用户名: 密码: 验证码:
钯离子荧光传感器的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光传感器在环境污染物监测领域扮演着非常重要的角色,并在最近的十几年里面取得了长足的发展,特别是对传统的有害污染物,比如汞离子和镉离子的检测,已经达到了实用的效果。然而,随着科技的日新月异,一些新类型的污染物开始出现,比如钯离子,其危害性还没有被人们所了解,因此,设计和开发新型的钯离子荧光传感器对于环境污染的评估和人类的健康非常重要。钯金属被广泛的应用于珠宝行业,电子和电气行业,医疗行业,燃料电池行业以及工业催化行业。尤其在化工和制药领域中,钯作为一种非常重要的催化剂,可以催化Heck反应,Suzuki反应和Sonogashira反应等偶联反应,因而在化工产品、药品以及工厂废水中有大量的钯残留。最近的研究表明,钯离子是仅次于镍金属离子的第二大金属致敏物,特别是氯化钯,对人的皮肤和眼睛都有很强的刺激性。另外,由于钯离子的络合性质,钯离子在进入人体之后,能够与人体内的重要生物大分子,比如蛋白质,DNA和RNA产生络合效用,从而抑制细胞的正常功能。鉴于钯离子的危害性,欧洲药品监督中心规定药品中的钯含量要低于5ppm。荧光传感器相较于传统的仪器检测法具有简便易操作、高选择性、高灵敏度和实时检测等优点。因而,设计一种新型的具有高灵敏度和高选择性的荧光传感器对于钯离子的检测有着十分重要的意义。本论文的主要内容及研究成果分为以下四个部分:
     1.设计、合成了一种以2,6-二噻吩吡啶为配位单元络合型钯离子荧光传感器P-1。传感器P-1对钯离子既有紫外可见吸收光谱的响应,也有荧光光谱的响应,即具有两种信号输出模式。P-1的吸收峰的强度与钯离子的浓度在1μM-100μM的范围内呈现线性关系,能够定量的检测钯离子浓度。传感器对钯离子的荧光检测的选择性非常高,其它的过渡金属离子都不影响检测效果;同时灵敏度也很高,检测限低于1ppm,能够检测食品药品和环境水体系中钯的含量。我们通过计算传感器与钯离子的Stern-Volmer结合常数来研究该传感器的信号放大效应,证明了共轭传感器比小分子模型化合物具有更加灵敏的传感性能。
     2.设计、合成了三种共轭聚合物P-A,P-B和P-C,并且利用GPC,NMR和元素分析表征了其结构。我们研究了三种聚合物传感器P-A,P-B和P-C的金属离子响应性能,结果表明P-A和P-B对钯离子和铂离子有着很好的响应性能,而P-C对常见的金属离子不产生响应,证明了配位结构和配位空间对金属离子选择性响应的重要性。我们详细的研究了聚合物传感器P-A紫外可见吸收光谱与荧光光谱随钯离子或铂离子浓度的增加产生的变化。从紫外可见吸收光谱变化中可以看出,P-A对钯离子或铂离子都有着很好的选择性响应,而且灵敏度也非常高,达到了1μM,传感器溶液颜色从淡黄色分别变为淡褐色和棕色,都能够被裸眼观测到。从荧光光谱变化中可以看出,P-A对钯离子或铂离子也有很好的选择性和灵敏度,检测限达到了1ppm,同时由于P-A对钯离子和铂离子的荧光响应程度很类似,因而可以作为检测钯离子与铂离子总量的一种可行的方法。我们利用传感器的荧光各向异性研究了该传感器的传感机理是钯离子或铂离子导致的高分子链聚集引起的荧光淬灭。
     3.设计、合成了一种基于化学反应机理的新型ESIPT比率法荧光传感器POF,并对其结构进行了表征。传感器POF对钯离子的响应属于比率法响应,使得检测信号不止包括荧光的强弱变化,还有荧光颜色的变化,这不仅利用直观的观测,也提高了检测的准确度。传感器POF对钯离子检测的灵敏度非常高。在钯离子浓度为0到30gM的范围内,POF荧光强度比率与浓度呈现良好的线性关系,说明该传感器可以定量的检测钯离子。钯离子的检测浓度为87nM,这远远低于欧洲药品评估中心对钯含量的要求(5-10ppm)。传感器POF对钯离子的荧光检测的选择性非常高,其它的过渡金属离子都不影响检测效果,而且该传感器对常用的所有价态的钯催化剂都有良好的响应性能,大大的扩展了该传感器的使用范围。
     4.设计、合成了三种传感器POF、AOF和HF,并将其作为传感器阵列用于鉴别不同类型的钯离子。传感器AOF对钯离子的响应灵敏度非常高,对二氯化钯的检测浓度达到10nM,同时对其他常见的钯离子都具有荧光响应性。我们详细的研究了三种传感器POF、AOF和HF与钯离子作用的荧光响应性的不同,用CIE色度图表述了每种钯离子在传感器纵列上的独特的色度变化模式。我们首次尝试利用主成分分析法来统计传感器阵列对钯离子响应的荧光信号数据,实现了对常见钯离子的鉴别。
In the last decades, fluorescent sensors have been widely utilized as popular tools to monitor environment pollution, such as mercury ions and lead ions. However, along with the rapid advancement of technology, new type of pollutants begins to appear in environmental water, and the toxicity of pollutants hasn't been fully recognized. As a result, design and develop a new fluorescent sensor for new type of pollutants such as palladium ions is crucial for evaluation of environment and human health. Today, palladium as a transition metal lies in its wide spectrum of applications, such as in the electrical and electronic industries, dental appliances, fuel cells, jewelry, and catalysts. Palladium is predominantly used as oxidizing reagents and pre-catalysts for many cross-coupling reactions in organic chemistry. A large number of organic reactions, such as Heck, Sonogashira, and Suzuki-Miyaura reactions are usually performed by palladium or platinum catalysts, leading to the formation of carbon-carbon bonds and they play a significant role in medicinal chemistry. Palladium is capable of eliciting a series of cytotoxic effects which may cause severe primary skin and eye irritations. Platinum can also cause DNA alterations, cancers, autoimmune disorders, respiratory, hearing problems, and damages to organs, such as the intestine, kidney, and bone marrow. In view of potential biotoxicity, the recommendations from the European Agency for the Evaluation of Medicinal Products (EMEA) for the allowable level account for a specification that palladium metals must below the limit suggested (5ppm for oral dosage forms). Conventional analytical methods can be used for the detection of palladium in environmental samples. However, these methods often require sophisticated and time-consuming sample preparation procedures or expensive equipments. Fluorescent chemosensor methods for detecting palladium are expected to be more desirable because they exhibit more advantages, such as relatively easier and cheaper, less labor-intensive, and highly sensitive. Therefore, design of new fluorescent sensor for palladium detection is urgently desired for human health and the environmental pollution protection. This dissertation includes four parts as follows:
     1. Synthesis and characterization of a fluorescent polymer P-1containing2,6-bis(2-thienyl) pyridine moieties as a highly efficient sensor for Pd2+detection. The UV-Vis absorbance and fluorescence spectra have been investigated in THF. A selective chromogenic behavior towards Pd2+can be observed by naked eye. The absorbance at426nm is linearly proportional to the amount of Pd2+in the range of1μM-100μM. Pd2+ion can effectively quench the fluorescence of the polymer with an excellent selectivity. The polymer sensor possesses an excellent selectivity. The transitional metal ions such as Hg2+and Ag+almost don't cause any fluorescence quench of the polymer. The Stern-Volmer data of polymer sensor demonstrates that polymer possesses the desired much higher sensitivity than small molecules due to signal amplification effect. All the results demonstrate the polymer sensor can be used as an efficient sensor with a high sensitivity and an excellent selectivity for Pd2+detection, and has potential applications in the human health and environmental protection.
