用户名: 密码: 验证码:
高性能卫星导航接收机模拟信道关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能卫星导航接收机是卫星导航系统中重要的系统级设备之一,通常要求具有高测量精度与大动态范围。模拟信道是导航接收机中必不可少的组成部分之一,其幅频特性、相频特性成为制约接收机精度向亚纳秒量级推进的瓶颈,其动态范围对接收机抗干扰性能有重要影响。论文以我国北斗卫星导航系统的建设为应用背景,基于导航接收机高精度测距、频率规划和抗干扰大动态范围设计等前沿研究课题,从四个方面对高性能导航接收机的模拟信道展开了研究工作:
     (1)接收机伪距测量精度和载波相位测量精度的分析方法大多把接收信道的等效低通滤波器hL(t)简化为理想模型或某些特殊模型,难以满足实际高性能接收机的优化设计需求。本文把hL(t)推广为任意复函数,分析得到了相干/非相干早迟码估计器的BPSK/QPSK信号伪距精度表达式和乘法/反正切估计器的BPSK/QPSK信号载波相位精度表达式;给出了反正切估计器下,BPSK/QPSK信号载波相位测量精度的最优滤波器表达式。理论与仿真分析验证了模型的有效性;本文模型明显优于经典分析模型,可作为接收机信道优化设计的参考。
     (2)测量零值对接收机测距偏差有直接影响,但目前尚没有分析任意信道特性对零值测量影响的通用模型。基于上述的hL(t),本文分别研究了滤波器幅频和群时延波动对BPSK/QPSK信号伪距测量零值和载波相位测量零值的影响;将上述分析方法在时频域抗干扰处理的情况下进行了推广,从理论上解释了干扰带宽、位置变化导致BPSK/QPSK信号伪距零值和载波相位零值发生变化的现象;论文还探讨了时延零值的校正技术,指出校正成立的充分条件及其局限性。理论分析与软件接收机仿真结果最大误差在0.2ns以内,证明了本文分析模型的精确性。
     (3)随着各导航系统的现代化,宽带导航信号的频率规划受到越来越多的制约。本文针对导航接收机特点,综合考虑接收机性能及软硬件实现复杂度等各方面因素,完善了BPSK/QPSK信号导航接收机的一般性频率规划方法,研究了BOC信号导航接收机的通用频率规划方法,可用于指导导航接收机设计。本文还建立了hL(t)非理想情况下,I/Q幅相误差的分析模型,推导得到了幅相误差影响BPSK/QPSK信号测量精度和测量零值的表达式,理论分析与软件接收机仿真值吻合较好,论证了模拟正交下变频在高性能用户机中应用的可行性。
     (4)为适应“导航战”的需求,要求抗干扰接收机的模拟信道具有大动态范围。本文建立了模拟信道的简化模型,以给定的噪声系数恶化容限为约束条件,给出了不同信号接收场景下,模拟信道动态范围的优化设计及各级增益划分方法;本文指出了动态范围的优化在实质上就是求曲线交点的过程,揭示了各电路参量与模拟信道动态范围的关系,给出了明确的动态范围优化设计方法。
     最后,总结了论文的研究成果及其工程应用,并展望了下一步要开展的工作。论文的研究成果已直接应用于我国北斗卫星导航系统的若干工程型号项目中。
High performance satellite navigation receiver is one of the important systemicequipments in satellite navigation systems, which usually requires accurate rangingmeasurement and large dynamic range. Analog signal channel is one of the necessaryparts of navigation receivers, its amplitude response and phase response have becomethe bottlenecks which made ranging measurement difficult to reach sub-nanosecondaccuracy, and its dynamic range has great influence on the performance of anti-jammingreceivers. This dissertation takes the construction of the Chinese Compass satellitenavigation system as the application background, and is based on some advanced topicssuch as accuracy ranging measurement of navigation receiver, frequency plan andanti-jamming large dynamic range design, four aspects of the study on analog signalchannel in high performance satellite navigation receivers will be carried out:
     (1) Most analytical methods of PN ranging measurement and carrier phase rangingmeasurement assume that the hL(t), the channel equivalent lowpass filter, is an idealmodel or some special model, which makes it difficult to meet the design requirementof the actual high performance navigation receivers. This paper extends hL(t) to anycomplex function, and investigates the formula of PN ranging measurement ofBPSK/QPSK signal which is estimated by coherent/non-coherent Early-Late estimatorand the formula of carrier phase ranging measurement of BPSK/QPSK signal which isestimated by multiplier/arctangent estimator; and gives out the expression of the optimalfilter for carrier phase ranging measurement of BPSK/QPSK signal when usedarctangent estimation. The validity of this method has been proved by analytical andsimulation results. The model in the dissertation is obviously better than the classicalanalytical models, which can be used as the reference for the optimal design of thereceiver channel.
