用户名: 密码: 验证码:
扇形阵列式磁感应断层成像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁感应断层成像技术(Magnetic Induction Tomography, MIT)应用电磁感应原理,在被检测物边界测量二次磁场,结合重建算法对被检测物电导率分布进行成像,具有非接触、无创等优势,但是目前研究处于探索更好的扫描方式和成像系统的研究阶段。本文针对磁感应断层成像的关键问题,从理论建模、系统设计、磁场正逆问题及成像方法等开展了系列研究,提出了一种扇形阵列式磁感应断层成像系统,包括单激励多通道谐振检测模型,一体化数据采集系统,以及面向该系统的数据处理和新型非线性反投影图像重建算法。具体工作如下:
     (1)由于被测物的感应涡流磁场在空间中的真实分布和特性对MIT系统设计具有重要的指导意义,本文根据人体大脑电导率分布建立了磁感应断层成像的三维仿真模型以及系统模拟实验,并据此研究了检测区域电场分布规律,不同检测物对涡流磁场的影响,成像区域磁场变化以及边界测量值的分布规律,以及被测目标改变对边界测量值的影响等。
     (2)针对磁感应信号微弱、干扰严重的问题,发挥大线圈激励磁场强,小线圈检测定位准确、串扰小的优势,将检测和激励线圈功能分离。提出了双谐振非对称激励检测模式,使激励线圈和检测线圈均在谐振频率下工作,增大激励磁场同时,通过谐振选频特性提高检测线圈对磁场变化的稳定性。检测过程中将参考信号和感应信号分离,以独立通道形式提供给鉴相电路,克服鉴相的双值性问题,提高了鉴相的准确性。
     (3)本文提出了扇形阵列式多通道信号采集系统结构,检测线圈呈半环形排列在激励线圈对面。测量过程中通过相对旋转扫描方式,获得多角度的测量数据。原始测量数据经数据插补、校正和标准化之后,构成投影数据用于图像重建。
     (4)MIT系统成像区域内磁场分布非线性,导致重建过程复杂,定位精度差,本文基于反投影研究了扇形MIT系统快速图像重建理论及实现方法,根据MIT边界数据对成像区域内部电导率变化的敏感性分析结果,设计了测量数据标准化方案,进而根据测量相位差即为成像区域内电导率分布沿磁力线路径投影的集合这一结论,利用成像区域磁力线的分布构建反投影路径和区域,设计了一套适用于磁感应断层成像的反投影算法,形成了一套完整的扇形多通道磁感应断层成像系统。
Magnetic Induction Tomography (MIT) detects the eddy current magnetic field on theboundary of the imaging area based on electromagnetic induction method, and gets thedetecting object tomography of the conductivity distribution by the reconstructionalgorithm. It meets requirements of a modern medical device that is contactless,non-invasive, and imaging-functional. However, it has not yet been used in the clinicalpractice due to the limitation in imaging resolution, so high precision scanningmeasurement methods and high resolution image system are still in the research phases. Inthis paper, the research on theory modeling, system design, forward and inverse problem ofmagnetic field, and imaging method was carried out, which aims to provide solutions to thekey problems inherited in MIT, and a sector array MIT system is presented in this paper,which includes single excting and multichannel harmonic resonance detecting systemstructure, integrated data acquisition system, data processing methond and a new nolinearback-projection reconstruction algorithm for the system. The main work as follows:
     (1) The distribution and the propertis of the eddy currents and the magnetic fieldsinduced by the imaging object may provide important message for the MIT system design.This paper simulated the3-D MIT model and mearsuring expriments according to the brainconductivity distribution, and studied on the electric field distribution of detecting erea, theeddy current magnetic field with the different object, the change in magnetic field andboundary mearsuring data.
     (2) For the induction signal is feeble and corrupted badly, it allows separation of thedesign of detecting coils and exciting coil, and adopts the large coil to get strong incentivemagnetic field, and small detecting coils to get the high accuracy of position and smallinterference. Meanwhile harmonic resonance detecting method is adopted to enhance theexciting magnetic fields and improve the stability due to the frequency selectivity of thedetecting coils. In the process of signal detecting, the reference signal is separated frominduction signal, and transmits to phase discriminator circuit byindependent channel, and itimproves the accuracy of phase discriminate signal.
