用户名: 密码: 验证码:
毫米波被动双极化探测及相控阵扫描关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫米波辐射计能检测物体毫米波辐射信号的强弱,从而根据物体辐射特性的不同对目标进行探测识别及成像,具有区分金属非金属能力强、穿透雨雾烟尘及衣物等能力强、全天时工作等特点,因此在灵巧弹药末制导、地球环境遥感、大气气象研究、导航和安检等领域具有广泛的应用前景。本文主要对毫米波被动探测中利用物体极化辐射信息对虚假目标识别问题、毫米波被动相控阵成像中相位控制波束扫描问题及毫米波辐射计中逆向辐射、温度补偿及稳定性等相关问题进行理论和实验研究,具体工作如下:
     1.分析了毫米波超外差式辐射计中本振源相位噪声、混频器端口隔离度等参数对逆向辐射噪声及其引起的噪声温度测量误差的影响,给出了分析模型和解析计算公式,为系统设计时关键部件参数选择提供参考依据。
     2.提出基于四次谐波混频的毫米波辐射计,采用谐波混频抑制了逆向辐射噪声,采用X波段本振源增强了系统稳定性,降低了系统成本。在对逆向辐射抑制原理分析基础上,设计并研制了8mmm波段系统样机,实测温度灵敏度1.1K。
     3.针对小体积高集成度平台应用需要,对8mm直接检波式辐射计及其关键部件进行了设计与研制,实测系统样机温度灵敏度0.48K。针对毫米波前端增益-温度变化引起系统输出信号幅度变化,直接在毫米波电路中进行补偿难度较大的情况,提出在视频放大器中加入热敏电阻对系统总增益进行补偿的温度补偿方案。理论和实验分析表明,该方案简单有效,在-40℃~50℃温度范围内,实测补偿后幅度变化减小为原来的20%。
     4.提出双极化被动探测方案,通过两正交极化通道同时探测增大了系统作用距离,利用物体极化辐射特性的不同对虚假目标水塘进行识别。设计了8mm波段双极化直接检波式辐射计,理论分析表明系统最大作用距离为单通道辐射计的1.16~1.19倍;当目标充满天线波束的60%以上时,系统对水塘的识别概率大于99%。
     5.提出基于DDS-PLL相控源+四次谐波混频器的有源移相方案,对该方案及其关键部件进行了设计、理论分析和实验验证。该方案采用直接数字频率合成(DDS)在低频控制移相,具有技术难度小、精度高、控制方便等优点,避免了使用毫米波移相器和功率分配网络。此外采用四次谐波混频器,降低了DDS-PLL相控源技术难度和系统成本。
Millimeter-wave (MMW) radiometer can sense the MMW radiation from objects, and can be used for passive MMW detecting and imaging. It can identify metal from nonmetal easily, can work during the day or night, and can penetrate rain, fog, dust, smoke, and cloths. So it is widely used in fire-and-forget weapons, remote sensing, weather forecasting, guidance, and public security. In this dissertation, the study of false target identification by polarized radiation measurement in passive MMW detecting, the phase control in phased array for passive MMW imaging, and some practical problems in MMW radiometer such as inverse radiation, temperature compensation, and system stabilization has been carried out. The main work is shown as follows.
     1. The effect of system parameters, such as LO noise and LO-RF port isolation of mixer, on the inverse radiation in MMW superheterodyne radiometer and the error in MMW radiation measurement was analyzed. The analysis model and analysis function were given, which can be used as a rule to choose parameters of key components to suppress the inverse radiation in radiometer design.
     2. MMW radiometer with fourth harmonic mixer was analyzed, in which the inverse radiation is suppressed by harmonic mixer. And the system is more stable and has a lower cost for X-band LO is used. Based on the analysis of the principle of inverse radiation suppression, a system demo at 8mm-band was designed and developed. And the measured temperature sensitivity is 1.1K.