     (2) Zero value has direct impact on the measurement bias in receivers, but there isa lack of general model to analyze the impact of any channel characteristics on the zerovalue measurement. Based on the hL(t) mentioned above, the impact on the PN zerovalue and carrier phase zero value of BPSK/QPSK signal, caused by the filter’samplitude response and group delay, is studied in this dissertation respectively; thisdissertation extends above methods to the occasion with time and frequency domainanti-jamming, explains the phenomena that interfere with different bandwidth andcenter frequency bring on different PN zero value and carrier phase zero value ofBPSK/QPSK signal; the dissertation also discusses the delay calibration technique,presented the sufficient condition which guarantees the validity of the calibration andit’s shortage. The maximal error between the theoretical results and simulation results isless than 0.2 ns, which proves the accuracy of the model.
     (3) Along with the modernization of various satellite navigation systems, thefrequency plan has been restricted increasingly. According to the characteristic ofnavigation receivers, this dissertation considers the performance of receiver, as well asthe realization complexity of hardware and software, improves the general method offrequency plan for BPSK/QPSK signal navigation receivers, studys the general methodof frequency plan for BOC signal navigation receivers, which can direct the navigationreceiver design. This dissertation also establishes the analysis model for I/Q amplitudeand phase error when hL(t) is non-ideal, works out the formula of ranging measurementand zero value of BPSK/QPSK signal caused by the I/Q amplitude and phase error, thetheoretic result agrees quiet well with the simulation results in the software receiver,which proves the feasibility of analog quadrate down conversion in high performancereceivers.
     (4) To meet the requirement of the“Navigation Warfare”, a large dynamic range isrequired in the analog channel design of the anti-jamming receivers. This dissertationsets up the ordinary model of analog signal channel, takes the given noise figuretolerance as the restriction, and points out the simple and convenient way to optimizethe dynamic range of analog channel as well as the gain plan for each stage; thisdissertation points out that the essence of the dynamic range optimizing is the process tosolve the point of intersection of a set of curves, reveals the relationship betweendynamic range and each circuit parameters, and presents a clear way to the optimaldesign of dynamic range.
     At last, the research work in this thesis and its engineering application aresummarized , the further work for next step is also presented. The results of the researchhave been already used in many projects of Chinese Compass satellite navigationsystem.
引文
[1]边少峰,李文魁.卫星导航系统概论[M].北京:电子工业出版社, 2005:3.
    [2]李跃,邱致和.导航与定位-信息化战争的北斗星(第二版)[M].北京:国防工业出版社, 2008: 18-21.
    [3] E. D. Kaplan, C. J. Hegarty.寇艳红译. GPS原理与应用(第二版)[M].北京:电子工业出版社, 2007: 3-7, 448-471.
    [4]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社, 2009: 1-11.
    [5]周祖渊.全球卫星导航系统的构成及其比较[J].重庆交通大学学报(自然科学版). 2008. 27(S1) : 999-1004.
    [6]杨志根,朱文耀,战兴群.全球卫星导航系统十年回顾及展望[J].科学(上海). 2010. 62(2): 16-20.
    [7]中关村在线.准天顶系统工作正常, GPS收讯良好改善[EB/OL].http://gps.zol.com.cn/201/2016733.html, 2010.
    [8]李东航.印度IRNSS:首星预计年内发射[N].解放军报, 2009-04-16(4).
    [9]人民网—《人民日报海外版》.第三颗北斗卫星发射成功,卫星组网正按计划稳步推进[EB/OL]. http://ip.people.com.cn/GB/10784978.html, 2010.
    [10]中国新闻网.中国在西昌成功发射第四颗北斗导航卫星[EB/OL].http://www.chinanews.com/gn/news/2010/06-03/2320008.shtml, 2010.
    [11]新华网.中国成功发射第五颗北斗导航卫星[EB/OL].http://news.xinhuanet.com/politics/2010-08/01/c_12395999.htm, 2010.
