用户名: 密码: 验证码:
富硒益生菌对猪细胞免疫的调节作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒是人和动物必需的微量元素之一,具有调节机体代谢、提高机体免疫力和抗病力、影响人和动物的生殖机能、抗肿瘤、抗自由基、延缓衰老和拮抗有毒元素等多种重要的生物学功能,所以日粮补硒现已是许多国家养殖业采取的常规措施。硒在体内以硒代半胱胺酸的形式掺入到各种硒蛋白中,通过后者发挥其生物学功能。益生菌具有维持肠道菌群平衡、防治胃肠道疾病,产生多种酶类、合成多种营养物质、促进生长,增强机体免疫机能等生物学功能,目前广泛作为饲料添加剂应用。当前广泛使用的补硒方法是添加无机硒——亚硒酸钠,但由于亚硒酸钠利用率低、毒性大,其本身具有过氧化作用,而且对环境会造成潜在的污染,因此一些国家已经限制使用亚硒酸钠作为硒的营养补充剂。富硒益生菌是本实验室研制的饲料添加剂产品,能同时发挥有机硒和益生菌的双重生物学功能,已获国家发明专利。前人的研究表明,有机硒(如富硒益生菌,主要含硒蛋氨酸)的毒性小、生物利用率高。本文研究了日粮添加富硒益生菌对仔猪生产性能、免疫功能、硒的吸收转化、抗氧化能力和淋巴细胞中主要硒酶mRNA表达的影响,并在细胞和分子水平上探讨其主要的有机硒成分(硒蛋氨酸,Se-Met)对细胞免疫的作用机理,为富硒益生菌在生猪养殖生产上的广泛应用提供理论依据。
     试验1.猪GPx1、GPx4及TR1mRNA表达水平Real-time PCR检测方法的建立
     根据已公布猪的β-actin、GPx1、GPx4和TR1基因的mRNA序列,应用生物软件辅助设计并合成4对特异性引物;以Oligo dT为引物,对从猪脾脏中抽提的总RNA进行反转录,合成第一链cDNA;以cDNA为模板,分别进行4个目的基因片段的PCR扩增;胶回收PCR产物,将其克隆到pMD18-T载体上并测序;对抽提的重组质粒进行拷贝数测定,以10倍梯度稀释的质粒作为标准模板进行PCR扩增,同时对荧光定量PCR反应的引物浓度和退火温度进行优化。结果,4对引物分别扩增出一条目的带,且大小与预期相符合;荧光定量PCR反应的最佳引物浓度是10μmo/L加入0.4μl,最佳退火温度为60℃;各荧光定量PCR产物熔解曲线均显示单一峰,表明产物单一;各目的基因的标准曲线的R2均达到0.99以上,符合要求。结果表明,本试验成功地建立了检测猪GPx1、GPx4和TR1mRNA水平的荧光定量PCR方法。
     试验2.日粮添加富硒益生菌对仔猪生长性能和免疫功能的影响
     48头健康断奶仔猪(杜×长×大),随机均分为对照组、益生菌组、富硒酵母组、亚硒酸钠组和富硒益生菌组。对照组(C)饲喂基础日粮;益生菌组(P)日粮中添加益生菌;其余2组日粮中分别添加富硒益生菌(SP)和亚硒酸钠(SS),其剂量以硒计均为0.3mg/kg饲料。整个试验期为42d。在试验0d和42d分别测定生产性能相关指标;于试验的第0、14、28和42d,采集血液样品,用于分析血清猪瘟抗体水平、IL-2和TNF-α浓度。在试验的第42d,每组随机选择3头仔猪,采集血样和脾脏,用于分析T淋巴细胞转化情况。结果,日粮中添加P、SS和SP均可显著改善饲料的报酬率,提高仔猪的平均末重、平均日增重和料重比(P<0.05);在添饲后的第42d,P组、SP组和SS组的血清猪瘟抗体水平均显著高于对照组(P<0.05);在添饲后的第42d,P组、SS组和SP组仔猪外周血淋巴细胞和脾脏淋巴细胞的T细胞增殖能力显著高于对照组(P<0.05),并且SP组仔猪的淋巴细胞T细胞增殖能力显著高于其他各组(P<0.05);在第42d,SP组和SS组和P组的IL-2和TNF-α浓度均显著高于对照组(P<0.05),并且SP组仔猪的细胞因子水平有高于其他各组的趋势(P>0.05);以上结果表明,富硒益生菌能提高仔猪的生产性能和提高仔猪的免疫功能,并且其提高仔猪细胞免疫的效果优于亚硒酸钠。
     试验3.日粮添加富硒益生菌对仔猪硒沉积和抗氧化能力的影响
     试验设计同试验2。于试验的第0、14、28和42d,采集血液样品,用于分析血硒含量、红细胞GPx1活性、血浆GPx3活性和血浆MDA含量。于试验的第42d,每组随机选择3头仔猪,采集各组织样品,用于分析组织硒含量。结果,日粮中添加SP组的仔猪全血Se含量显著高于SS组(P<0.05),并且两组均显著高于对照组(P<0.05),而P组与对照组的全血硒含量差异均不显著(P>0.05)。在第42d,SP组和SS组的肝脏、肾脏、肌肉和脾脏硒含量均显著高于对照组和P组(P<0.05),并且SP组与其他各组相比均差异显著(P<0.05),而P组与对照组的肝脏、肾脏、肌肉和脾脏硒含量差异均不显著(P>0.05);在日粮中添加SP和SS组可以显著提高仔猪红细胞GPx1活性(P<0.05),且SP组的最高,而P组与对照组的红细胞GPx1活性差异均不显著(P>0.05);在整个试验期间,SP组和SS组的血浆GPx3活性均显著高于对照组和P组(P<0.05);在第14、28和42d,SP组和SS组的血浆MDA含量均显著低于对照组和P组(P<0.05),且SP组的血浆MDA含量均显著低于SS组(P<0.05)。以上结果表明,与亚硒酸钠相比,富硒益生菌在提高仔猪血硒和组织硒含量、机体抗氧化能力和降低血浆MDA含量方面更为优越。
     试验4.日粮添加富硒益生菌对仔猪外周血淋巴细胞主要硒酶mRNA表达的影响