     (3) A multichannel array signal acquisition system is designed to obtain measurementdata used for image reconstruction, and we design the detecting coils semicirculardistribution opposite the exciting coil. The relative rotational scanning method is used toget multiangular measurement data in the system. The raw detecting data is interpolated,adjusted, and standardizated, and got the reconstructed data.
     (4) The magnetic field of imaging area in MIT is nonlinear, with increase thedifficulty of image reconstruction and leads to the poor positioning accuracy. The fastimage reconstruction algorithm for sector MIT system and its implement method wasstudied in this paper based on back-projection algorithm. A new data standardizationmethod is presented according to the measureing data sensitivity with the conductivitychange in the imaging area, and then an improved back-projection image reconstructionalgorithm fit for the magnetic induction tomography is presented, based on the theory thatthe phase difference can be described as the projection of the conductivity distributionalong the magnetic field lines. The back-projection path was determined by the magneticfield lines in the imaging area, and then a complete set of sector multichannel MIT systedis enstablished.
引文
[1]刘亚宁.电磁生物效应.北京:北京邮电大学出版社,2001.
    [2]李广新.电磁学生物应用概论.北京:中国农业出版社,1997.
    [3]宋涛,霍小林,吴石增.生物电磁特性及其应用.北京:北京工业大学出版社,2008.
    [4]任超世,生物电阻抗技术与人体功能信息.电子科技导报,1998.11:17~19
    [5] KR Foster, J L Schepps, H P Schwan et al. Dielectric properties of brain tissue between0.01and10GHz. Phys. Med. Biol.1979,24:1177-1187
    [6] T Tamura, M Tenhunen, H P Schwan et al. Modelling of the dielectric properties of normal andirradiated skin. Phys. Med. Biol.1994,39:927-936
    [7]任超世,崔云莉等.医学电阻抗技术的问题和发展与应用前景.中国医学物理学杂志,1997,14(1):59~61
    [8] Tarjan P.P., McFee R.. Electrodeless measurements of the effective resistivity of the human torsoand head by magnetic induction. IEEE Trans. Biomed. Eng.,1968,15(4):266~278.
    [9] Lynn W.H., Harvey W.K., A noinvasive electromagnetic conductivity sensor for biomedicalapplication, IEEE Transaction on Biomedical Engineering,1988,12:1011-1022
    [10] Al-Zeibak S., Saunders N.H., A feasibility study of in vivo electro-magnetic imaging, Phys. Med.Biol.1993,38(1):151-160.
    [11] R. Merwa, Robert, Scharfetter, H., Magnetic induction tomography: A feasibility study of brainoedema detection using a finite element human head model.13th International Conference onElectrical Bioimpedance and the8th Conference on Electrical Impedance Tomography2007,ICEBI2007,17(1):480-483
    [12] Grififiths H. Magnetical impedance tomography. Meas Sci Technol,2001,12(8):1126~1131.
    [13]李世俊,秦明新,董秀珍等.非接触磁感应脑阻抗断层成像系统设计,中国医学物理学杂志,2003,20(1):55~58.
    [14] Rush S, Driscoll D.A. Current distribution in the brain from surface electrodes. AnesthesiaAnalgesia,1968,47(1):717~723.
    [15] Thom F. Oostendorp, Jean Delbeke, Dick F, et al. The Conductivity of the Human Skull: Results ofIn Vivo and In Vitro Measurements. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2000;47(11):1487~1491.
    [16] Hoekema R, Huiskamp G.J.M, Wieneke G.H, et al. Measurement of the conductivity of the skull,temporarily removed during epilepsy surgery. Brain Topography,2003,16(1):29~38.
    [17] M. Zolgharni, P.D. Ledger, H. Griffiths. Forward modelling of magnetic induction tomography: asensitivity study for detecting haemorrhagic cerebral stroke. Med Biol Eng Comput,2009,47(1):1301~1313.