    [12]中国新闻网.中国成功发射第六颗北斗导航卫星[EB/OL].http://www.chinanews.com/gn/2010/11-01/2624133.shtml, 2010.
    [13]中国新闻网.中国成功发射第7颗北斗导航卫星,组网顺利推进[EB/OL].http://www.chinanews.com/gn/2010/12-18/2730644.shtml, 2010.
    [14]中国新闻网.中国成功发射第八颗北斗导航卫星,送入预定轨道[EB/OL].http://www.chinanews.com/gn/2011/04-10/2961847.shtml, 2011.
    [15]网易.第9颗北斗导航卫星发射,系第4颗组网星[EB/OL].http://news.163.com/photoview/00AQ0001/16735.html, 2011
    [16] E. D. Kaplan, C. J. Hegarty.寇艳红译. GPS原理与应用(第二版)[M].北京:电子工业出版社, 2007: 48-80.
    [17] The Navstar GPS Wing. Navstar GPS Space Segment / Navigation UserInterfaces, IS-GPS-200, Revision E[Z]. June 8, 2010: 3-36.
    [18]许晓勇.卫星导航接收机高精度建模、分析及优化设计研究[D]. [博士学位论文].长沙:国防科学技术大学, 2008: 3-6.
    [19]曾祥华.卫星导航定位接收机频域抗干扰技术研究[D]. [硕士学位论文].长沙:国防科学技术大学, 2003: 1-4.
    [20]李星.卫星导航系统站间时间同步网关键技术研究[D]. [博士学位论文].长沙:国防科学技术大学, 2008: 67-93.
    [21]陈邦媛.射频通信电路[M].北京:科学出版社, 2002: 74-82.
    [22]刘有恒.信号检测与估计[M].北京:人民邮电出版社, 1989: 317-350.
    [23] A. J. Van Dierendonck, P. Fenton, T. Ford. Theory and Performance ofNarrow Correlator Spacing in A GPS Receiver [J]. Navigation: Journal of The Institudeof Navigation, 1992. 39(3):265-283.
    [24] J. K. Holmes. Noncoherent Late Minus Early Power Code TrackingPerformance with Front-end Filtering [A]. Proceeding of the 10th InternationalTechnical Meeting of the Satellite Division of The Institute of Navigation [C]. KansasCity, Missouri, USA: The Institute of Navigation, 1997: 583-591.
    [25] K. R. Kolodziejski, J. W. Betz. Effect of Non-White Gaussian Interference onGPS Code-Tracking Accuracy [Z] Technical Report MTR99B0000021R1. McLean VA:The MITRE Corporation, 1999.
    [26] J. W. Betz, K. R. Kolodziejski. Extended Theory of Early-Late Code Trackingfor a Bandlimited GPS Receiver [J]. Navigation: Journal of The Institude of Navigation,2000, 47(3):211-226.
    [27] J. W. Betz , K. R. Kolodziejski. Generalized Theory of GPS Code TrackingAccuracy with an Early-Late Discriminator, Part I: Lower Bound and CoherentProcessing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4):1538-1556.
    [28] J. W. Betz, K. R. Kolodziejski. Generalized Theory of GPS Code TrackingAccuracy with an Early-Late Discriminator, Part II: Noncoherent Processing andNumerical Results [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009,45(4): 1557-1564.
    [29] J. K. Holmes. Code Tracking Loop Performance Including the Effects ofChannel Filtering and Gaussian Interference [A]. Proceeding of the IAIN WorldCongress in association with the US ION Annual Meeting [C]. San Diego, CA, US: TheInstitute of Navigation, 2000: 382-398.
    [30]许晓勇.卫星导航接收机高精度建模、分析及优化设计研究[D]. [博士学位论文].长沙:国防科学技术大学, 2008: 75-103.
    [31] E. D. Kaplan, C. J. Hegarty.寇艳红译. GPS原理与应用(第二版)[M].北京:电子工业出版社, 2007: 134-148.
    [32] J. J. Jr. Spilker.白延隆,李道本等译.数字卫星通信系统[M].北京:人民邮电出版社, 1980: 384-390.
    [33] B. W. Parkinson, J. J. Jr. Spilker, P. Axelrad, P. Enge. Global PositioningSystem: Theory and Applications [M]. American: American Institute of Aeronauticsand Astronautics, 1996, I (2):378-390.