     试验设计同试验2。于试验的第0、14、28和42d,采集血液样品,用于分析外周血淋巴细胞中GPx1、GPx4和TR1mRNA水平。结果,在第14、28和42d,与对照组比,SS和SP组的仔猪外周血淋巴细胞GPx1和TR1mRNA水平均显著升高(P<0.05),且SP组仔猪外周血GPxl mRNA水平显著高于其他组(P<0.05),而所有硒处理组的淋巴细胞GPx4mRNA水平无显著变化;以上结果表明,硒对不同的硒蛋白的调控并不相同,日粮中硒水平的改变对淋巴细胞GPx1mRNA的表达影响最大,对TR1mRNA的表达影响次之,而对于GPx4mRNA的表达几乎没有影响。而且富硒益生菌促进淋巴细胞GPx1mRNA表达的效果更好。
     试验5.硒对不同丝裂源介导的猪脾脏淋巴细胞T细胞活化的影响
     来自健康仔猪的原代脾脏淋巴细胞用0(对照)、0.5、1、2和4μmo/L的亚硒酸钠(Na2SeO3)(?)育,并使用不同丝裂源刺激培养48h。结果,硒显著的促进了刀豆蛋白A (ConA)和T细胞受体(TCR)介导的T淋巴细胞增殖和IL-2的产生,但是对植物血凝素(PHA)介导的T淋巴细胞活化没有影响,使用流式细胞术测定T细胞的增殖情况,进一步证实了这一结果;在不受刺激、TCR、ConA或PHA刺激的淋巴细胞中,添加硒的各组GPx1mRNA和TR1mRNA水平、细胞内还原型GSH浓度和GPx活性均显著提高(P<0.05)。这些结果表明硒改善了不同丝裂源刺激的淋巴细胞的氧化还原状态,但是只有TCR和ConA介导的淋巴细胞活化受到了影响。而作为一种单纯的抗氧化剂,NAC显著的促进了TCR或ConA介导的淋巴细胞活化,但是对PHA刺激淋巴细胞没有影响,进一步证明了PHA介导的淋巴细胞增殖对于氧化还原状态的改变并不敏感。以上结果表明,硒对不同丝裂源介导的淋巴细胞活化的调控是有差异的;而导致这一差异的主要原因是因为TCR、ConA以及PHA介导的淋巴细胞对于氧化还原状态存在不同的敏感性。
     试验6.不同形式和浓度的硒对原代脾脏淋巴细胞T细胞增殖的调控
     来自健康仔猪的的原代脾脏淋巴细胞用使用5μg/ml的ConA刺激,并同时加入0(对照)和各种浓度的(以硒计)硒蛋氨酸(Se-Met)或亚硒酸钠(Na2SeO3)孵育培养48h。结果,0.5-32μmol/L的Se-Met处理组的ConA介导的T细胞增殖显著高于对照组(P<0.05),而Na2SeO3处理组的淋巴细胞增殖在2μmol/L时达到最大值,之后随着浓度的增大而降低,呈剂量依赖模式,并且在8μmol/L及更高浓度会抑制T淋巴细胞的增殖;添加0.5-4μmol/L的Se-Met或Na2SeO3的细胞内还原型GSH浓度均显著高于对照组(P<0.05),但是Na2SeO3添加浓度大于2μmol/L时,会使得GSH浓度与最高值相比下降。添加Se-Met或Na2SeO3的细胞内GPx1mRNA水平均显著升高(P<0.05),而两种形式的硒处理细胞的GPx4mRNA水平无显著变化(P>0.05);添力口0.5-4μmol/L的Se-Met或Na2SeO3可以显著提高细胞内GPxl活性(P<0.05),而且4μmol/L的Se-Met处理组的GPx1活性水平在所有Se处理组中最高(P<0.05;添加GPx1的抑制剂巯基琥珀酸(MS)可以使硒促进淋巴细胞增殖的作用消失,并且显著抑制淋巴细胞的增殖。综上所述,不同形式和浓度的硒对ConA介导的原代培养猪脾脏淋巴细胞增殖的调控是有差异的,GPx1可能是其中的关键酶。
Selenium (Se) is an essential trace element for animals and humans. Se has many biological functions including regulating metabolism, enhancing the antioxidative ability, immune function, reproductive performance, and reducing the risk of diabetes, cardiovascular disease, certain types of cancer and resisting to detoxification from some heavy metals. In many countries, supplementation of selenium in animal diet is a routine step on animal husbandry. Se is incorporated into selenoproteins as selenocysteine and exerts its biological functions. Probiotics, which are reported to exert a myriad of beneficial effects including balance of colonic microbiota, prevention and treatment of certain diarrhoeal diseases, improvement of growth performance, enhancement of immune response, reduction of serum cholesterol and inhibition of cancer, are diffusely served as feedstuff additive in stockbreeding. Adding sodium selenite as inorganic selenium in animal diet has been set limit in some countries because inorganic selenium has disadvantages of lower bioavailability, higher toxicity