     3. For compact radiometer is needed in application, the 8mm direct detecting radiometer and its key components were analyzed, designed, and developed. And the measured temperature sensitivity of the system is 0.48K. The gain of the MMW front end varies with the ambient temperature, and affects the amplitude of the output signal of the system. As it is difficult to do temperature compensation in millimeter-wave circuits directly, a thermistor was added to the video amplifier as temperature compensation to keep the total gain of the receiver constant. The analysis and the experimental results show that this temperature compensation method is easy and works well. The output variation of the compensated system is reduced to 20% of the variation of the uncompensated system, when the temperature varies from -40℃to 50℃
     4. A dual-polarization MMW radiometer was proposed to identify the pool from metal target, for pool has different radiation between vertical and horizontal polarization. An 8mm dual-polarization direct detection radiometer was designed. The analyzed results show that the largest sensing range is increased by 16%~19%, compared with the single-channel radiometer. And the probability of the pool identification is as large as 99%, when more than 60% of the antenna beam is filled with the target.
     5. A novel active phase control based on DDS-PLL phased source and fourth subharmonic (SH) mixer was proposed. The phase control and the key components were analyzed and designed. And an experiment was carried out to verify the idea. In this phase control, the phase shift is controlled by direct digital synthesizer (DDS) at low frequency. So it is easy to implement with high precision and low cost, and the MMW phase shifter and power divider are omitted. The fourth SH mixer use LO at low frequency, and so the cost of DDS-PLL phased source and system is reduced.
引文
[1][美]K.J.巴顿,J.C.威尔茨编,方再根等译.毫米波系统.北京:国防工业出版社,1989
    [2]向敬成.毫米波雷达及其应用.北京:国防工业出版社,2005
    [3]李兴国.毫米波近感技术及其应用.北京:国防工业出版社,1991
    [4]张祖荫,林世杰.微波辐射测量技术及其应用.北京:电子工业出版社,1995
    [5]李兴国.末制导毫米波主、被动探测器.制导与引信,1991(4):1-6
    [6]Dow G S, Ton T N, Wang H, et al. W-band MMIC direct detection receiver for passive imaging system. IEEE MTT-S,1993,41(1):163-166
    [7]Schulman J N; Kolinko V, Morgan M, et al. W-band direct detection circuit performance with Sb-heterostructure diodes. Microwave and Wireless Components Letters, IEEE,2004, 14(7):316-318
    [8]Lynch J J, Schulman J N, Moyer H P. Low noise direct detection sensors for millimeter wave imaging. Compound Semiconductor Integrated Circuit Symposium IEEE,2006: 215-218
    [9]汪敏,李兴国,吴文.8mm波段直接检波式接收机研究.红外与毫米波学报,2002,21(4):310-313
    [10]关福宏,王闯,田为中,钱蓉,孙晓玮.直接检波式毫米波接收机研制.红外与毫米波学报,2007,26(2):125-128
    [11]Ezzeddine A K. Advances in microwave & millimeter-wave integrated circuits. Radio Science Conference, NRSC,2007:1-8
    [12]Whelehan J J. Low-noise amplifiers—then and now. IEEE transactions on microwave theory and techniques,2002,50(3):806-813
    [13]Fujimoto S, Katoh T, Ishida T, et al. Ka-Band ultra low noise MMIC amplifier using pseudomorphic HEMTs. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium,1997: 169-173