    [34] M. Irsigler, B. Eissfeller. PLL Tracking Performance in the Presence ofOscillator Phase Noise [J]. GPS Solutions, 2002, 5(4): 45-57.
    [35]朱祥维.卫星导航系统时间同步关键技术研究[D]. [博士学位论文].长沙:国防科学技术大学, 2007: 52-100.
    [36]耿虎军.系统群时延特性对伪码测距影响的研究[J].无线电工程. 2004.34(11):27-29.
    [37] T. Muller. Performance Degradation in GPS-Receivers Caused by GroupDelay Variations of SAW-filters [A]. Microwave Symposium Digest, 1998 IEEEMTT-S International [C]. Baltimore, MD, USA: IEEE, 1998: 495-498.
    [38] T. Felhauer. On the Impact of RF Front-end Group Delay Variations onGLONASS Pseudorange Accuracy [A]. Proceeding of the 10th International TechnicalMeeting of the Satellite Division of the Institute of Navigation [C]. Kansas City,Missouri, USA: The Institute of Navigation, 1997: 1527-1532.
    [39] M. Soellner, R. Kohl, W. Luetke, Ph. Erhard. The Impact of Linear andNon-linear Signal Distortions on Galileo Code Tracking Accuracy [A]. Proceedings ofthe 15th International Technical Meeting of the Satellite Division of the Institute ofNavigation [C]. Portland, Oregon, United States: The Institute of Navigation, 2002:1270-1285.
    [40] D. Adams. The Effects of SAW Group Delay Ripple on GPS and Glonasssignals. NovAtel Inc, http://webone.novatel.ca/assets/Documents/papers/gpsandglonosssignals.pdf.
    [41] J. W. Betz, Effect of Linear Time-Invariant Distortions on RNSS CodeTracking Accurary [A]. Proceedings of the 15th International Technical Meeting of theSatellite Division of the Institute of Navigation [C]. Portland, Oregon, United States:The Institute of Navigation, 2002: 1636-1647.
    [42]朱祥维,李垣陵,雍少为,庄钊文.群时延的新概念、测量方法及其应用[J].电子学报, 2008, 36(9):1819-1823.
    [43] X. W. Zhu, Y. L. Li, S. W. Yong, Z. W. Zhuang. A Novel Definition andMeasurement Method of Group Delay and Its Application [J]. IEEE Transactions OnInstrumentation and Measurement, 2009, 58(1): 229-233.
    [44]朱祥维,孙广富,雍少为,庄钊文.相位非线性畸变对GPS伪距测量的影响[J].国防科大学报. 2008. 30(6):101-106.
    [45]刘荟萃.卫星导航系统中的多径误差分析与抑制技术研究[D]. [博士学位论文].长沙:国防科学技术大学, 2010: 47-77.
    [46] R. L. Fante. Performance Measures for GPS Anti-Jam Antenna Arrays [R].The MITRE Corporation, 2006.
    [47] I. J. Gupta, C. M. Church, A. O’Brien, C. D. Slick. Prediction of Antenna andAntenna Electronics Induced Biases in GNSS Receivers [A]. Proceeding of the Instituteof Navigation National Technical Meeting [C]. SanDiego, CA, USA: The institute ofNavigation, 2007: 650-656.
    [48] C. M. Church, I. J. Gupta. GNSS Receiver Biases Due to Non-Linear Phase ofControlled Pattern and Fixed Pattern Antennas [A]. Proceeding of the 20th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation [C]. FortWorth, TX, US: The institute of Navigation, 2007: 1230-1235.
    [49] C. M. Church. Estimation of Adaptive Antenna Induced Phase Biases inGlobal Navigation Satellite Systems Receiver Measurements [D]. [Master Thesis]. Ohio:The Ohio State University, 2009: 33-46.
    [50] A. O'Brien, I J. Gupta. Optimum Adaptive Filtering for GNSS AntennaArrays [A]. Proceeding of the 21st International Technical Meeting of the SatelliteDivision of the Institute of Navigation [C]. Savannah, GA, US: The institute ofNavigation, 2008: 2796-2805.