    [18] C Gabriel, S Gabriel, E Corthout: The dielectric properties of biological tissues: I. Literature survey,Phys. Med. Biol.1996,41(1),2231~2249.
    [19]吴小明,董秀珍,秦明新等.人大脑组织复电阻抗频率特性及其等效电路模型.生物医学工程学杂志,2003,20(3):500~503.
    [20] Zheng Xu, Haijun Luo, Wei He, et al. A multi-channel magnetic induction tomographymeasurement system for human brain model imaging. Physiol. Meas.,2009,30(1):175~186.
    [21]何为,李倩,徐征等.头部分层球模型磁感应成像正问题的解析解.计算物理,2010,27(6):912~918.
    [22]徐桂芝.基于EIT技术的脑内电特性与功能成像研究:(博士学位论文).河北:河北工业大学,2002.
    [23] A.M.Dijkstra, B.H. Brown, A.D. Leathard, et al. Clinical Applications of Electrical ImpedanceTomography [J]. Journal of Medical Engineering&Technology,1993,17(3):89-98.
    [24]徐管鑫,电阻抗成像技术理论及应用研究:(博士学位论文).重庆:重庆大学,2004.
    [25] M. Cheney, D. Isaacson, J. Newell. Electrical impedance tomography, SIAM Review,1999,41(1):85~101.
    [26] Y. Zou, Z. Guo. A review of electrical impedance techniques for breast cancer detection. MedicalEngineering&Physics,2003,25(2):79~90.
    [27] Scharfetter H, Roberto Casanas, Javier Rosell. Biological Tissue Characterization by MagneticInduction Spectroscopy: Requirements and Limitations [J]. IEEE Trans Biomed Eng,2003,50(7):870-880.
    [28] H. Scharfetter, H.K. Lackner, J. Rosell. Magnetic induction tomography: hardware formulti-frequency measurements in biological tissues. Physiol Meas,2001,22(1):131~146
    [29] MZolgharni, P D Ledger, D W Armitage et al. Imaging cerebral haemorrhage with magneticinduction tomography: numerical modelling. Physiol. Meas.,2009,30(1):187~200.
    [30] Nezt J., Forner E., Haagemann S.. Contactless impedance measurement by magnetic induction-aposible method for investigation of brain impedance. Physiol. Meas.,1993,14(4):463~471.
    [31] Korjenevsky A.V., Cherepenin V.A.. Magnetic induction tomography. Journal of CommunicationTechnology and Electronics,1997,42(4):496~474.
    [32] Korjenevsky A.V., Cherepenin V.A.. Progress in realization of magnetic induction tomography.Annals of the New York Academy of Sciences,1999,873(1):346~352.
    [33] Korjenevsky A.V., Cherepenin V.A., Sapetsky S.. Magnetic induction tomography: Experimentalrealization. Physiol. Meas..2000,21(1):89~94.
    [34] Peyton A.J., et al. Development of electromagnetic tomography (EMT) for industrial applications.Part I: sensor design and instrumentationProc.1st World Congress on Industrial ProcessTomography (Buxton),1999:306~312
    [35] Nevzat G., Gencer M., Nejat Tek. Electrical Conductivity Imaging via Contactless Measurements.IEEE Transactions on Medical Imaging,1999,18(7):617~627.
    [36] A Morris, H Griffiths, W Gough. A numerical model for magnetic induction tomographicmeasurements in biological tissues. Physiological Measurement.2001,22(1):113~119.
    [37] Robert Merwa, Karl Hollaus, Hermann Scharfetter, et al. Numerical solution of the general3Deddy current problem for magnetic induction tomography (spectroscopy). PhysiologicalMeasurement,2003,24(2):545~554.
    [38] Robert Merwa, Karl Hollaus, Hermann Scharfetter. Detection of brain oedema using magneticinduction tomography: a feasibility study of the likely sensitivity and detectability. PhysiologicalMeasurement,2004,25(1):347-354.