    [14]Pobanz C, Matloubian M, Nguyen L, et al. A high gain, low power MMIC LNA for Ka-band using InP HEMTs. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 1999:149-152
    [15]Whelan C S, Marsh P F, Hoke W E, et al, Millimeter-wave low-noise and high-power metamorphic HEMT amplifiers and devices on GaAs substrates. IEEE Journal of Solid-State Circuits,2000,35(9):1307-1311
    [16]Pospieszalski M W, Wollack E J, Bailey N, et al. Design and performance of wideband, low-noise, millimeter-wave amplifiers for microwave anisotropy probe radiometers. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium,2000:217-220
    [17]Tessmann A, Leuther A, Schwoerer C, et al. A coplanar 94 GHz low-noise amplifier MMIC using 0.07μm metamorphic cascode HEMTs. IEEE MTT-S International,2003 (3):1581-1584
    [18]AMMC-6241 26-43 GHz low noise amplifier data sheet. www.Avagotech.com, Avago Technologies,2008
    [19]Lynch J J, Moyer H P, Schaffner J H, et al. Passive millimeter-wave imaging module with preamplified zero-bias detection. IEEE Transactions on Microwave Theory and Techniques,2008,56(7):1592-1600
    [20]Lo D C W, Lin E W, Wang H, et al. MMIC-based W-band Dicke switched direct-detection receiver. IEEE GaAs IC Symposium,1995:226-229
    [21]Ton T N, Allen B, Wang H, et al. A W-band, high gain, low-noise amplifier using PHEMT MMIC. IEEE Microwave Guided Wave Lett.,1992,2:63-64
    [22]Dow G S, Ton T N, Wang H, et al. W-band MMIC direct detection receiver for passive imaging system. IEEE MTT-S Int. Microwave Symp. Dig.,1993:163
    [23]Deuber B, Kampfer N, Feist D G. A new 22-GHz radiometer for middle atmospheric water vapor profile measurements. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(5):974-984
    [24]彭树生,徐之才,李兴国.遥感微波辐射计逆向辐射噪声对天线温度标定的影响.微波学报,199713(2):108-113
    [25]彭树生.微波辐射计接收机逆向辐射噪声温度的计算及其降低的方法.紫金山天文台台刊,1997,16(2):95-98
    [26]Peng S S. Primary Study of Inverse Radiation Noise in Millimeter Wave Radiometer. APMC2005 Proceedings.
    [27]李志平,赵冬末,苗俊刚.微波辐射计接收机的逆向辐射噪声对天线定标的影响仿真.遥感技术与应用,2007,22(2):268-271
    [28]李靖,姜景山.微波辐射计的逆向辐射对定标及辐射测量的影响.遥感学报.]998,2(4):241-244
    [29]彭龙新,杨乃彬,林金庭.宽带单片低噪声放大器的增益温度补偿.电子学报,2006,34(5):934-937.
    [30]霍年鑫. GaAs FET功率放大器温度补偿的设计.低温与超导,2007,35(4):352-354.
    [31]徐达旺,李志亮.二极管式微波功率检波器的温度补偿技术.电子测量技术,2006,29(6):172-174
    [32]孙鸿雁,赵凯.微波辐射计检测的温度补偿技术.北京邮电大学学报,2008,31(2):5-9
    [33]Aja B, Artal E, de la Fuente L, et al. Very low noise differential radiometer at 30 GHz. 34th European Microwave Conference,2004, (2):749-752
    [34]Aja B, Artal E, de la Fuente L, et al. Very low noise differential radiometer at 30 GHz for the PLANCK LFI. IEEE Transactions on Microwave Theory and Techniques,2005,53(6): 2050-2062
    [35]王振占,姜景山,刘 怡,殷晓斌.全极化微波辐射计遥感海面风场的关键技术和科学问题.中国工程科学,2008,10(6):76-86
    [36]刘璟怡,王振占,殷晓斌,姜景山.一种针对Windsat极化辐射计的海面风场反演方法.遥感技术与应用,2007,22(2):210-215
    [37]王新彪,李靖,姜景山.相关型全极化辐射计研究.遥感技术与应用,2008,23(5):582-586
    [38]施健康,严卫,潘显明,严超.全极化微波辐射计与传统微波辐射计星上定标方法比较分析.遥感技术与应用,2009,24(4):549-542
    [39]张祖荫,郭伟,林士杰.无源毫米波末敏弹.华中理工大学学报,1994,22(5):20-25