    [51] G. A. McGraw, S. Y. Ryan Young, K. Reichenauer. Evaluation of GPSAnti-Jam System Effects on Pseudorange and Carrier Phase Measurements for PrecisionApproach and Landing [A]. Proceeding of the 17th International Technical Meeting ofthe Satellite Division of the Institute of Navigation [C]. Long Beach, CA, US: TheInstitute of Navigation, 2004: 2742-2751.
    [52] G. A. McGraw, C. McDowell, S. Y. Ryan Young, D. W. Glessner.Assessment of GPS Anti-Jam System Pseudorange and Carrier Phase MeasurementError Effects [A]. Proceeding of the 18th International Technical Meeting of theSatellite Division of the Institute of Navigation [C]. Long Beach, CA, US: The Instituteof Navigation, 2005: 603-617.
    [53] D. S. De Lorenzo, J. Rife, P. Enge, D. M. Akos, Navigation Accuracy andInterference Rejection for an Adaptive GPS Antenna Array [A]. Proceeding of the 19thInternational Technical Meeting of the Satellite Division of the Institute of Navigation[C]. Fort Worth, TX, US: The Institute of Navigation, 2006: 763-773.
    [54] U. S. Kim. Mitigation of Signal Biases Introduced by Controlled ReceptionPattern Antennas in a High Integrity Carrier Phase Differential GPS System [D].[Doctor Thesis]. Stanford: The Stanford University, 2007: 23-69.
    [55] D. K. Shaeffer, A. R. Shahani, S. S. Mohan, H. Samavati, H. R. Rategh, M. M.Hershenson, M. Xu, C. P. Yue, D. J. Eddleman, T. H. Lee. A 115-mW, 0.5-μm CMOSGPS Receiver with Wide Dynamic-Range Active Filters [J]. IEEE Journal ofSolid-State circuits, 1998, 33(12): 2219-2231.
    [56] F. Piazza, Q. Huang. A 1.57-GHz RF Front-End for Triple Conversion GPSReceiver [J]. IEEE Journal of Solid-State circuits, 1998, 33(2): 202-209.
    [57]杨川,王永生,万天才,范麟. GPS卫星导航接收机RF电路的设计[J].微电子学, 2005, 35(1): 21-24.
    [58] L. Ries, J. Dantepal, J. L. Issler. A L5 Receiver Test Bench [A]. Proceeding ofthe 14th International Technical Meeting of the Satellite Division of the Institute ofNavigation [C]. Salt Lake City, UT, US: The Institute of Navigation, 2001: 683-689.
    [59] F. Chastellain, C. Botteron, P. A. Farine. A Low-Power RF Front-endArchitecture for an L1/L2CS GPS Receiver [A]. Proceedings of the 18th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation [C]. LongBeach, CA, United States: The Institute of Navigation, 2005: 628-634.
    [60] D. M. Lin, L. Liou, A. Torres, J. Tsui. Sharing One Antenna for ElectronicWarfare (EW) and GPS Applications [A]. Proceedings of the 18th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation [C]. LongBeach, CA, United States: The Institute of Navigation, 2005: 2218-2224.
    [61] J. W. Betz. Binary Offset Carrier Modulations for Radionavigation[J].Navigation: Journal of The Institute of Navigation, 2001, 48(4): 227-246.
    [62] The Navstar GPS Wing. Navstar GPS Space Segment / User Segment L5Interfaces, IS-GPS-705, Revision A [Z]. June 8, 2010: 3-18.
    [63] The Navstar GPS Wing. Navstar GPS Space Segment / User Segment L1CInterface, IS-GPS-800, Revision A [Z]. June 8, 2010: 3-64.
    [64] Galileo Project Office. European GNSS (Galileo) Open Service Signal InSpace Interface Control Document, OS-SIS-ICD, Issue 1.1[Z]. September, 2010: 2-11.
    [65] W. D. Wilde, J. M. Sleewaegen, K. V. Wassenhove, F. Wilms. AFirst-of-a-Kind Galileo Receiver Breadboard to Demonstrate Galileo TrackingAlgorithms and Performances [A]. Proceedings of the 17th International TechnicalMeeting of the Satellite Division of the Institute of Navigation [C]. Long Beach, CA,United States: The Institute of Navigation, 2004: 2645-2654.
    [66] P. Blunt, T. Ebinuma, S. Hodgart, M. Unwin. A Demonstration of GalileoTransmitter / Receiver Architecture for Space Applications [C]. Proceedings of the 18thInternational Technical Meeting of the Satellite Division of the Institute of Navigation[C]. Long Beach, CA, United States: The Institute of Navigation, 2005: 1914-1921.
