007, 353: 1247~1250
    [39] Chaboche J.L, Nouailhas D., Constitutive modeling of ratcheting effects-Part I: Experimental facts and properties of the classical models. ASME Journal of Engineering Materials and Technology, 1989, 111:384~392
    [40] Plenard E., Fromont C., Some Mechanical Properties Relevant to Non-linear Elasticity Materials, ICM-5, Beijing, China, 1987:765~771
    [41] Pellissier-Tanon A., Bernard J.L., Amzallag C.,Rabbe P., Evaluation of the Resistance of Type 316 Stainless Steel Against Progressive Deformation. Low Cycle Fatigue and Life Prediction, Firminy, France, 1980, ASTM STP770, 1982
    [42] Ruggles M.,Krempl E., Rate Dependence of Ratcheting of AISI Type 304 Stainless Steel at Room Temperature, Report MML 87-4, Rensselaer Polytechnic Inst, 1987
    [43] Rider R.J., Harvey S.J., Chandler H.D., Fatigue and ratcheting interaction, International Journal of Fatigue, 1995, 17(7): 507~511
    [44] Yang X.J., Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading. International Journal of Fatigue, 2005, 27(9):1124~1132
    [45] Kwofie S., Chandler H.D., Low cycle fatigue under tensile mean stresses where cyclic life extension occurs, Int. J. Fatigue, 2001, 23:341~345
    [46] Tao G., Xia Z.H., Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym Test 2007, 26:451~460
    [47]蔡力勋,牛清勇,刘宇杰等,应力循环下T225NG合金塑性累积行为研究,核动力工程,2004, 25(4):352~356
    [48] Connolley T., McHugh P.E., Bruzzi M., A review of deformation and fatigue of metals at small size scales, Fatigue Fract. Eng. Mater. Struct. 2005, 28: 1119~ 52
    [49] Kathuria Y.P., Laser microprocessing of metallic stent for medical therapy, Mater. Process. Technol. 2005, 170: 545~550
    [50]胡更开,复合材料宏观性能的细观力学研究,力学与实践,1996,18(6): 6~11
    [51]何满潮,薛廷河,彭延飞,工程岩体力学参数确定方法的研究,岩石力学与工程学报,2001,20(2):225~229
    [52] Armstrong R.W., On Size Effects in Polycrystal Plasticity, Mech. Phys. Solids, 1961, 9:196~199
    [53] Hall E.O., Deformation and Ageing of Mild Steel, Proc. Phys. Soc. 1951, 64(381):747~753.
    [54] Petch N.J., Cleavage Strength of Polycrystals, Iron Steel Inst., London, 1953, 174: 25~28.
    [55] Armstrong R.W., Codd I., Douthwaite R.M., Petch N.J., Plastic Deformation of Polycrystalline Aggregates, Philos. Mag., 1962, 7(73):45~48
    [56] Al-Haidary J.T., Petch N.J., Rios E.R., Plastic Deformation of Polycrystalline I. Aluminum Between Room Temperature and 400 Degree, Philos. Mag. A, 1983, 47(6), 869~890
    [57] Kim G.Y., Ni J., Koc M., Modeling of the Size Effects on the Behavior of Metals in the Microscale Deformation Processes. ASME 2007, 129: 470~476
    [58] Geiger M., Kleiner M., Eckstein R., Tiesler N., Engel U., CIRP Ann.—Manuf. Technol. 2001, 50:445
    [59] Molotnikov A., Lapovok R., Davies C.H.J., Caoand W., Estrin Y., Size effect on the tensile strength of fine-grained copper, Scripta Materialia, 2008, 59: 1182~ 1185
    [60] Hommel M., Kraft O., Acta Mater. Res. 1995, 10:853~863
    [61] Keller R.M., Baker S.P., Arzt E., Mater. Res. 1998,13:1307~1317
    [62] Towse A., Potter K., Wisnom M.R., Adams R.D., Specimen size effects in the tensile failure strain of an epoxy adhesive, Journal of Materials Science, 1998, 33:4307~4314
    [63] Wisnom M.R., Khan B., Hallett S.R., Size effect in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites, Compos Struct, 2004, 84:21~28
    [64] Wisnom M.R., Atkinson J.A., Reduction in tension and flexural strength of unidirectional glass fibre-epoxy with increasing specimen size, Compos Struct 1997, 38:405~412
    [65] Jackson K.E., Kellas S., Morton J., Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure. Compos Mater 1992, 26: 2674~2705
    [66] Griffith A.A., The phenomenon of ruptures and flow in solids. Phil Trans R Soc, 1920, 22: 163~198
    [67] Metcalfe A.G., Schmitz G.K., Effect of length on the strength of glass fibres, American Society for Testing Materials, 1964, 87: 100~12
    [68] Hitchon J.W., Phillips D.C., The dependence of the strength of carbon fibres on length, Fibre Science and Technology, 1979, 12: 217~233
    [69] Gerberich W.W., Tymiak N.I., Grunlan J.C., Horstemeyer M.F., Baskes M.I., Interpretation of Indentation Size Effects, ASME J. Appl. Mech., 2002, 69, 433~442
    [70] Nix W.D., Gao H., Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids, 1998, 46(3): 411~425
    [71] Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W., Strain Gradient Plasticity: Theory and Experiment, Acta Metall. Mater., 1994, 42(2): 475~487