    [40]谢俊杰,吴腾芳,王伟策.毫米波探测技术在智能地雷中的应用.制导与引信,2006,27(2):56-60
    [41]张彦梅,崔占忠.利用毫米波辐射计探测坦克顶甲的研究.探测与控制学报,2004,26(3):17-20
    [42]汪亚玲,邱燕.弹载毫米波辐射计仿真系统研究.武汉科技大学学报,2006,29(3):263-265
    [43]张彦梅.基于被动毫米波探测技术的近场目标识别方法.北京理工大学学报,2006,26(7):622-625
    [44]袁龙,尹明,尹忠科,王建英.毫米波辐射计对金属目标的探测.激光与红外,2006,36(10):1004-1006
    [45]肖泽龙,许建中,彭树生,牟善祥.Ka波段交流辐射计及其高塔实验研究.宇航学报,2006,27(6):1302-1305
    [46]钱嵩松,李兴国,缪晨.使用卡氏天线的弹载3mm三波束探测系统的研究.红外与毫米波学报.2004,23(4):295-298
    [47]章勇,李兴国,沈越泓.8mm三通道二维探测辐射计系统研究.上海航天,1998,(6):3-7
    [48]肖泽龙,许建中,彭树生,牟善祥.弹载双通道毫米波辐射计研究.兵工学报,2007,28(8):939-942
    [49]李兴国,杨国.中频分频式主被动复合毫米波探测器.南京理工大学学报,2003,27(5):520-524
    [50]徐浩彭,张剑云,刘春生.毫米波主/被动双模复合寻的制导技术.导弹与航天运载技术,2006,(3):18-20
    [51]李相平,李世忠,张刚,李亚昆.反舰导弹毫米波主被动复合制导导引头设计探讨.现代电子技术,2008,(3):43-45
    [52]彭浩,万少松,柳世考.毫米波红外成像复合寻的融合跟踪研究.弹箭与制导学报,2006,26(1):201-204
    [53]李学林,杨国.毫米波辐射计/红外敏感器/激光雷达信息融合技术及其应用.南京理工大学学报,2008,32(4):502-505
    [54]Yujiri L, Shoucri M, Moffa P. Passive millimeter-wave imaging. IEEE microwave magazine,2003,4(3):39-50
    [55]Tessman A, Kuri M, Riessle M, et al. A compact W-band Dual-channel receiver module, IEEE MTT-S International Microwave Symposium Digest,2006:85-88
    [56]Richter J, Schmidt L.-P. Dielectronic rod Antennas as optimized feed elements for focal plane arrays. Proceedings of the IEEE AP-S International Antennas and Propagation Symposium,2005
    [57]Richter J, Notel D, Kloppel F, et al. A Multi-Channel Radiometer with Focal Plane Array Antenna for W-Band Passive Millimeterwave Imaging. IEEE MTT-S International Microwave Symposium Digest,2006:1592-1595
    [58]Notel D, Huck J, Neubert S, et al. A compact mmW imaging radiometer for concealed weapon detection. The Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics. IRMMW-THz.,2007:269-270
    [59]Sinclair G N, Anderton R N, Appleby R. Outdoor passive millimetre wave security screening. IEEE 35th International Carnahan Conference on Security Technology,2001: 172-179
    [60]Appleby R. Passive millimetre wave imaging and security.1st European Radar Conference,2004:275-278
    [61]Appleby R, Anderton R N. Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proceedings of the IEEE,2007,95(8):1683-1690
    [62]Appleby R. Mechanically scanned real time passive millimeter wave imaging at 94 GHz. Proc. SPIE,2003,5007:1-6
    [63]Sinclair G. N, Appleby R, Coward P R, et al. Millimeter-wave imaging for security scanning, Proc. SPIE,2000,4032:40-45
    [64]Dow G S, Lo D C W, Guo Y, et al. Large scale W-band focal plane array for passive radiometric imaging. IEEE MTT-S International Microwave Symposium Digest,1996,1: 369-372
    [65]Kuroda R, Dow G S, Guo Y, et al. Direct detection MMIC FPAs for MMW imaging. SPIE, Passive Millimeter-Wave Imaging Technology,1997,3064:90-97
    [66]Kuroda R T, Dow G S, Moriarty D, et al. Large scale W-band focal plane array developments for passive millimeter wave imaging. SPIE, Passive Millimeter-Wave Imaging Technology,1998,3378:57-62
    [67]Harvey A R, Appleby R, Blanchard P M, and Greenaway A H. Beam-steering technologies for real-time passive millimeter-wave imaging. Proceedings of SPIE,1998,3378: 63-72