    [67] F. Forster, A. Carrera, N. Lucas, G. Rohmer. High Performance ReceiverFront-end for Multiple Galileo Frequencies [A]. Proceedings of the 18th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation [C]. LongBeach, CA, United States: The Institute of Navigation, 2005: 935-940.
    [68] T. Luck, E. Gohler, M. Bodenbach, J. Winkel, F. Forster. The Gate Receiver–a Full-Scale Galileo/GPS Monitor Receiver [A]. Proceedings of the 19th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation [C]. FortWorth, TX, United States: The Institute of Navigation, 2006: 1011-1020.
    [69] R. M. Weiler, P. Blunt, P. Jales, M. Unwin, S. Hodgart. Performance of anL1/E5 GNSS Receiver using a Direct Conversion Front-end Architecture [A].Proceedings of the 21th International Technical Meeting of the Satellite Division of theInstitute of Navigation [C]. Savannah, GA, United States: The Institute of Navigation,2008: 1478-1489.
    [70]李柏渝.多频卫星接收机射频电路的研究与实现[D]. [硕士学位论文].长沙:国防科学技术大学研究生院, 2005: 5-18.
    [71]李柏渝,张勇虎,欧钢,王飞雪.带宽给定条件下的全数字接收机频率规划[J].信号处理, 2008, 24(1): 115-117.
    [72] J. Mahattanakul. The Effects of Mismatch in Gm-C Polyphase Filters [J].IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(7): 410-414.
    [73] J. Mahattanakul. The Effect of I/Q Imbalance and Complex Filter ComponentMismatch in Low-IF Receivers [J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2006, 53(2): 247-253.
    [74] R. Cherukuri. Code-Aided Adaptive Decorrelator for I/Q ImbalanceCompensation in Iteractive Receivers [D]. [The Doctor Thesis]. Texas: The Universityof Texas at Dallas, 2008: 1-47.
    [75] M. Windisch, G. Fettweis. Performance Degradation due to I/Q Imbalance inMulti-Carrier Direct Conversion Receivers: A Theoretical Analysis [A]. 2006 IEEEInternational Conference on Communications [C]. Istanbul, Turkey, 2006: 257-262.
    [76] M. Windisch, G. Fettweis. On the Impact of I/Q Imbalance in Multi-CarrierSystems for Different Channel Scenarios [A]. IEEE International Symposium onCircuits and Systems [C]. New Orleans, LA, USA, 2007: 33-36.
    [77] Y. Zou, M. Valkama, M. Renfors. Performance Analysis of Space-TimeCoded MIMO-OFDM Systems under I/Q Imbalance [A]. IEEE InternationalConference on Acoustics, Speech and Signal Processing [C]. Honolulu, HI, USA,2007(3): 341-344.
    [78] H. Zareian. V. T. Vakili. Analytical BER Performance of M-QAM-OFDMSystems in the Presence of IQ Imbalance [A]. International Conference on Wireless andOptical Communications Networks [C]. Singapore, 2007: 1-5.
    [79] P. Rykaczewski, M. Valkama, M. Renfors. Analytical Approach to I/QImbalance in OFDM, CDMA and MC-CDMA Based Systems [A]. IEEE 2006 Radioand Wireless Symposium [C]. San Diego, CA, USA, 2006: 555-558.
    [80] L. Anttila, M. Valkama, M. Renfors. 3.9G Radio Reception with SC-FDMAWaveforms under I/Q Imbalance [A]. IEEE International Symposium on Circuits andSystems [C]. New Orleans, LA, USA, 2007: 25-28.
    [81] P. H. Lee, H. C. Chao, W. L. Mao, H. W. Tsao, F. R. Chang. The Effects ofI/Q Imbalance and Complex Filter Mismatch on GPS/Galileo System [A]. Proceedingsof the 20th International Technical Meeting of the Satellite Division of the Institute ofNavigation [C]. Fort Worth, TX, United States: The Institute of Navigation, 2007:543-550.