    [72] Han C.S., Hartmaier A., Gao H., Huang Y., Discrete Dislocation Dynamics Simulations of Surface Induced Size Effects in Plasticity, Mater. Sci. Eng., A, 2006, 415: 225~233
    [73] Huang Y., Qu S., Hwang K.C., Li M., Gao H., A conventional theory of mechanism-based strain gradient plasticity, International Journal of Plasticity, 2004, 20: 753~782
    [74] Taylor G.I., Plastic strain in metals. Journal of the Institute of Metals, 1938, 62: 307~324
    [75] Mizubayashi H., Yoshihara Y., Okuda S., Phys. Status Solid A Appl. Res.1992, 129: 475~481
    [76] Villain J., Brueller O.S., Qasim T., Creep behavior of lead free and lead containing solder materials at high homologous temperatures with regard to small solder volumes. Sensors and Actuators A: Physical, 2002, 99(1-2): 194~197
    [77] Takada A., Danjio H., Sakane M., Development of Miniature Creep Testing for Solders. Transactions of the Japan Society of Mechanical Engineers Part A, 2003, 69(7): 2082~2087
    [78] Judelewicz M., Kunzi H.U., Merk N., Iischner B., Microstructural development during fatigue of copper foils 20~100μm thick, Materials Science and Engineering: A, 1994, 186: 135~142
    [79]颜永年,俞新陆,郑楚鸿,疲劳绝对尺寸效应的统计分析,机械工程学报,1986,22(4):85~87
    [80]赵少汴,抗疲劳设计—方法与数据,北京:机械工业出版社,1997:47~48
    [81]冯端等,金属物理学,第三卷,科学出版社,1999:389~397
    [82]胡赓祥,钱苗根.金属学,上海,科学技术出版社,1980:292~301
    [83]余宗森,田忠卓.金属物理,冶金工业出版社,1982:252~265
    [84]杨德庄,位错与金属的强化机制,哈尔滨工业大学出版社,1991:147
    [85]胡德林,金属学与热处理,西安:西北工业大学出版社,1984:116
    [86]徐祖耀,马氏体相变与马氏体,科学出版社,1980:409
    [87]郭兰中,郭攀成,吴安生,金属材料冷变形时预应变增强效应与损伤效应浅析,机械研究与应用,2000,13:16
    [88] Fischer A., Untersuchungen zum zyklischen Verformungsverhalten des hochstickstofflegierten austenitischen Stahles X13CrMnMoN18-14-3(1.4452), Werkstofftechnik II, 2005, 5(717): 79.
    [89] Mfllner P., Solenthaler C., Uggowitzer P., Speidel M.O., On the effect of nitrogen on the dislocation structure of austenitic stainless steel, Mater. Sci.Eng. A, 1993,164: 164
    [90] Soussan A., Degallaix S., Magnin T., Work-hardening behavior of nitrogen- alloyed austenitic stainless steels, Mater. Sci.Eng. A, 1991, 142: 169
    [91] Uggowitzer P.J., Harzenmoser M., HNS-88, London: The Institute of Metals, 1989: 174
    [92] Gavriljuk V.G., Berns H., High Nitrogen Steels, Berlin, Springer, 1999:1-2, 7-10, 24-42, 62-65,150
    [93] Gavriljuk V.G., Petrov Y., Shanina B., Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels, Scripta. Mater., 2006, 55: 537
    [94] Taillard R., Foct J., HNS-88, London: The Institute of Metals 1989: 387
    [95] Stoltz R.E., Sande V.B., The Effect of Nitrogen on Stacking Fault Energy of Fe-Ni-Cr-Mn Steels, Metall. Trans. A, 1980, 11:1033
    [96] Gerold V., Karnthaler H.P., On the Origin of Planar Slip in FCC Alloys, Acta Metall., 1989, 37: 2177
    [97] Pettinari F., Down J., Saada G., Caron P., Coujou A., Clement N., Stacking fault energy in short-range ordered r-phase of Ni-based super alloys, Mater. Sci. Eng. A, 2002, 325: 511
    [98] M. Grujicic, J.O. Nilson, W.S. Owen, T. Thorvaldsson, HNS-88 London: The Institute of Metals, 1989: 151
    [99] Marshal P., Austenitic Stainless Steels-Microstructure and Mechanical Properties, Elsevier App. Sci. Pub. NY, 1984: 27
    [100] Zhou X.W., Grujicic M., Thermodynamic analysis of the short range order strengthening in Fe-Ni-Cr-N austenite, Calphad, 1996, 20: 257
    [101] Wisnom M.R., Size effects in the testing of fibre-composite materials, Composites Science and Technology, 1999, 59: 1937~1957
    [102] Bazant Z., Chen E.P.,结构破坏的尺度律,力学进展,1999, 25:383 ~433
    [103] Weibull W.A., Statistical distribution function of wide applicability, Journal of Applied Mechanics 1951, 18: 293~7
    [104] Arzt E., Size effect in materials due to microstructural and dimensional constraints: a comparative review. Acta mater, 1998, 46: 5611~5626
    [105] Geers M.G.D., Brekelmans W.A.M., Janssen P.J.M, Size effect in miniaturized polycrystalline FCC samples: Strength versus weakening, International Journal of Solids and Structures, 2006,43: 7304~7321
    [106]赵春元,胡宇红,关雅楠,分形理论及其在材料科学研究中的应用,沈阳电力高等专科学校学报,2004,6:41~43
    [107] Carpinteri A., Spagnoli A., Vantadori S., Size effect in S-N curves: A fractal approach to finite-life fatigue strength, International Journal of Fatigue. 2009, 31: 927~933

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700