    [68]Anderton R N, Appleby R, Borrill J R, et al. Real-time passive millimeter-wave imaging. Proceedings of SPIE,1998,3378:27-33
    [69]Harvey A R, Appleby R, Coward P R, et al. Electronic beam steering for passive millimeter-wave imaging. Proceedings of SPIE,1998,3465:415-424
    [70]Salmon N A, Hayward S, Walke R L, and Appleby R. Electronic scanning for passive millimeter-wave imaging. Proceedings of SPIE,2003,5077:71-76
    [71]Lettington A H, Dunn D, Alexander N E, et al. Techniques for millimetre-wave imaging. Proceedings of SPIE,2004,5619:16-26
    [72]Clark S, Martin C, Kolinko V. A real-time wide field of view passive millimeter-wave imaging camera.32nd Applied Imagery Pattern Recognition Workshop Proceedings,2003: 250-254
    [73]Lovberg J A, Martin C, Kolinko V. Video-rate passive millimeter-wave imaging using phased arrays. IEEE/MTT-S International Microwave Symposium,2007:1689-1692
    [74]Martin C, Clark S, Lovberg J, Galliano J. Real-time wide field of view passive millimeter-wave imaging. SPIE Proceedings,2002,4719:341-349
    [75]Clark S, Lovberg J, Martin C, Kolinko V. Passive millimeter-wave imaging for airborne and security applications. SPIE Proceedings,2003,5077:538-542
    [76]Chang H C. Analysis of coupled phase-locked loops with independent oscillators for beam control active phased arrays. IEEE transactions on microwave theory and techniques, 2004,52(3):1059-1066
    [77]York R A. Itoh T. Injection- and phase-locking techniques for beam control. IEEE transactions on microwave theory and techniques,1998,46(11):1920-1929
    [78]Grubinger H, Barth H, and Vahldieck R. An active low-noise receiver with electronic beamforming capability at Ka-band frequencies. IEEE transactions on microwave theory and techniques,2008,56(5):1013-1023
    [79]Lu J, Wu M, Jin X, and Fang Z. Active phased array antenna based on DDS. in Proc. IEEE Int. Symp. Phased Array Syst. Technol.,2003:511-516
    [80]Wan K C and Xue Q. Indirect controlled phased source. IEEE Microwave and Wireless Components Letters,2006,16(12):702-704
    [81]许建中.无线电近感系统.南京:南京理工大学,2000
    [82]Kawrence A. Klein. Millimeter-wave and infrared multisensor design and signal processing. London:Artech House, Inc,1997
    [83]Peake W H, T L Oliver. The response of terrestrial surfaces at microwave frequency, Report AFAL-TR-70-301. ElectroScience Laboratory, Ohio State University,1971
    [84]研究报告.八毫米波段几种典型地物和目标辐射特性测量.华中工学院微波遥感研究室,1983
    [85]研究报告.金属目标的微波辐射特性.华中理工大学微波遥感研究室,1996
    [86]Qingxia Li. Microwave brightness temperature prediction of plane targets by a neural network. IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):160-162
    [87]Guangfeng Zhang, Wei Guo and Zuyin Zhang. The passive microwave ground detection simulation system. International Journal of Infrared and Millimeter Waves,2002,23(1):71-77
    [88]张惕远,张祖荫,李青侠.面目标辐射特性数据库和数据处理.华中理工大学学报,1999,27(8):98-100
    [89]张光锋,张祖荫,郭伟.3mm波段面目标辐射特性测量研究.华中科技大学学报,2005,33(7):20-22
    [90]张光锋.毫米波辐射特性及成像研究.华中科技大学博士学位论文,2005
    [91]Skou N. Microwave Radiometer Systems:Design and Analysis. Norwood, MA:Artech House,1989.