    [82] A. Schmide, A. Neubauer, H. Ehm, R. Weigel, N. Lemke, G. Heinrichs, J.Winkel, J. A. Avila-Rodriguez, R. Kaniuth, T. Pany, B. Eissfeller, G. Rohmer, B.Niemann, M. Overbeck. Enabling Location Based Services with a Combined Galileo /GPS Receiver Architectures [A]. Proceedings of the 17th International TechnicalMeeting of the Satellite Division of the Institute of Navigation [C]. Long Beach, CA,United States: The Institute of Navigation, 2004: 1468-1479.
    [83] A. Ucar, E. Cetin, I. Kale. A Low Complexity DSP Driven AnalogImpairment Mitigation Scheme for Low-IF GNSS Receivers [A]. 2008 IEEE/IONPosition, Location and Navigation Symposium [C]. Monterey, CA, USA, 2008:865-870.
    [84]唐小妹.高性能导航接收机中的载波恢复与载噪比估计研究[D].长沙:国防科学技术大学, 2005: 25-31.
    [85]唐小妹,李献球,许晓勇,王飞雪. IQ非正交引起的载波和伪码跟踪误差分析[J].舰船电子工程, 2006, 26(3): 61-64.
    [86]袁孝康.自动增益控制与对数放大器[M].北京:国防工业出版社, 1987:1-6.
    [87] I. Y. Choong, S. K. Dong, K. W. Seung, W. W. Kim. An AGC Design ofMobile Cellular System [A]. IEEE Proceeding of 60th Vehicular TechnologyConference [C]. Los Angeles, USA, 2004(3): 2134-2137.
    [88] F. Y. He, X. Z. Duan, S. Su, R. J. Zhou. Research on AGC Robust Controlover Communication Network [A]. The 40th IAS Annual Meeting [C]. Hongkong,China, 2005(3): 2068-2074.
    [89] Y. Vanderperren, G. Leus, W. Dehaene. An Approach for Specifying theADC and AGC Requirements for UWB Digital Receivers [A]. IEE Seminar on UltraWideband Systems, Technologies and Applications [C]. London, 2006: 196-200.
    [90] X. T. Chen, G. D. Zhao, P. Jin, W. B. Gong, H. J. Liu, X. W. Liang.QPSK/OQPSK Signal Detection With IF AGC on LEO Satellite [A]. Proceeding ofInternational Symposium on Microwave, Antenna, Propagation, and EMC Technologiesfor Wireless Communications [C]. Hangzhou, China, 2007: 1179-1182.
    [91]曹鹏,费元春.大动态宽带数字中频AGC系统的设计[J].北京理工大学学报, 2003, 23(5): 613-616.
    [92]王世练,张尔扬.直扩数字接收机中A/D量化比特数的确定[J].通信学报,2004, 25(8): 124-128.
    [93]宋里瑾.接收机线性动态范围的分析与设计[J].科学技术与工程, 2009,9(6): 1556-1559.
    [94] J. Tsui著,杨小牛,陆安南,金飚译.宽带数字接收机[M].北京:电子工业出版社, 2002: 18-20.
    [95]弋稳.雷达接收机技术[M].北京:电子工业出版社, 2005:78-80.
    [96]曹鹏,费元春.射频模拟前端对数字中频接收机动态范围影响的研究[J].电子学报, 2007, 35(12): 2312-2314.
    [97]曹鹏,陈宁,齐伟,李伟强,王彦,费元春.大动态宽带数字中频接收机的优化设计[J].北京理工大学学报, 2004, 24(4): 353-356.
    [98]金国琼.短波宽带大动态射频信道的设计[J].无线电通信技术, 2009,35(4): 44-46, 49.
    [99]金俊坤,吴嗣亮,孙武.某型伪码测距雷达的数字AGC设计[J].现代雷达,2005, 27(10): 75-78.
    [100]钱卫华.高线性大动态范围通用接收机研究与实现[D]. [硕士学位论文].成都:电子科技大学, 2003: 67-93.
    [101]高俊.大动态范围模拟与数字中频接收机的研究与实现[D]. [硕士学位论文].成都:电子科技大学, 2006: 31-52, 65-84.
    [102]陈国宇.大动态范围宽带接收机射频前端设计与实现[D]. [硕士学位论文].哈尔滨工程大学,2007: 79-84.
    [103] B. J. Bazuin, C. Fassler, R. Schwartz. All-Digital, Spatial Anti-Jam GPSReceivers: Architecture, Implementation, and Initial Performance Results [EB/OL].http://homepages.wmich.edu/~bazuinb/Research/ ION99Slides.pdf, 1999.