     2. Three conjugated polymers P-A, P-B and P-C have been designed and successfully synthesized via Sonogashira coupling reaction. The Polymers formation was confirmed both by GPC, NMR spectrum, and elemental analyses. The fluorescence quenching degrees of the three polymers P-A, P-B and P-C upon the addition of transition metal ions have been investigated. It was found that the fluorescence intensity of P-A obviously decreased upon the addition of Pd2+or Pt4+ions, the other metal salts have negligible or virtually no effect on the fluorescence of P-A. Moreover, the fluorescence quenching degree of P-A for Pd2+is very close to Pt4+, and this provides a potential way to detect the total amount of Pd2+and Pt4+ions regardless of their ratio. P-B exhibits different selectivity for palladium and platinum ions. It's attributed to that the more restricted thiophene group in TPP units of P-B and the different coordination spaces constituted by polymer chains lead to different sensing properties P-C exhibits almost no response to all the transition metal ions detected due to the steric hindrance effect from two meta-linked benzene groups can't provide any coordination points to bind metal ions.The UV-Vis absorbance and fluorescence spectra of P-A have been investigated and the results showed that the polymer displays a highly selective chromogenic behavior towards Pd2+and Pt4+ions, which can be observed with the naked eye. And meanwhile, Pd2+and Pt4+ion can effectively quench the fluorescence of the polymer with an excellent selectivity. When binding to Pd2+or Pt4+, an approximately80%reduction of the fluorescence intensity was observed with a detection limit of1×10-6M in aqueous solution.The mechanism of fluorescent quenching and the interaction fashion between metal ions and TPP units of polymer chains has been discussed. The fluorescence anisotropy proved that interchain binding-induced aggregation is the major reason causing the fluorescence quenching. Through demonstrating the feasibility of varying the polymer structures to match the molecular spatial dimension for controlling the metal ion selectivity, this work provided an amplified fluorescence assay based on aggregation-induced fluorescence quenching mechanism for detection of the sum of palladium and platinum ions in aqueous medium.
     3. We designed and synthesized a chemical reaction-based ratiometric ESIPT fluorescent sensor POF specific for palladium species with a large Stokes'shift of more than150nm. The results demonstrate that sensor POF exhibits a high sensitivity and an excellent selectivity for Pd2+detection in aqueous solution, whose detection limit can be down to~87nM (15.4ppb). Moreover, the ratios of the fluorescent intensities are linearly proportional to the amount of PdCl2from0to30μM. Obvious ratiometric responses are observed towards all the oxidation states of palladium among other transition metal ions without additional reagents. This work provides a new mild and promising strategy for the detection of Pd species in biological and environmental systems.
     4. We utilized a simple dosimeter array, consisting of three fluorescent dosimeters POF, AOF, and HF, to successfully achieve the detection and discrimination of palladium species by using pattern recognition analysis. AOF showed great sensitivity and selectivity towards all the oxidation states of palladium species, whose detection limit can be down to10nM. We calculated the chromaticity of dosimeters POF, AOF and HF via CIE1931chromaticity diagram towards different palladium species, and the color change in a column was unique pattern. This is the first time the fluorescence dosimeter array has been used for discrimination of palladium species. It offers a convenient and efficient example for the other metal ion analysis. The successful recognition and detection of various palladium species is particularly important for human health and the environmental safety.
引文
[1]Kool, E. T. Chem. Rev.1997,97,1473.
    [2]Fan, L. J.; Zhang, Y.; Murphya, C. B.; Angell, S. E.; Parkera, M. F. L.; Flynna, B. R.; Jones Jr., W. E. Coord. Chem. Rev.2009,253,410
    [3]De Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.1997,1515
    [4]Valeur, B.; Leray, I. Coord. Chem. Rev.2000,205,3
    [5]Cattral R. W. Chemical Sensors. Oxford University Press, Oxford,1997.