and potential environmental pollution. Precious studies have suggested that organic forms of Se (e.g., Se-enriched yeast, which contains selenomethionine) are less toxic than inorganic forms of Se such as sodium selenite, and the bioavailability of organic Se is relatively high. The preparation of Se-enriched Probiotics was made in our lab and used for nutritional supplementation in diets, which can exert dual effects of organic Se and probiotics at the same time. Invention patent for the preparation was awarded by State Intellectual Property Office of The P.R.C. The present study was conducted to evaluate the effects of supplementary Se-enriched probiotics on transform of Se, immune function, antioxidative ability and major selenoproteins mRNA levels of lymphocytes in piglets, and to explore its mechanism at the cellular and molecular levels, so that to provide a theoretical basis for application of Se-enriched probiotics in pig husbandry.
     Experiment1. Development of the method for determination of GPx1, GPx4, and TR1mRNA levels in pig by real-time PCR
     According to the published mRNA sequences of gene of P-actin, GPx1, GPx4, and TR1, four pairs of specific primers were designed by biological software and synthesized. Oligo dTs were used as primer and first strand cDNAs were synthesised from total RNA, which was isolated from bovine hepatocytes. Using the synthesised cDNAs as template, four target fragments were amplified by polymerase chain reaction (PCR), respectively. The PCR products were electrophoresed on2%agarose gels and extracted. The extracted PCR products were cloned into pMD18-T Vector and sequenced. The copies of extracted plasmids were measured and serially diluted by10-folds. The diluted plasmids were used as standard templates and real-time PCRs were performed. In addition, the contents and annealing temperatures of four pairs of specific primers were optimized, respectively. The results showed that one target band was amplified for each specific primer pair and consistent with the fact. The optimal contents and annealing temperatures of four primer pairs were10μmol/L0.4μL and60℃, respectively. All the R2of four standard curve for gene of β-actin, GPx1, GPx4, and TR1were higher than0.99. The melting curve analysis showed only one peak for each PCR product. These results indicate that the method for determination GPx1, GPx4and D1mRNA levels in pig by real-time PCR is successfully developed.