    [39] Zolgharni M, Ledger P D, Armitage D W, et al. Imaging cerebral haemorrhage with magneticinduction tomography: numerical modeling. Physiol. Meas.,2009,30(6):185~200.
    [40] Gursoy, D,Scharfetter, H, Feasibility of head imaging using multi-frequency magnetic inductiontomography,200914th National Biomedical Engineering Meeting (BIYOMUT2009),2009,20-22
    [41] Sapetsky, S,Cherepenin, V,Korjenevsky, A,et al, Development of the system for visualizationof electric conductivity distribution in human brain and its activity by the magnetic inductiontomography (MIT) method, Journal of Physics: ICEBI& EIT2010,2010,4-8
    [42] Airton Ramos, Julia G. B. Wolff, Numerical modeling of magnetic induction tomography using theimpedance method. Med Biol Eng Comput,2011,49(2):233~240.
    [43]秦明新,焦李成,王聪等. A single channel measurement system for brain MIT,中国生物医学工程学报(英文版)2004,13(3):93~100.
    [44]秦明新.检测脑水肿的磁感应成像测量方法的研究:(博士学位论文)西安:西安电子科技大学,2005.
    [45]王聪.脑电阻抗成像技术中的头模型及磁感应断层阻抗成像基础研究(:博士学位论文).西安:第四军医大学,2007.
    [46]徐林,秦明新等.基于磁感应相位移谱方法的脑出血模拟测试系统的性能研究[J].生物医学工程与临床,2011,15(6),505-508.
    [47]徐征,何为,何传红等.头部电阻抗成像正问题的解析解研究.计算物理,2010,27(1):107~114.
    [48] Matoorian N., Patel N.C., Bowler A.M.. Dental electromagnetic tomography: properties of toothtissues. Innovations in Instrumentation for Electrical Tomography, IEE Colloquium,1995,3(1):1-7.
    [49] Robert Merwa, Hermann Scharfetter. Magnetic induction tomography: comparison of the imagequality using different types of receivers. Physiol. Meas.,2008,29(6):417~429.
    [50]傅林,黄卡玛,向胜昭.磁聚焦电导率成像系统的硬件设计与实现.航天医学与医学工程,2006,19(1):74~78.
    [51] B. Ulker, N.G. Gencer. Implementation of a Data Acquisition System for Contactless ConductivityImaging. IEEE Engineering in Medicine and Biology,2002,21(5):152~155.
    [52] CH Riedel, M Keppelen, S Nani, et al. Planar system for magnetic induction conductivitymeasurement using a sensor matrix. Physiol. Meas.,2004,25(1):403~411.
    [53]刘国强,霍小林.层状生物组织磁感应成像.中国医学物理学杂志,2003,20(1):59~62.
    [54]徐征.开放式磁感应成像技术基础研究:(博士学位论文).重庆:重庆大学,2008.
    [55]罗辞勇,张占龙,何为等,电阻抗测量在脑水肿检测中的应用.重庆大学学报,2005,28(2):32~35.
    [56]徐征,何为,何传红等.生物组织电导率磁感应测量原理及系统研究.仪器仪表学报,2008,29(9):1879~1882.
    [57]罗辞勇,张占龙,何为.应用脑电阻抗地形图检测脑水肿.计算机仿真,2005,22(8):267~269.
    [58] Griffiths H., Stewart W.R., Gough W. Magnetic induction tomography: A measuring systemtissues. Annals of the New York Academy of Sciences,1999,873(4):335~345.
    [59]秦明新.检测脑水肿的磁感应成像测量方法研究:(博士学位论文)西安:西安电子科技大学,2005.
    [60] Scharfetter H., Rauchenzauner S., Merwa R., et al. Planar gradiometer for magnetic inductiontomography (MIT): Theoretical and experimental sensitivity maps for a low-contrast phantomPhysiol. Meas.,2004,25(1):325~333.
    [61] H Scharfetter, A Kostinger, S Issa. Hardware for quasi-single-shot multifrequency magneticinduction tomography (MIT): the Graz Mk2system. Physiol. Meas.,2008,29(6):431~443.