    [104]冯起.卫星导航接收机抗干扰自适应天线设计与弹载应用研究[D]. [博士学位论文].长沙:国防科技大学研究生院, 2009: 10-11.
    [105] J. Naylor, S. Sorber. G-STARTM Lockheed Martin’s Advanced GPSAnti-Jam Technology [EB/OL].http://www.lockheedmartin.com/news/symposium/AntiJam.pdf, Lockheed Martin,2000.
    [106]陈建军.抗干扰接收机自动增益控制技术研究[D]. [硕士学位论文].长沙:国防科技大学研究生院, 2006: 8-13.
    [107] Z. Zhu, F. Van Graas. Operational Considerations for C/A Code TrackingErrors Due to Cross Correlation [A]. Proceeding of the 18th International TechnicalMeeting of the Satellite Division of the Institute of Navigation [C]. Long Beach, CA,United States: The Institute of Navigation, 2005: 1255-1262.
    [108]普罗科斯.数字通信(第四版)[M].北京:电子工业出版社, 2006:148-153.
    [109]唐小妹.基于精确模型的高性能卫星导航弱信号接收机技术研究[D].[博士学位论文].长沙:国防科技大学研究生院, 2010: 70-87.
    [110]侯利明,孙宝升,陆晓明.群时延特性对卫星高速数传中继系统的影响[J].飞行器测控学报, 2006, 25(2):54-58.
    [111]李柏渝,李彩华,孙莉,欧钢.通道非理想特性对导航接收机载波相位测量精度的影响分析[J].信息工程大学学报, 2011, 12(1): 48-54.
    [112]吴翊,李超,罗建书,戴清平.应用数学基础[M].北京:高等教育出版社, 2006: 40.
    [113] J. K. Holmes. Coherent spread spectrum systems [M]. New York City, USA:John Wiley & Sons, Inc, 1982: 350-354.
    [114]陈叔远,颜绍书.相移均衡器[M].北京:人民邮电出版社, 1984:205-240.
    [115]李蓬蓬.模拟中频线性相位滤波器的设计[D]. [学士学位论文].长沙:国防科学技术大学, 2007: 9-16.
    [116]李蓬蓬.导航终端射频前端关键技术研究与应用[D]. [硕士学位论文].长沙:国防科学技术大学, 2009: 29-39.
    [117]陈雷.中频宽带时延补偿网络研究[D]. [学士学位论文].长沙:国防科学技术大学, 2010:14-43.
    [118] Analog Device INC. 700MHz to 2.7GHz Quadrature DemodulatorADL5382 [EB/OL]. http://www.analog.com, 2008.
    [119]刘海涛.高灵敏度GPS/Galileo双模导航接收机的研究与开发[D]. [博士学位论文].长沙:国防科学技术大学, 2006: 70.
    [120]王飞雪,王新春,雍少为,郭桂蓉.带通信号采样定理和全数字式正交检波器的设计[J].电子科学学刊, 1999, 21(3): 307-310.
    [121] E. D. Kaplan, C. J. Hegarty.寇艳红译. GPS原理与应用(第二版)[M].北京:电子工业出版社, 2007: 108.
    [122]王飞雪.直接序列扩频信号的全数字式快速捕获[D]. [博士学位论文].长沙:国防科学技术大学, 1998: 8-27.
    [123]谢超.接收机射频通道的热噪声特性分析[D]. [硕士学位论文].长沙:国防科学技术大学研究生院, 2008: 20-27.
    [124]李柏渝,伍俊,李蓬蓬,周力,欧钢.大动态范围抗干扰导航接收机AGC电路性能分析与优化设计[J].微波学报, 2010, 26(S1): 659-665.
    [125] Hittite Microwave Corporation. HMC472LP4/HMC472LP4E: 0.5dB LSBGaAs MMIC 6-Bit Digital Positive Control Attenuator, DC-3GHz [EB/OL].http://www.Hittite.com, 2002.
    [126]李柏渝,孙莉,伍俊,周力,欧钢.大动态范围星载导航接收机AGC电路性能分析与优化设计[J].国防科技大学学报, 2010, 32(6), 48-52.
    [127]罗鹏飞,张文明,刘福声.随机信号分析(第二版)[M].长沙:国防科技大学出版社, 2003:147-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700