     Experiment2. Effect of supplementary selenium-enriched probiotics on growth performance and immune function in piglets
     48health piglets were divided into four groups in a randomized complete block design, of which3were assigned for test groups, and one served as control. The control group(C) received a basal diet. Both selenium-enriched probiotics (SP) and sodium selenite (SS) were added into basal diet at0.3mg/kg of Se to make two experiment diets. Probiotics was added into basal diet to make probiotics group (P). Whole feeding experiment lasted for42days. Blood samples were collected for analysis of serum IL-2and TNF-a concentrations on d0,14,28and42. On the d14and42of the experiment, the serum antibody level of swine fever in3test groups were significantly higher than the control group respectively (P <0.05); The T cell transformation of pig peripheral blood mononuclear cell (PBMC) were significantly higher in The SP, SS and P group than did the control group (P<0.05), and the SP group were significangly higher than the SS group; The serum concentrations of IL-2and TNF-a in3test groups were markedly higher than the control group on d42(P<0.05); The results testified that there is a better effect of supplementation SP than those of supplementation SS or probiotics in boosts immune responses.
     Experiment3. Effect of supplementary selenium-enriched probiotics on absorption and transform of selenium and antioxidative ability of piglets
     Experiment design is the same as the experiment1. Whole feeding experiment lasted for42days. Blood samples were collected for analysis of whole blood selenium (Se) concentrations, erythrocyte glutathione peroxidase activity (RBC GPx), plasma GPx3activity and plasma Malondialdehyde (MDA) concentrations on d0,14,28and42. The Se-Pro group and the Na2SeO3group had significantly higher Se concentrations in whole blood than did the control group and the Pro group (P<0.05) d14,28and42, respectively, and the Se concentrations in whole blood of SP group were significantly higher than SS group; Se concentrations in liver, kidney, muscle and spleen in the SP group and the Na2SeO3group were significantly higher than the control group and the Pro group (P <0.05), and the Se concentrations in the SP group were significantly higher than SS group(P<0.05); The Se-Pro group and the Na2SeO3group had significantly higher RBC GPx activities than did the control group and the Pro group (P<0.05) on d14,28and42, respectively, while there were no differences between Pro group and control group (P>0.05). The plasma GPx3activities were not different between the treatment groups and the control group in the whole experiment period (P>0.05). The plasma MDA concentrations in Se-Pro group and Na2SeO3group were significantly lower than that in control group and Pro group (P<0.05) on d14,28and42, respectively. Furthermore, the plasma MDA concentrations in SP group were significantly lower than that in Na2SeO3group (P<0.05) on d14,28and42, respectively. The results suggest that SP is more effective than Na2SeO3for increasing Se concentrations in whole blood and tissue, antioxidative ability and decreasing plasma MDA concentrations in piglets.
     Experiment4. Effect of supplementary selenium-enriched probiotics on GPxl, GPx4and TR1mRNA levels in PBMC of piglets
     Experiment design is the same as the experiment1. Whole feeding experiment lasted for42days. Blood samples were collected for analysis of GPxl, GPx4and TR1mRNA levels on d0,14,28and42. The Se-Pro group and the Na2SeO3group had significantly higher GPxl and TR1mRNA levels than did the control group and the Pro group in the whole experiment period (P<0.05), while there were no differences between Pro group and control group (P>0.05). But the GPx4mRNA levels were not different between the Se-treatment groups and the control group in the whole experiment period (P>0.05). The results suggest that regulation of GPx1, TR1and GPx4mRNA level by Se are different, Se is more effective in improved GPx1mRNA levels than TR1and GPx4mRNA levels, and the GPx4mRNA levels were not affected by Se status.