    [62] C Ktistis, D WArmitage, A J Peyton. Calculation of the forward problem for absolute imagereconstruction in MIT. Physiol. Meas.,2008,29(6):455~464.
    [63] Manuchehr Soleimani, William R. B., Lionheart, et al., A Three-Dimensional InverseFinite-Element Method Applied to Experimental Eddy-Current Imaging Data. IEEE Transcationson Magnetics,2006,42(5):1560~1567.
    [64] S Watson, R J Williams, W Gough, et al. A magnetic induction tomography system for sampleswith conductivities below10S m1. Measurement Science and Technology,2008,19(1):1~11.
    [65]王聪,董秀珍,秦明新.电磁感应断面成像研究的关键问题. CT理论与应用研究,2003,12(3):17~21.
    [66]王聪,董秀珍,秦明新.基于LabView的磁感应方式阻抗测量系统虚拟仪器接口的实现.2004,25(20):1905~1907.
    [67]秦明新,王聪,董秀珍等.用于电磁感应阻抗测量的高精度鉴相器.医疗卫生装备,2002,23(3):18~22.
    [68] Guoqiang Liu, Tao Wang, Meng Meng. Edge element method for magnetic induction tomography.IEEE Engineering in Medicine and Biology27th Annual Conference,2005:1561~1562.
    [69] M Vauhkonen, M Hamsch, C H Igney. A measurement system and image reconstruction inmagnetic induction tomography. Physiol. Meas.,2008,29(6):445~454.
    [70] J. Rosell, R. Casanasys, H. Scharfetter. Sensitivity maps and system requirements for MagneticInduction Tomography using a planar Gradiometer, Physiological Measurement,2001,22(1):121~130.
    [71] S Watson, R J Williams, W Gough, et al. Magnetic induction tomography: phase versusvector-voltmeter measurement techniques, Physiological Measurement,2003,24(2):555-564
    [72] M Vauhkonen, M Hamsch, C H Igney. Imagereconstruction approaches for Philips magneticinduction tomograph,13th International Conference on Electrical Bioimpedance and the8thConference on Electrical Impedance Tomography2007, ICEBI2007,17(1):468-471
    [73]王聪,刘锐岗,李烨等,一种用于磁感应断层成像的图像重建算法.仪器仪表学报,2008,29(10):2052~2057
    [74] Guoqiang Liu, Tao Wang, Meng Meng. A Fast Reconstruction Method for Magnetic InductionTomography. IEEE Engineering in Medicine and Biology27th Annual Conference,2005:1663~1664.
    [75]傅林,黄卡玛,向胜昭.生物组织磁聚焦电导率成像原理及反演算法.电波科学学报,2006,21(2):249~254.
    [76] Brás N.B, Martins R.C, Serra A.C, et al. A Fast Forward Problem Solver for the Reconstruction ofBiological Maps in Magnetic Induction Tomography. IEEE transactions on magnetics,2010.46(5):1193~1202.
    [77] M. H. Pham, A. J. Peyton. A Model for the Forward Problem in Magnetic Induction TomographyUsing Boundary Integral Equations. IEEE TRANSACTIONS ON MAGNETICS,2008,44(10):2262~2267.
    [78]王旭,吕轶,陈玉艳,等.磁感应成像中三维涡流前期模型仿真.系统仿真学报,2012,24(4):780-783,788
    [79] Dekdouk, B., Wuliang Yin, Ktistis, C. A Method to Solve the Forward Problem in MagneticInduction Tomography Based on the Weakly Coupled Field Approximation, IEEE Transactions onBiomedical Engineering,2010,57(4):914-921
    [80] Soleimani M, Lionheart W, Riedel C, et a1. Forward problem in3D magnetic inductiontomography (MIT). Proc.3rd world Congress on Industrial Process Tomography, Banff,2003:275~280.