    [6]Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010,39,3936
    [7]Zhou, Y.; Yoon, J. Chem. Soc. Rev.2012,41,52
    [8]Dsouza, R. N.; Pischel, U.; Nau, W. M. Chem. Rev.2011,111,7941
    [9]Czarnik, A. W. Fluorescent Chemosensor for Ion and Molecule Recognition. American Chemical Society, Washington DC,1993
    [10]Santra, M.; Roy, B.; Ahn, K. H. Org. Lett.2011,13,3422
    [11]Zalups, R. K.; Lash, L. H. Toxicol. Appl. Pharmacol.2006,214,88
    [12]Zalups, R. K.; Ahmad, S. J. Am. Soc. Nephrol.2004,15,2023
    [13]Lee, M. H.; Giap, T. V.; Kim, S. H.; Lee, Y. H.; Kang, C.; Kim, J. S. Chem. Commun.2011, 46,1407
    [14]Galaris, D.; Skiada, V.; Barbouti, A. Cancer Lett.,2008,266,21
    [15]Iyoshi, S.; Taki, M.; Yamamoto, Y. Org. Lett.2011,13,4558
    [16]Bush, A. I.; Pettingell, W. H.; Multhaup, G.; Paradis, M. D.; Vonsattel, J. P.; Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994,265,1464
    [17]Kitamura, H.; Morikawa, H.; Kamon, H.; Iguchi, M.; Hojyo, S.; Fukada, T.; Yamashita, S.; Kaisho, T.; Akira, S.; Murakami, M.; Hirano, T. Nat. Immunol.2006,7,971
    [18]Kimura, E.; Aoki, S.; Kikuta, E.; Koike, T. Proc. Natl. Acad. Sci. U.S.A.2003,100,3731
    [19]Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. J. Am. Chem. Soc.2002,124, 10650
    [20]Xu, Z.; Han, S. J.; Lee, C.; Yoon, J.; Spring, D. R. Chem. Commun.2010,46,1679
    [21]Hanaoka, K.; Muramatsu, Y.; Urano, Y.; Terai, T.; Nagano, T. Chem.-Eur. J.2010,16,568
    [22]Chen, H.; Gao, W.; Zhu, M.; Gao, H.; Xue, J.; Li, Y. Chem. Commun.2010,46,8389
    [23]Xue, L.; Liu, C.; Jiang, H. Chem. Commun.2009,45,1061
    [24]Aoki, S.; Sakurama, K.; Matsuo, N.; Yamada, Y.; Takasawa, R.; Tanuma, S.-i.; Shiro, M.; Takeda, K.; Kimura, E. Chem.-Eur. J.2006,12,9066
    [25]Felton, C. E.; Harding, L. P.; Jones, J. E.; Kariuki, B. M.; Pope, S. J. A.; Rice, C. R. Chem. Commun.2008,44,6185
    [26]Li, P.; Duan, X.; Chen, Z.; Liu, Y.; Xie, T.; Fang, L.; Li, X.; Yin, M.; Tang, B. Chem. Commun.2011,47,7755
    [27]Uauy, R.; Olivares, M.; Gonzalez, M.Am. J. Clin. Nutr.1998,67,952S
    [28]Valentine, J. S.; Hart, P. J. Proc. Nat1. Acad. Sci. U.S.A.2003,100,3617
    [29]Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T. H.; Allen, J. M.; McCoy, C. P.; Rademacher J. T.; Rice, T. E.; Chem. Rev.,1997,97,1515
    [30]Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett.2007,9,5039
    [31]Zhang, X.; Sumiya, S.; Shiraishi, Y.; Hirai, T. J. Photochem. Photobiol, A 2009,205,215
    [32]Xiang, Y.; Li, Z. F.; Chen, X. T.; Tong, A. J. Talanta 2008,74,1148
    [33]Zhao, Y.; Zhang, X. B.; Han, Z. X.; Qiao, L.; Li, C. Y.; Jian, L. X.; Shen, G. L.; Yu, R. Q. Anal. Chem.2009,81,7022.
    [34]Zhao, M. L.; Yang, X. F.; He, S. H.; Wang, L. P. Sens. Actuators, B 2009,135,625
    [35]Swamy, K.; Ko, S. K.; Kwon, S. K.; Lee, H. N.; Mao, C.; Kim, J. M.; Lee, K. H.; Kim, J. H.; Shin, I.; Yoon, J. Y. Chem. Commun.2008,44,5915
    [36]Zhou, Y.; Wang, F.; Kim, Y. M.; Kim, S. J.; Yoon, J. Y. Org. Lett.2009,11,4442
    [37]Tang, R. R.; Lei, K.; Chen, K.; Zhao, H.; Chen, J. W. J. Fluoresc.2011,21,141
    [38]Sun, C. D.; Chen, J. M.; Ma, H. M.; Liu, Y.; Zhang, J. H.; Liu, Q. J. Sci. China, Ser. B 2011, 54,1101
    [39]Yu, C. W.; Zhang, J.; Wang, R.; Chen, L. X. Org. Biomol. Chem.2010,8,5277
    [40]Xu, Z. H.; Zhang, L. K.; Guo, R.; Xiang, T. C.; Wu, C. Z.; Zheng, Z.; Yang, F. L. Sens. Actuators, B 2011,156,546
    [41]Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, Y.; Kim, S. J.; Kim, J. S. Org. Lett.2010,12,3852
    [42]Xi, P. X.; Dou, J. Y.; Huang, L.; Xu, M.; Chen, F. J.; Wu, Y. J.; Bai, D. C.; Li, W. G.; Zeng, Z. Z. Sens. Actuators, B 2010,148,337
    [43]Huang, L.; Chen, F, J.; Xi, P. X.; Xie, G. Q.; Li, Z. P.; Shi, Y. J.; Xu, M.; Liu, H. Y.; Ma, Z. R.; Bai, D. C.; Zeng, Z. Z. Dyes Pigm.2011,90,265
    [44]Jiang, L.; Zhang, B.; Sun, J.; Yin, G.; Shang, T. M.; Wang, L.; Wang, R. Y. Chin. J. Inorg. Chem.2010,26,1750
    [45]Chereddy, N. R.; Thennarasu, S. Dyes Pigm.2011,91,378
    [46]Liu, W. Y.; Li, H. Y.; Zhao, B. X.; Miao, J. Y. Org. Biomol. Chem.2011,9,4802
    [47]Yu, C. W.; Chen, L. X.; Zhang, J.; Li, J. H.; Liu, P.; Wang, W. H.; Yan, B. Talanta 2011,85, 1627
    [48]Mahapatra, A. K.; Roy, J.; Sahoo, P. Tetrahedron Lett.2011,52,2965
    [49]Waalkes, M. P.; Coogan, T. P.; Barter, R. A. Crit. Rev. Toxicol.1992,22,175
    [50]Satarug, S.; Moore, M. R. Environ. Health Perspect.2004,112,1099