     Experiment5. Regulation of different mitogens induced T-cell activation by selenium in primary cultured pig splenocytes
     In this study, the effects of Se on T-cell proliferation and IL-2production were studied in primary porcine splenocytes. Splenocytes were treated with different mitogens in the presence of0.5-4μmol/L sodium selenite. Se significantly promoted T-cell receptor (TCR) or concanavalin A (ConA)-induced T-cell proliferation and IL-2production but failed to regulate T-cell response to phytohemagglutinin (PHA). In addition, Se significantly increased the levels of cytosolic glutathione peroxidase (GPx1) and thioredoxin reductase1(TR1) mRNA, the activity of GPx1and the concentration of reduced glutathione (GSH) in the unstimulated, or activated splenocytes.These results indicated that Se improved the redox status in all splenocytes, including unstimulated, TCR, ConA and PHA-stimulated, but only TCR and ConA-induced T-cell activation was affected by the redox status. N-acetylcysteine (NAC), a pharmacological antioxidant, increased T-cell proliferation and IL-2production by TCR and ConA stimulated splenocytes but had no effect on the response to PHA in primary porcine splenocytes confirming that PHA-induced T-cell activation is insensitive to the redox status. We conclude that Se promotes GPx1and TR1expression and increases antioxidative capacity in porcine splenocytes, which enhances TCR or ConA-induced T-cell activation but not PHA-induced T-cell activation. The different susceptibilities to Se between the TCR, ConA and PHA-induced T-cell activation may help to explain the controversy in the literature over whether or not Se boosts immune responses.
     Experiment6. Effects of different forms and concentrations of selenium on ConA induced T-cell proliferation in primary cultured pig splenocytes
     Primary cultured pig splenocytes were incubated with0(control) and vary concentrations of Se as DL-selenomethionine (Se-Met), or sodium selenite (Na2SeO3) for48h in the presence of ConA. Compared to controls, significantly higher T-cell proliferation was observed at0.5-32μmol/L Se-Met, Significant increases of T-cell proliferation were obtained in Na2SeO3treated splenocytes at0.5-4μmol/L, with maximal effects at2μmol/L, and inhibited T-cell proliferation in a dose-dependent manner at8-32μmol/L. Intracellular reduced glutathione (GSH) contents and GPx activity in all Se-treated splenocytes were significantly higher than controls. An increases of GPx1mRNA level were obtained in all Se-treated splenocytes, but GPx4mRNA level was not affected by Se-treatment. And the MS, the inhibitor of the GPx1, significantly inhibited the proliferation improved by Se. We conclude that (i) regulation of ConA induced T-cell proliferation by different Se forms are different in primary cultured pig splenocytes, and GPxl maybe the key enzyme.
引文
[1]Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins:synthesis, identity, and their role in human health[J]. Antioxid Redox Signal.2007;9(7):775-806.
    [2]Schwarz K, Foltz CM. Selenium as an integral part of factor 3 against necrotic liver degeneration[J]. Journal of the American Chemical Society.1957;79(12):3292-3.
    [3]Patterson EL, Milstrey R, Stokstad EL. Effect of selenium in preventing exudative diathesis in chicks[J]. Proc Soc Exp Biol Med.1957;95(4):617-20.
    [4]Rotruck JT, Pope AL, Ganther HE, et al. Selenium:biochemical role as a component of glutathione peroxidase[J]. Science.1973;179(4073):588-90.
    [5]杨光圻,王光亚,殷泰安,等.我国克山病的分布和硒营养状态的关系[J].营养学报.1982;04(03):191-200.
    [6]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease[J]. Antioxid Redox Signal.2011;14(7):1337-83.
    [7]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社;1990:127-30.
    [8]Wang ZJ, Gao YX. Biogeochemical cycling of selenium in Chinese environments[J]. Appl Geochem.2001; 16(11-12):1345-51.
    [9]朱莲珍.人和动物微量元素营养[M].青岛:青岛出版社;1994.
    [10]Nickel A, Kottra G, Schmidt G, et al. Characteristics of transport of selenoamino acids by epithelial amino acid transporters[J]. Chem Biol Interact.2009;177(3):234-41.
    [11]Shennan DB. Selenium (selenate) transport by human placental brush border membrane vesicles[J]. Br J Nutr.1988;59(1):13-9.
    [12]Olson. GE, Winfrey VP, Hill KE, et al. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells[J]. J Biol Chem.2008;283(11):6854-60.
    [13]Schomburg L, Riese C, Michaelis M, et al. Synthesis and metabolism of thyroid hormones is preferentially maintained in selenium-deficient transgenic mice[J]. Endocrinology. 2006;147(3):1306-13.