    [92]Tiuri M E. Radio astronomy receivers. IEEE Transactions on Military Electronics,1964, 8(3):264-272
    [93]McDonough R N, Whalen A D著王德石等译.噪声中的信号检测,第二版.北京:电子工业出版社,2006.
    [94]盛骤,谢式千,潘承毅.概率论与数理统计(第三版).北京:高等教育出版社,2001
    [95]张祖荫,郭伟,文光华等.金属目标微波辐射特性的理论分析和缩比测量.华中理工大学学报,1994,22(4):85-88
    [96]周珩,娄国伟.毫米波辐射计的缩比测试.制导与引信,2006,27(4):36-39
    [97]Cohn M, Degenford J E, Newman B A. Harmonic mixing with an antiparallel diode pair. IEEE transactions on microwave theory and techniques,1975,23(8):667-673
    [98]中国集成电路大全编委会.微波集成电路.第一版.北京:国防工业出版社,1995
    [99]赵霞,徐军,薛良金.Ka频段微带四次谐波混频器.电子科技大学学报,2003,32(1):14-17
    [100]赵霞,徐军,薛良金,罗慎独.Ka频段集成谐波混频器.空间电子技术,2003,1:18-22
    [101]Asher M. A novel general approach for the optimum design of microwave and millimeter wave subharmonic mixers. IEEE transactions on microwave theory and techniques, 1996,44(11):1997-2000
    [102]Xue Q, Shum K M, and Chan C H. Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications. IEEE transactions on microwave theory and techniques,2003,51(5):1449-1454
    [103]崔兰.基于CMRC的微波滤波器及谐波混频器研究.南京理工大学硕士学位论文,2009
    [104]Reinhold Ludwig, Pavel Bretchko著,王子宇,张肇仪等译.射频电路设计——理论与应用.北京:电子工业出版社,2002
    [105]Guillermo Gonzalez著,白晓东译.微波晶体管放大器分析与设计.北京:清华大学出版社,2003
    [106]张莹,张祖荫,郭伟.8mmm辐射计特性参数测试及定标.遥测遥控,2005,26(2):34-37
    [107]黄全亮,肖志辉,张祖荫,郭伟.毫米波辐射计定标系统.红外与毫米波学报,2003,22(2):119-122
    [108]许建中.弹载毫米波辐射计信号半实物仿真.红外与毫米波学报,1999,18(2):167-170
    [109]Yao Hui-Wen, Abdelmonem Amr, Liang Ji-Fuh, K A Zaki. A full wave analysis of microstrip-to-waveguide transition. IEEE MTT-S International Microwave Symposium Digest, 1994,1:213-216
    [110]Ponchak George E, Downey Alan N. A new model for broad-band waveguide-to-microstrip Transition Design. Microwave Journal,1988,5:333-343
    [111]喻梦霞,徐军,薛良金.毫米波微带波导过渡设计.红外与毫米波学报,2003,22(6):473-476
    [112]赵阳阳,江兆平,向培胜.新型波导-微带对脊鳍线过渡设计.电讯技术,2008,48(7):46-49
    [113]Villegas Frank J, Stones D Ian, Hung H Alfred. A novel waveguide-to-microstrip transition for millimeter-wave module applications. IEEE Transactions on Microwave Theory and Techniques,1999,47 (1):48-55
    [114]Yoke-Choy Leong, Sander Weinreb. Full band waveguide-to-microstrip probe transitions. IEEE MTT-S International Microwave Symposium Digest,1999,4:1435-1438
    [115]薛良金.毫米波工程基础.北京:国防工业出版社,1998.