    [51]Egorova, O. A.; Seo, H.; Chatterjee, A.; Ahn, K. H. Org. Lett.2010,12,401
    [52]Habib, A.; Tabata, M. J. Inorg. Biochem.2004,98,1696
    [53]Nyarko, E.; Hara, T.; Grab, D. J.; Habib, A.; Kim, Y.; Nikolskaia, O.; Fukuma, T.; Tabata, M. Chem. Biol. Interact.2004,148,19
    [54]Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli M.; J. Org. Chem.2005,70,5717
    [55]Connett, P. Fluoride 2007,40,155
    [56]Xu, W. J.; Liu, S. J.; Sun, H. B.; Zhao, X. Y.; Zhao, Q.; Sun, S.; Cheng, S.; Ma, T. C.; Zhou, L. X.; Huang, W. J. Mater. Chem.2011,21,7572
    [57]Zhao, Q.; Li, F. Y.; Liu, S. J.; Yu, M. X.; Liu, Z. Q.; Yi, T.; Huang, C. H. Inorg. Chem.2008, 47,9256
    [58]Ayoob, S.; Gupta, A. K. Crit. Rev. Environ. Sci. Technol 2006,36,433
    [59]Kim, S. Y.; Hong, J. I. Org. Lett.2007,9,3109
    [60]Kim, Y.; Huh, H. S.; Lee, M. H.; Lenov, I. L.; Zhao, H.; Gabbai, F. P. Chem. Eur. J.2011,17, 2057
    [61]Holland, M. A.; Kozlowski, L. M. Clin. Pharm.1986,5,737
    [62]Xu, Z. C.; Chen, X. Q.; Kim, H. N.; Yoon, J. Y. Chem. Soc. Rev.2010,39,127
    [63]Medvedeva, N.; Martin, V. V.; Weis, A. L.; Likhtenshten, G. I. J. Photochem. Photobiol., A 2004,163,45
    [64]Maeda, H.; Yamamoto, K.; Nomura, Y.; Kohno, I.; Hafsi, L.; Ueda, N.; Yoshida, S.; Fukuda, M.; Fukuyasu, Y.; Yamauchi, Y.; Itoh, N. J. Am. Chem. Soc.2005,127,68
    [65]Xu, K. H.; Liu, X.; Tang, B. ChemBioChem 2007,8,453
    [66]Li, P.; Xie, T.; Duan, X.; Yu, F. B.; Wang, X.; Tang, B. Chem. Eur. J.2010,16,1834
    [67]Yapici, N. B.; Jockusch, S.; Moscatelli, A.; Mandalapu, S. R.; Itagaki, Y.; Bates, D. K.; Wiseman, S.; Gibson, K. M.; Turro, N. J.; Bi, L. Org. Lett.2012,14,50
    [68]Choi, M. G.; Hwang, J.; Eor, S.; Chang, S.-K. Org. Lett.2010,12,5624
    [69]Taylor, S. L.; Higley, N. A.; Bush, R. K. AdV. Food Res.1986,30,1
    [70]Vally, H.; Misso, N. L.; Madan, V. Clin. Exp. Allergy 2009,39,1643
    [71]Koch, M.; Koppen, R.; Siegel, D.; Witt, A.; Nehls, I. J. Agric. Food Chem.2010,58,9463
    [72]Miller, E.W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc.2005, 127,16652
    [73]Fruehauf, J. P.; Meysken, F. L., Clin. Cancer Res.2007,448,789
    [74]Finkel, T.; Serrano, M.; Blasco, M. A. Nature 2007,448,767
    [75]Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J. Science 2008,320,661
    [76]Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Nat. Chem. Biol.2007,3,263
    [77]Dickinson, B. C.; Huynh, C.; Chang, C. J. J. Am. Chem. Soc.2010,132,5906
    [78]Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc.2004,126,15392
    [79]Dickinson, B. C.; Huynh, C.; Chang, C. J. J. Am. Chem. Soc.2010,132,5906
    [80]Albers, A. E.; Okreglak, V. S.; Chang, C. J. J. Am. Chem. Soc.2006,128,9640
    [81]Srikun, D.;Miller, E.W.; Domaille, D.W.; Chang, C. J. J. Am. Chem. Soc.2008,130,4596
    [82]Srikun, D.; Albers, A. E.; Nam, C. I.; Iavarone, A. T.; Chang, C. J. J. Am. Chem. Soc.2010, 132,4455
    [83]Chen, Y.; Guo, W.; Ye, Z.; Wang, G.; Yuan, J. Chem. Commun.2011,47,6266
    [84]Shibuki, K.; Okada, D. Nature 1991,349,326
    [85]Bogdan, C. Nat. Immunol.2001,2,907
    [86]Luo, J. D.; Chen, A. F. Acta Pharm. Sinica 2005,26,259
    [87]Suzuki, N.; Kojima, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. J. Biol. Chem.2002, 277,47
    [88]Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc.2004,126,3357
    [89]Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. J. Am. Chem. Soc.2005,127,3684
    [90]Zhang, R.; Ye, Z. Q.; Wang, G. L.; Zhang, W. Z.; Yuan, J. L. Chem. Eur. J.2010,16,6884
    [91]Yang, Y. J.; Seidlits, S. K.; Adams, M. M.; Lynch, V. M.; Schmidt, C. E.; Anslyn, E. V.; Shear, J. B. J. Am. Chem. Soc.2010,132,13114
    [92]Hilderbrand, S. A.; Lippard, S. J. Inorg. Chem.2004,43,4674
    [93]Hilderbrand, S. A.; Lim, M. H.; Lippard, S. J. J. Am. Chem. Soc.2004,126,4972
    [94]Lim, M. H.; Xu, D.; Lippard, S. J. Nat. Chem. Biol.2006,2,375
    [95]McQuade, L. E.; Ma, J.; Lowe, G.; Ghatpande, A.; Gelperin, A.; Lippard, S. J. Proc. Natl. Acad. Sci.U.S.A.2010,107,8525
    [96]Hu, X. Y.; Wang, J.; Zhu, X.; Dong, D. P.; Zhang, X. L; Wu, S. O.; Duan, C. Y. Chem. Commun.2011,47,11507
    [97]Lippert, A. R.; New, E. J.; Chang, C. J.; J. Am. Chem. Soc.2011,133,10078
    [98]Peng, H.; Cheng, Y.; Dai, C.; King, A. L.; Predmore, B. L.; Lefer, D. J.; Wang, B. H. Angew. Chem. Int. Ed.2011,50,9672