    [14]郭荣富,张曦,陈克嶙.微量元素硒代谢及硒蛋白基因表达调控最新研究进展[J].微量元素与健康研究.2000;17(01):62-5.
    [15]赵晶,康世良,李艳华.硒在动物体内的药物代谢动力学[J].中国兽医杂志.2000;26(09):33-5.
    [16]Osawa S, Jukes TH, Watanabe K, et al. Recent evidence for evolution of the genetic code[J]. Microbiol Rev.1992;56(1):229-64.
    [17]Lee BJ, Worland PJ, Davis JN, et al. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA[J]. J Biol Chem.1989;264(17):9724-7.
    [18]Chambers I, Frampton J, Goldfarb P, et al. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the'termination' codon, TGA[J). EMBO J. 1986;5(6):1221-7.
    [19]Leinfelder W, Zehelein E, Mandrand-Berthelot MA, et al. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine[J]. Nature.1988;331(6158):723-5.
    [20]Xu XM, Carlson BA, Mix H, et al. Biosynthesis of selenocysteine on its tRNA in eukaryotes[J]. PLoS Biol.2007;5(1):e4.
    [21]Castellano S, Lobanov AV, Chapple C, et al. Diversity and functional plasticity of eukaryotic selenoproteins:identification and characterization of the Sel J family[J]. Proc Natl Acad Sci U S A. 2005;102(45):16188-93.
    [22]Carlson BA, Xu XM, Kryukov GV, et al. Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase[J]. Proc Natl Acad Sci U S A.2004;101(35):12848-53.
    [23]Chittum HS, Baek HJ, Diamond AM, et al. Selenocysteine tRNA[Ser]Sec levels and selenium-dependent glutathione peroxidase activity in mouse embryonic stem cells heterozygous for a targeted mutation in the tRNA[Ser]Sec gene[J]. Biochemistry.1997;36(28):8634-9.
    [24]Bock A. Molecular biology. Invading the genetic code[J]. Science.2001;292(5516):453-4.
    [25]Carlson BA, Hatfield DL. Transfer RNAs that insert selenocysteine[J]. Methods Enzymol. 2002;347:24-39.
    [26]Bosl MR, Takaku K, Oshima M, et al. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp)[J]. Proc Natl Acad Sci U S A.1997;94(11):5531-4.
    [27]Kumaraswamy E, Carlson BA, Morgan F, et al. Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium[J]. Mol Cell Biol.2003;23(5):1477-88.
    [28]Carlson BA, Novoselov SV, Kumaraswamy E, et al. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function[J]. J Biol Chem.2004;279(9):8011-7.
    [29]Moustafa ME, Carlson BA, El-Saadani MA, et al. Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA[J]. Mol Cell Biol.2001;21(11):3840-52.
    [30]Diwadkar-Navsariwala V, Prins GS, Swanson SM, et al. Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model[J]. Proc Natl Acad Sci U S A. 2006;103(21):8179-84.
    [31]Berry MJ, Banu L, Chen YY, et al. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3'untranslated region[J]. Nature.1991;353(6341):273-6.
    [32]Krol A. Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis[J]. Biochimie.2002;84(8):765-74.
    [33]Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes[J]. Science.2003;300(5624):1439-43.
    [34]Ma S, Hill KE, Caprioli RM, et al. Mass spectrometric characterization of full-length rat selenoprotein P and three isoforms shortened at the C terminus. Evidence that three UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination[J]. J Biol Chem.2002;277(15):12749-54.
    [35]Stoytcheva Z, Tujebajeva RM, Harney JW, et al. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck[J]. Mol Cell Biol.2006;26(24):9177-84.
    [36]Howard MT, Aggarwal G, Anderson CB, et al. Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons[J]. EMBO J.2005;24(8):1596-607.
    [37]Bock A. Biosynthesis of selenoproteins--an overview[J]. Biofactors.2000;11(1-2):77-8.
    [38]Copeland PR, Fletcher JE, Carlson BA, et al. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs[J]. EMBO J.2000;19(2):306-14.
    [39]Fagegaltier D, Hubert N, Yamada K, et al. Characterization of mSe1B, a novel mammalian elongation factor for selenoprotein translation[J]. EMBO J.2000;19(17):4796-805.