    [116]胡皓全,童雪辉.Ka波段宽带低噪声放大器研究.电子信息对抗技术,2006,21(4):45-48
    [117]郭桂美,邓磊,唐高弟.Ka波段低噪声放大器的研制.信息与电子工程,2008,6(4):245-248
    [118]邓建华,甘体国,喻志远.高性能K波段宽频带检波器.2003,(2):105-108
    [119]胡皓全,宋伟.Ka波段微带检波器设计.电子科技大学学报,2006,35(3):324-327
    [120]屈新建,常义林.基于DDS+PLL频率合成源的设计.现代电子技术,2005,3:115-117
    [121]高山,姜永华,万宇,田燕妮.基于DDS驱动PLL结构的X波段雷达信号频率综合器.海军航空工程学院学报,2006,21(6):642-645
    [122]许强,柴俊.基于DDS+PLL的频率合成器设计.舰船电子对抗,2007,30(4):24-26
    [123]Will K, Meyer T, Omar A. Microwave synthesizer with multiple phase adjustable output. 2007 European Microwave Conference,2007:344-347
    [124]Avitabile G, Cannone F, and Vania A. Phase shifter based on DDS-driven offset-PLL, Electronics Letters,200642(25):1438-1439
    [125]Robert J Mailloux. Phased Array Antenna Handbook Second Edition. Artech house, Inc., 2005
    [126]张光义.相控阵雷达系统.北京:国防工业出版社,1994
    [127]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006
    [128]白居宪.低噪声频率合成.西安:西安交通大学出版社,1995
    [129]Roland E. Best. Phase-locked loops design, simulation, and applications,5th edition. McGraw-Hill Professional,2003
    [130]Dean Banerjee. PLL performance, simulation, and design. National Semiconductor corporation,1998
    [131]Dean Banerjee. PLL performance, simulation, and design,4th edition. National Semiconductor corporation,2006
    [132]白居宪.直接数字频率合成.西安:西安交通大学出版社,2007
    [133]Anolog Devices Inc. A Technical Tutorial on Digital Signal Synthesis. Anolog Devices Inc.1999
    [134]费元春,苏广川,米红等.宽带雷达信号产生技术.北京:国防工业出版社,2002
    [135]杨帆,秦万广.相位测试技术的研究进展.松辽学刊(自然科学版),1997,1:79-80
    [136]张骏凌,张玉兴.直接数字频率合成器中的相位噪声分析.电子科技大学学报,1999,28(1):24-27
    [137]张玉兴,彭清泉.DDS的背景杂散信号分析.电子科技大学学报,1997,26(4):362-365
    [138]张玉兴,彭清泉.相位舍位对DDS谱分布的影响.电子科技大学学报,1997,26(2):137-142
    [139]韩磊,吴世俊,樊祥.DDS频谱杂散分析及其抑制研究.电子工程师,2008,34(6):39-42
    [140]Mattison E M, Coyle L M. Phase noise in direct digital synthesizers.42nd Annual Frequency Control Symposium,1988:352-356
    [141]Kroupa V F, Discrete spurious signal and back ground noise in direct digital frequency synthesizers.1993 IEEE International Frequency Control Symposium,1993:242-250
    [142]Reinhardt V. S. A Spur reduction techniques in direct digital synthesizers. Proceedings of the 1993 IEEE International Frequency Control Symposium,1993:230-241
    [143]Kushner L J, Ainsworth M T. A spurious reduction technique for high-speed direct digital synthesizers. Proceedings of the 1996 IEEE International Frequency Control Symposium,1996:920-927
    [144]Taslakov M. A. Direct digital synthesiser with improved spectrum at low frequencies. Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition,2000:280-283
    [145]Vankka J, Lindeberg J, Halonen K. Direct digital synthesizer with tunable delta sigma modulator. Proceedings of the 2003 International Symposium on Circuits and Systems,2003, 1:917-920
    [146]Zhang Shaoyuan, Yao Fuqiang, Zhang Shuoao, et al. Spur reduction in truncation for DDS phase accumulators. Proceedings of 2001 CIE International Conference on Radar,2001: 189-193
    [147]Nichols H T, Samueli H. An analysis of the output spectrum of direct digital frequency synthesizers in the Presence of phase-accumulator truncation. Proc 41st AFCS,1987:495-502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700