    [99]Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M. G.; Branski, L. K.; Herndon, D. N.; Wang, R.; Szabo, C. Proc. Nat1 Acad. Sci. U.S.A. 2009,106,2197
    [100]Yang, G.; Wu, L.; Jiang, B.; Yang, B.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R. Science 2008,322,587
    [101]Yang, W.; Yang, G. D.; Jia, X. M.; Wu, L. Y.; Wang, R. J. Physiol.2005,569,519
    [102]Kamoun, P.; Belardinelli, M. C.; Chabli, A.; Lallouchi, K.; Chadefaux-Vekemans, B. Am. J. Med. Genet.2003,116A,310
    [103]Warenycia, M. W.; Goodwin, L. R.; Benishin, C. G.; Reiffenstein, R. J.; Francom, D. M.; Taylor, J. D.; Dieken, F. R. Biochem. Pharmacol.1989,38,973
    [104]Liu, C. R.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Angew. Chem., Int. Ed.2011,50,10327
    [105]Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S. K. Chem. Commun.2009,47,7390
    [106]Zhang, R.; Yu, X. J.; Yin, Y. J.; Ye, Z. Q.; Wang, G. L.; Yuan, J. L. Anal. Chim. Acta 2011, 691,83
    [107]Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura, Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kimura, H.; Naganot, T. J. Am. Chem. Soc.2011,133,18003
    [108]Qian, Y.; Karpus, J.; Kabil, O.; Zhang, S. Y.; Zhu, H. L.; Banerjee, R.; Zhao, J.; He, C. Nat. Commun.2011,2,495
    [109]Hirabayashi, K.; Hanaoka, K.; Shimonishi, M.; Terai, T.; Komatsu, T.; Ueno, T.; Nagano, T. Chem. Eur. J.2011,17,14763
    [110]Stipanuk, M. H. Annu. Rev. Nutr.2004,24,539
    [111]Shahrokhian, S.Anal. Chem.2001,73,5972
    [112]Zhou, J.; Fang, C.; Chang, T.; Liu, X.; Shangguan, D. J. Mater. Chem. B 2013,1,661
    [113]Raghun, N.; Gillies, R. J. Drug Resist. Updates 2000,3,39
    [114]Bao, B.; Yuwen, L.; Zheng, X.; Weng, L.; Zhu, X.; Zhan, X.; Wang, L. J. Mater. Chem. 2010,20,9628
    [115]Yang, J. S.; Swager, T. M.; J. Am. Chem. Soc.,1998,120,11864
    [116]Maureen, R. A. C&ENNews 1997, March 10,14.
    [117]Qin, A.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J.; Tang, B. Z. Macromolecules 2009,42,1421
    [118]Dale, T. J.; Rebek, J., Jr. J. Am. Chem. Soc.2006,128,4500
    [119]Sidell, F. R.; Borak, J. Ann. Emerg. Med.1992,21,865
    [120]Feng, J.; Tian, K.; Hu, D.; Wang, S.; Li, S.; Zeng, Y.; Li, Y.; Yang, G. Angew. Chem. Int. Ed.2011,50,8072
    [121]Ooyama, Y.; Sumomogi, M.; Nagano, T.; Kushimoto, K.; Komaguchi, K.; Imae, I.; Harima, Y. Org. Biomol. Chem.2011,9,1314
    [122]International Programme on Chemical Safety. Palladium, Environmental Health Criteria Series 226, World Health Organization, Geneva,2002
    [123]Garrett, C., E.; Prasad, K.Adv. Synth. Catal.2004,346,889
    [124]Schwarze, T.; Muller, H.; Dosche, C.; Klamroth, T.; Mickler, W.; Kelling, A.; Lohmannsroben, H. G.; Saalfrank, P.; Holdt, H. J. Angew. Chem. Int. Ed.2007,46,1671
    [125]Schwarze, T.; Mickler, W.; Dosche, C.; Flehr, R.; Klamroth, T.; Lohmannsroben, H. G.; Saalfrank, P.; Holdt, H. J. Chem. Eur. J.2010,16,1819
    [126]Schwarze, T.; Dosche, C.; Flehr, R.; Klamroth, T.; Lohmannsroben, H. G.; Saalfrank, P.; Cleve, E.; Buschmann, H. J.; Holdt, H. J. Chem. Commun.2010,46,2034
    [127]Huang, H.; Wang, K.; Tan, W.; An, D.; Yang, X.; Huang, S.; Zhai, Q.; Zhou, L.; Jin, Y. Angew. Chem. Int. Ed.2004,43,5635
    [128]Duan, L.; Xu, Y.; Qian, X. Chem. Commun.2008,44,6339
    [129]Li, H.; Fan, J.; Du, J.; Guo, K.; Sun, S.; Liu, X.; Peng, X. Chem. Commun.2010,46,1079
    [130]Li, H.; Fan, L.; Song, F.; Zhu, H.; Du, J.; Sun, S.; Peng, X. Chem. Eur. J.2010,16,12349
    [131]Li, H.; Fan, J.; Hu, M.; Cheng, G.; Zhou, D.; Wu, T.; Song, F.; Sun, S.; Duan, C.; Peng, X. Chem. Eur. J.2012,18,12242
    [132]Cai, S.; Lu, Y.; He, S.; Wei, F.; Zhao, L.; Zeng, X. Chem. Commun.2013,49,822
    [133]Kim, H.; Moon, K. S.; Shim, S.; Tae, J. Chem. Asian. J.2011,6,1987
    [134]Goswami, S.; Sen, D.; Das, N. K.; Fun, H. K.; Quah, C. K. Chem. Commun.2011,47,9101
    [135]Zhou, Y.; Zhang, J.; Zhou, H.; Zhang, Q.; Ma, T.; Niu, J. Sensors and Actuators B 2012, 171-172,508
    [136]Yu, S. Y.; Rhee, H. W.; Hong, J. I. Tetrahedron Lett.2011,52,1512
    [137]Song, F. L.; Carder, E. J.; Kohler, C. C.; Koide, K. Chem. Eur. J.2010,16,13500
    [138]Song, F. L; Gamer, A. L.; Koide, K. J. Am. Chem. Soc.2007,129,12354
    [139]Garner, A. L.; Song, F. L.; Koide, K. J. Am. Chem. Soc.2009,131,5163
    [140]Garner, A. L.; Koide, K. Chem. Commun.2009,45,86
    [141]Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, W.; Liu, R. Org. Lett.2011,13,4922