    [81]柯丽,庞佩佩,杜强,基于伽辽金有限元法的磁感应断层成像正问题仿真,中国生物医学工程学报,2012,31(1):53-58
    [82]侯雪.基于Comsol的肺部电阻抗断层成像仿真研究:(硕士学位论文)天津:天津大学,2011.
    [83]王威,董秀珍,付峰,等.基于Comsol Multiphysics平台仿真计算分析细胞形变伴随的局部组织电阻抗变化.医疗卫生装备,2011,31(198):27-29
    [84] Xu, Guohui, Liu, Zhipeng, Li, Jingyu, Yin, Tao. The forward problem study of MAT-MI simulatedby Comsol multiphysics, World Congress on Medical Physics and Biomedical Engineering: ImageProcessing, Biosignal Processing, Modelling and Simulation, Biomechanics,2009,25(4):597-600
    [85]陈晓华,李子竞.线圈固有品质因数与LC回路空载品质因数的关系.电力学报,2007,22(2):187-189
    [86]俎云霄,吕玉琴.谐振电路品质因数的计算.电气电子教学学报,2007.2(29):16-18
    [87]陈淑芳.仪用放大器简介及应用.赤峰学院学报(自然科学版),2008,24(5):102-103
    [88]刘静,马彦恒.基于AD8302的高精度幅相检测系统设计.计算机测量与控制,2011,19(2):253-255
    [89]罗仕强,田华,黄华.基于单片机的生物电阻抗谱测量系统.现代电子技术,2009,299(12):146-151
    [90]杨洋,黄岚,王雨辰,丁强.手持式生物阻抗仪的研制与应用.微计算机信息,2012,28(6):73-75
    [91]高秀娥,唐佳,陈波.多频多段人体生物电阻抗测量系统.测控技术,2012,31(4):122-129
    [92]李丽丽,田学隆,李一言.一种用于神经肌肉疾病评估系统的幅相测量电路的设计.电子技术应用,2011,37(7):71-74
    [93]杨宇祥,王珏,等.基于AD8302的生物阻抗频谱测量仪的研制.仪器仪表学报,2006,27(6)增刊:168-170
    [94]李星,许国宏,王耀磊.高精度幅相检测系统的设计.电子设计工程,2012,20(1):123-125
    [95]余丽君,萧宝瑾,贺康.利用相位的抖动来克服AD8302的二值性.中国新技术新产品,2009,2:24
    [96]李烨,董秀珍.生物磁感应成像中的高精度鉴相方法研究.北京生物医学工程,2006,25(4):351-365
    [97] Lewitt RM. Reconstruction algorithms: Transform methods. Proc IEEE,1983,71(3):390-408.
    [98][美]GT赫尔曼著,严洪范等译,由投影重建图象CT的理论基础.北京:科学出版社,1985.
    [99]李亮,陈志强,张丽,等,潘晓川教授的反投影滤波(BPF)新型重建算法介绍, CT理论与应用研究,2006,15(3):68~73
    [100] Barber DC, Brown BH, Fresston IL, et al. Imaging spatial distributions of resistivity using appliedpotential tomography. Electron Lett,1983,19(22):933-935.
    [101] Robert WM, Smith HJ. A real-time electrical impedance tomography system for clinical use-designand preliminary results. IEEE Trans Biomed Eng,1995,42(2):133-140.
    [102] Metherall P, Barber DC, Smallwood RH, et al. Three-dimensional electrical impedancetomography. Nature,1996,380(6574):509-512.
    [103] Avis NJ, Barber DC. Image Reconstruction using non-adjacent drive configurations. Physiol Meas,1994,15(Suppl.2A):153-160.
    [104]吕轶,王旭,金晶晶,等.基于互易原理磁感应成像中灵敏度矩阵的计算.仪器仪表学报,2012,33(3):616-624.
    [105] Puwal S., Roth B J. Fourier-based magnetic induction tomography for mapping resistivity. J ApplPhys,2011,109(1):014701(1-5).
    [106]李柳,邵富群.电磁层析成像图像重建中的修正共轭梯度算法.仪器仪表学报,2010,31(3):655-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700