    [142]Santra, M.; Ko, S. K.; Shin, I.; Ann, K. H. Chem. Commun.2010,46,3964
    [143]Zhu, B.; Gao, C.; Zhao, Y.; Liu, C.; Li, Y.; Wei, Q.; Ma, Z.; Du, B.; Zhang, X. Chem. Commun.2011,47,8656
    [144]Garner, A. L.; Koide, K. J. Am. Chem. Soc.2008,130,16472
    [145]Jun, M. E.; Ahn, K. H. Org. Lett.2010,12,2790
    [146]Chen, W.; Wright, B. D.; Pang, Y. Chem. Commun.2012,48,3824
    [147]Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sanchez-Martin, R. M.; Bradley, M. Nat. Chem.20113 239
    [1]Martinez-Manez, R.; Sancen6n, F. Chem. Rev.2003,103,4419
    [2]Liu, J.; Cao, Z.; Lu, Y.; Chem. Rev.2009,109,1948
    [3]Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev.2008,108,1517
    [4]Kim, J. S.; Quang, D. T. Chem. Rev.2007,107,3780
    [5]Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev.1998,98,1593
    [6]Swager, T. M.Acc. Chem. Res.1998,31,201
    [7]McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev.2000,100,2537
    [8]Thomas Ⅲ, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev.2007,107,1339
    [9]Canovese, L.; Chessa, G.; Visentin, F.; Uguagliati, P. Coordin. Chem. Rev.2004,248,945
    [10]Rao, R. N.; Talluri, M. V. N. K. J. Pharm. Biomed. Anal.2007,43,1
    [11]Beauchemin, D.Anal. Chem.2008,80,4455
    [12]Evans, E. H.; Giglio, J. J.J. Anal. At. Spectrom.1993,8,1
    [13]Godlewska-Zylkiewicz, B. Mcrochim. Acta 2004,147,189
    [14]Pitteri, B.; Canoverse, L.; Chessa, G.; Marangoni, G.; Uguagliati, P. Polyhedron 1992,11, 2363
    [15]Belluco, U.; Cattalini, L.; Basolo, F.; Pearson, P. G.; Turco, A. J. Am. Chem. Soc.1965,87, 241
    [16]Annibale, G.; Canovese, L.; Cattalini, L.; Marangoni, G.; Michelon, G.; Tobe, M. L. Inorg. Chem.1981,20,2428
    [17]Chesney, A.; Bryce, M. R. Tetrahedron:Asymm.1996,7,3247
    [18]Voituriez, A.; Fiaud, J. C.; Schultz, E. Tetrahedron Lett.2002,43,4907
    [19]Canovese, L.; Visentin, F.; Chesa, G.; Uguagliati, P.; Dolmella, A. J. Organomet. Chem. 2000,601,1
    [20]Dawson, W. R.; Windsor, M. W. J. Phys. Chem.1968,72,3251
    [21]Tang, X.; Peng, X.; Don, W.; Mao, J.; Zheng, J.; Qin, W.; Liu, W.; Chang, J.; Yao, X. Org. Lett.,2008,10,3653
    [22]Cielen, E.; Stobiecka, A.; Tahri, A.; Hoornaert, G. J.; De Schryver, F. C.; Gallay, J.; Vincent, M.; Boens, N. J. Chem. Soc., Perkin Trans.2,2002,1197
    [23]Berggren, M.; Inganas, O.; Rasmusson, J.; Gustafsson, G.; Andersson, M. R.; Wennerstrom, O.; Hjertberg, T. Nature 1994,372,444
    [24]Meth-Cohn, O. Jiang, H. J. Chem. Soc., Perkin Trans.1998,1,3737
    [25]Tewari, R. S.; Chaturvedi, S. C.; Nagpal, D. K. J. Chem. Eng. Data 1980,25,293
    [26]Satrijo, A.; Swager, T. M. J. Am. Chem. Soc.2007,129,16020
    [27]Ngo, A. T.; Karam, P.; Fuller, E.; Burger, M.; Cosa, G. J. Am. Chem. Soc.2008,130,457
    [28]Li, J.; Kendig, C. E.; Nesterov, E. E. J. Am. Chem. Soc.2007,129,15911
    [29]Jeschke, G.; Sajid, M.; Schulte, M.; Ramezanian, N.; Volkov, A.; Zimmermann, H.; Godt, A. J. Am. Chem. Soc.2010,132,10107
    [30]Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.; Burnham, D. R.; Mcneill, J. D.; Chiu, D. T. J. Am. Chem. Soc.2010,132,15410
    [31]Miranda, O. R.; You, C. C.; Phillips, R.; Kim, I. B.; Ghosh, P. S.; Bunz, U. H. F.; Rotello, V. M. J. Am. Chem. Soc.2007,129,9856
    [32]Zhu, Q.; Zhan, R.; Liu, B. Macromol. Rapid Commun.2010,31,1060
    [33]Xing, C.; Liu, L.; Shi, Z.; Li, Y.; Wang, S. Adv. Funct. Mater.2010,20,2175
    [34]Constable, E. C.; Henney, R. P. G.; Tocher, D. A. J. Chem. Soc. Dalton Trans.1992,2467
    [1]Thomas Ⅲ, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev.2007,107,1339
    [2]Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S. Angew. Chem. Int. Ed.2009,48,4300
    [3]Heeger, P. S.; Heeger, A. J. Proc. Natl. Acad. Sci. U. S. A.1999,96,12219
    [4]Ambade, A. V.; Sandanaraj, B. S.; Klaikherd, A.; Thayumanavan, S. Poly. Int.2007,56,474
    [5]Nilsson, K. P. R.; Rydberg, J.; Baltzer, L.;Inganas, O. Proc. Natl. Acad. Sci. U. S. A.2003,100, 10170
    [6]Rininsland, F.; Xia, W.; Wittenburg, S.; Shi, X.; Stankewicz, C.; Achyuthan, K.; Mcbranch, D.;
    Whitten, D. Proc. Natl. Acad Sci. U. S. A.2004,101,15295
    [7]Zhang, Y.; Wang, Y. Y.; Liu, B. Anal. Chem.2009,81,3731
    [8]Bunz, U. H. F. Chem. Rev.2000,100,1605
    [9]Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. Proc. Natl. Acad. Sci. U. S. A.2002,99,10954
    [10]Kim, I. B.; Phillips, R.; Bunz, U. H. F. Macromolecules 2007,40,5290
    [11]Tang, Y. L.; He, F.; Yu, M. H.; Feng, F. D.; An, L. L.; Sun, H.; Wang, S.; Li, Y. L.; Zhu, D. B. Macromol. Rapid Commun.2006,27,389
    [12]Fang, Z.; Pu, K. Y.; Liu, B. Macromolecules 2008,41,8380
    [13]Murkovica, I.; Wolfbeisb, O. S. Sens. Actuator B 1997,39,246
    [14]Xu, Q.H.; Gaylord, B. S.; Wang, S.; Bazan, G. C.; Moses, D.; Heeger, A. J. Proc. Natl. Acad. Sci. U.S. A.2004,101,11634
    [15]Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc.2003,125,896
    [16]Wang, S.; Bazan, G. C. Chem. Commun.2004,2508
    [17]Liu, B.; Gaylord, B. S.; Wang, S.; Bazan, G. C. J. Am. Chem. Soc.2003,125,6705
    [18]He, F.; Tang, Y.; Yu, M.; Feng, F.; An, L.; Sun, H.; Wang, S.; Li, Y.; Zhu, D.; Bazan, G. C. J. Am. Chem. Soc.2006,128,6764
    [19]Liu, B.; Yu, W. L.; Pei, J.; Liu, S. Y.; Lai. Y. H.; Huang, W. Macromolecules 2001,34,7932
    [20]Yamamoto, T.; Omote, M.; Miyazaki, Y.; Kashiwazaki, A.; Lee, B. L.; Kanbara, T.; Osakada, K.; Inoue, T.; Kubota, K. Macromolecules 1997,30,7158
    [21]Scheib, S.; Bauerle, P. J. Mater. Chem.1999,9,2139
    [22]Marsella, M. J.; Swager, T. M. J. Am. Chem. Soc.1993,115,12241
    [23]McCullough, R. D.; Tristram-Nagle, S.; Williams, S. P.; Lowe, R. D.; Jayara-man, M. J. Am. Chem. Soc.1993,115,4910
    [24]McCullough, R. D.; Williams, S. P. J. Am. Chem. Soc.1993,115,11608
    [25]Wang, B.; Wasielewski, M. R. J. Am. Chem. Soc.1997,119,12
    [26]Kimura, M.; Horai, T.; Hanabusa, K.; Shirai, H. Adv. Mater.1998,10,459
    [27]Qin, C.; Wu, X.; Tong, H.; Wang, L. J. Mater. Chem.2010,20,7957
    [28]Qin, C. J.; Wu, X. F.; Gao, B. X.; Tong, H.; Wang, L. X. Macromolecules,2009,42,5427
    [29]Zheng, Y. J.; Huo, Q.; Kele, P.; Andreopoulos, F. M.; Phan, S. M.; Leblanc, R. M. Org. Lett. 2001,3,3277
    [1]Demchenko, A. P. J. Fluoresc.2010,20,1099
    [2]Demchenko, A. P. Introduction to fluorescence sensing. Springer, Amsterdam,2009
    [3]Lakowicz, J. R. Principles of fluorescence spectroscopy,3rd edn. Springer, New York,2007
    [4]Valeur, B. Molecular fluorescence. Wiley VCH, Weinheim,2002
    [5]Demchenko, A. P. Anal. Biochem.2005,343,1
    [6]Broder, J.; Majumder, A.; Porter, E.; Srinivasamoorthy, G.; Keith, C.; Lauderdale, J.; Sornborger, A. J. Opt. Soc. Am. A:Opt. Image Sci.2007,24,2921
    [7]Sornborger, A.; Broder, J.; Majumder, A.; Srinivasamoorthy, G.; Porter, E.; Reagin, S. S.; Keith, C.; Lauderdale, J. D. J. Opt. Soc. Am. A:Opt. Image Sci.2008,25,2185
    [8]Silva, A. P. de.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev.1997,97,1515
    [9]Callan, J. F.; Silva, A. P. de.; Magri, D. C. Tetrahedron,2005,61,8551
    [10]Martinez-Manez, R.; Sancenon, F. Chem. Rev.2003,103,4419
    [11]Valeur, B.; Leray, I. Coord. Chem. Rev.2000,205,3
    [12]Xu, Z. C.; Yoon, J.; Spring, D. R. Chem. Soc. Rev.2010,39,1996
    [13]Kim, J. S. Quang, D. T. Chem. Rev.2007,107,3780
    [14]Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed.,2006,45,4562
    [15]Carlson, H. J.; Campbell, R. E. Curr. Opin. Biotechnol.2009,20,19
    [16]Wu, Y. K.; Peng, X. J.; Fan, J. L.; Gao, S.; Tian, M. Z.; Zhao, J. Z.; Sun, S. G. J. Org. Chem. 2007,72,62
    [17]Chu, Q. H.; Medvetz, D. A.; Pang, Y. Chem. Mater.2007,19,6421
    [18]Xu, Y. Q.; Pang, Y. Chem. Commun.2010,46,4070
    [19]Kim, T.; Kang, H. J.; Han, G.; Chung, S. J.; Kim, Y. Chem. Commun.2009,45,5895
    [20]Hu, R.; Feng, J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Yang, G. Q. Angew. Chem. Int. Ed.2010, 49,4915
    [21]Jung, H. S.; Kim, H. J.; Vicens, J.; Kim. J. S. Tetrahedron Lett.2009,50,983
    [22]Han, D. Y.; Kim, J. M.; Kim, J. Jung, H. S.; Lee, Y. H.; Zhang, J. F.; Kim, J. S. Tetrahedron Lett.2010,51,1947
    [23]Klymchenko, A. S.; Duportail, G.; Mely, Y.; Demchenko, A. P. Proc. Nat1. Acad. Sci. U. S. A. 2003,100,11219
    [24]Klymchenko, A. S.; Avilov, S. V.; Demchenko, A. P. Anal. Biochem.2004,329,43
    [25]Shynkar, V. V.; Klymchenko, A. S.; Kunzelmann, C.; Duportail, G.; Muller, C. D.; Demchenko, A. P.; Freyssinet, J. M.; Mely, Y. J. Am. Chem. Soc.2007,129,2187
    [26]Yushchenko, D. A.; Fauerbach, J. A.; Thirunavukkuarasu, S.; Jares-Erijman, E. A.; Jovin, T. M. J. Am. Chem. Soc.2010,132,7860
    [27]Wang, F.; Wu, J. S.; Zhuang, X. Q.; Zhang, W. J.; Liu, W. M.; Wang, P. F.; Wu, S. K. Sens. Actuators. B 2010,146,260
    [28]Berezin, M. Y.; Achilefu, S. Chem. Rev.,2010,110,2641
    [29]Henary, M. M.; Fahrni, C. J. J. Phys. Chem. A,2002,106,5210
    [30]Mordzinski, A. Grabowska, A. Chem. Phys. Lett.,1982,90,122
    [31]Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev.,2011,40,3483
    [32]Kim, T.; Kang, H. J.; Han, G.; Chung, S. J.; Kim, Y. Chem. Commun.2009,5895
    [33]Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, W.; Liu, R. Org. Lett.2011,13,4922
    [34]Zhu, B.; Gao, C.; Zhao, Y.; Liu, C.; Li, Y.; Wei, Q.; Ma, Z.; Du, B.; Zhang, X. Chem. Commun.2011,47,8656
    [35]Pal, M.; Parasuraman, K.; Yeleswarapu, K. R. Org. Lett.2003,5,349
    [36]Yi, L.; Li, H. Y.; Sun, L.; Liu, L. L.; Zhang, C. H.; Xi, Z. Angew. Chem. Int. Ed.2009,48, 4034
    [37]Matsumoto, T.; Urano, Y.; Shoda, T.; Kojima, H.; Nagano, T. Org. Lett.2007,9,3375
    [1]Moore, W.; Hysell, D.; Hall, L.; Campbell, K.; Stara, J. Environ. Health Perspect,1975,10, 63
    [2]Palladium, Environmental Health Criteria Series 226, International Programme on Chemical Safety, World Health Organization, Geneva,2002
    [3]Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev.2000,100,2595
    [4]Gardner, J. W.; Bartlett, P. N. Electronic Noses:Principles and Applications; Oxford University Press:New York,1999
    [5]Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev.2006,35,14
    [6]Laukis, I. R. Acc. Chem. Res.1998,31,317
    [7]Walt, D. R. Acc. Chem. Res.1998,31,267
    [8]Sangodkar, H.; Sukeerthi, S.; Srinivasa, R. S.; Lal, R.; Contractor, A. Q. Anal. Chem.1996,68, 779
    [9]Lonergan, M. C.; Severin, E. J.; Doleman, B. J.; Beaber, S. A.; Grubbs, R. H.; Lewis, N. S. Chem. Mater.1996,8,2298
    [10]Grate, J. W. Chem. Rev.2000,100,2627
    [11]Hewage, H. S.; Anslyn, E. V. J. Am. Chem. Soc.2009,131,13099
    [12]Rochat, S.; Gao, J.; Qian, X.; Zaubitzer, F.; Severin, K. Chem. Eur. J.2010,16,104
    [13]Schwarze, T.; Muller, H.; Dosche, C.; Klamroth, T.; Mickler, W.; Kelling, A.; Lohmannsroben, H. G.; Saalfrank, P.; Holdt, H. J. Angew. Chem. Int. Ed.2007,46,1671
    [14]Schwarze, T.; Mickler, W.; Dosche, C.; Flehr, R.; Klamroth, T.; Lohmannsroben, H. G.; Saalfrank, P.; Holdt, H. J. Chem. Eur. J.2010,16,1819
    [15]Schwarze, T.; Dosche, C.; Flehr, R.; Klamroth, T.; Lohmannsroben, H. G.; Saalfrank, P.; Cleve, E.; Buschmann, H. J.; Holdt, H. J. Chem. Commun.2010,46,2034
    [16]Huang, H.; Wang, K.; Tan, W.; An, D.; Yang, X.; Huang, S.; Zhai, Q.; Zhou, L.; Jin, Y. Angew. Chem. Int. Ed. 2004,43, 5635
    [17]Duan, L.; Xu, Y.; Qian, X. Chem. Commun. 2008,44,6339
    [18]Li, H.; Fan, J.; Du, J.; Guo, K.; Sun, S.; Liu, X.; Peng, X. Chem. Commun. 2010,46, 1079
    [19]Li, H.; Fan, L.; Song, F.; Zhu, H.; Du, J.; Sun, S.; Peng, X. Chem . Eur. J. 2010,16,12349
    [20]Li, H.; Fan, J.; Hu, M.; Cheng, G.; Zhou, D.; Wu, T.; Song, F.; Sun, S.; Duan, C.; Peng, X. Chem. Eur. J. 2012,18,12242
    [21]Cai, S.; Lu, Y.; He, S.; Wei, F.; Zhao, L.; Zeng, X. Chem. Commun. 2013,49, 822
    [22]Kim, H.; Moon, K. S.; Shim, S.; Tae, J. Chem. Asian. J. 2011, 6,1987
    [23]Goswami, S.; Sen, D.; Das, N. K.; Fun, H. K.; Quah, C. K. Chem. Commun. 2011,47,9101
    [24]Zhou, Y.; Zhang, J.; Zhou, H.; Zhang, Q.; Ma, T.; Niu, J. Sensors and Actuators B 2012, 171-172, 508
    [25]Yu, S. Y.; Rhee, H. W.; Hong, J. I. Tetrahedron Lett. 2011,52,1512
    [26]Song, F. L.; Carder, E. J.; Kohler, C. C.; Koide, K. Chem. Eur. J. 2010, 16,13500
    [27]Song, F. L.; Garner, A. L.; Koide, K. J. Am. Chem. Soc. 2007, 129,12354
    [28]Garner, A. L.; Song, F. L.; Koide, K. J. Am. Chem. Soc. 2009, 131, 5163
    [29]Garner, A. L.; Koide, K. Chem. Commun. 2009,45, 86
    [30]Jiang, J.; Jiang, H.; Liu, W.; Tang, X.; Zhou, X.; Liu, W.; Liu, R. Org. Lett. 2011,13,4922
    [31]Santra, M.; Ko, S. K.; Shin, I.; Ann, K. H. Chem. Commun. 2010,46, 3964
    [32]Zhu, B.; Gao, C.; Zhao, Y.; Liu, C.; Li, Y.; Wei, Q.; Ma, Z.; Du, B.; Zhang, X. Chem. Commun. 2011,47, 8656
    [33]Garner, A. L.; Koide, K. J. Am. Chem. Soc. 2008, 130,16472
    [34]Jun, M. E.; Ahn, K. H. Org. Lett. 2010,12,2790
    [35]Chen, W.; Wright, B. D.; Pang, Y. Chem. Commun. 2012,48,3824
    [36]Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sanchez-Martin, R. M.; Bradley, M. Nat Chem. 2011 3 239
    [37]Suslick, K. S. MRS Bull, 2004,29, 720
    [38]Suslick, K. S.; Rakow, N. A. Tetrahedron, 2004,60,11133
    [39]Palacios, M. A.; Wang, Z.; Montes, V. A.; Zyryanov, G. V.; Anzenbacher Jr. P. J. Am. Chem. Soc. 2008, 130, 10307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700