    [40]Chavatte L, Brown BA, Driscoll DM. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes[J]. Nat Struct Mol Biol. 2005;12(5):408-16.
    [41]Xu XM, Mix H, Carlson BA, et al. Evidence for direct roles of two additional factors, SECp43 and soluble liver antigen, in the selenoprotein synthesis machinery[J]. J Biol Chem. 2005;280(50):41568-75.
    [42]Copeland PR, Driscoll DM. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis[J]. J Biol Chem. 1999;274(36):25447-54.
    [43]Small-Howard A, Morozova N, Stoytcheva Z, et al. Supramolecular complexes mediate selenocysteine incorporation in vivo[J]. Mol Cell Biol.2006;26(6):2337-46.
    [44]Allmang C, Carbon P, Krol A. The SBP2 and 15.5 kD/Snul3p proteins share the same RNA binding domain:identification of SBP2 amino acids important to SECIS RNA binding[J]. RNA. 2002;8(10):1308-18.
    [45]Caban K, Copeland PR. Size matters:a view of selenocysteine incorporation from the ribosome[J]. Cell Mol Life Sci.2006;63(1):73-81.
    [46]Copeland PR, Stepanik VA, Driscoll DM. Insight into mammalian selenocysteine insertion: Domain structure and ribosome binding properties of Sec insertion sequence binding protein 2[J]. Molecular and Cellular Biology.2001;21(5):1491-8.
    [47]Fletcher JE, Copeland PR, Driscoll DM, et al. The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2[J]. RNA. 2001;7(10):1442-53.
    [48]Walczak R, Carbon P, Krol A. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation[J]. RNA.1998;4(1):74-84.
    [49]Papp LV, Lu J, Striebel F, et al. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation functiona[J]. Mol Cell Biol.2006;26(13):4895-910.
    [50]de Jesus LA, Hoffmann PR, Michaud T, et al. Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs:a mechanism for eluding nonsense-mediated decay?[J]. Mol Cell Biol. 2006;26(5):1795-805.
    [51]Curran JE, Jowett JB, Elliott KS, et al. Genetic variation in selenoprotein S influences inflammatory response[J]. Nat Genet.2005;37(11):1234-41.
    [52]Kinzy SA, Caban K, Copeland PR. Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals[J]. Nucleic Acids Res. 2005;33(16):5172-80.
    [53]Tujebajeva RM, Copeland PR, Xu XM, et al. Decoding apparatus for eukaryotic selenocysteine insertion[J]. EMBO Rep.2000;1(2):158-63.
    [54]Zavacki AM, Mansell JB, Chung M, et al. Coupled tRNA(Sec)-dependent assembly of the selenocysteine decoding apparatus[J]. Mol Cell.2003;11(3):773-81.
    [55]Moore T, Zhang Y, Fenley MO, et al. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA[J]. Structure.2004;12(5):807-18.
    [56]Vilardell J, Yu SJ, Warner JR. Multiple functions of an evolutionarily conserved RNA binding domain[J]. Mol Cell.2000;5(4):761-6.
    [57]Gelpi C, Sontheimer EJ, Rodriguez-Sanchez JL. Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion[J]. Proc Natl Acad Sci U S A. 1992;89(20):9739-43.
    [58]Ding F, Grabowski PJ. Identification of a protein component of a mammalian tRNA(Sec) complex implicated in the decoding of UGA as selenocysteine[J]. RNA.1999;5(12):1561-9.
    [59]Driscoll DM, Copeland PR. Mechanism and regulation of selenoprotein synthesis[J]. Annu Rev Nutr.2003;23:17-40.
    [60]Small-Howard AL, Berry MJ. Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes[J]. Biochem Soc Trans.2005;33(Pt 6):1493-7.
    [61]Allamand V, Richard P, Lescure A, et al. A single homozygous point mutation in a 3'untranslated region motif of selenoprotein N mRNA causes SEPN1-related myopathy[J]. EMBO Rep. 2006;7(4):450-4.
    [62]Fomenko DE, Gladyshev VN. Identity and functions of CxxC-derived motifs[J]. Biochemistry. 2003;42(38):11214-25.
    [63]Fomenko DE, Xing W, Adair BM, et al. High-throughput identification of catalytic redox-active cysteine residues[J]. Science.2007;315(5810):387-9.
    [64]Johansson L, Gafvelin G, Arner ES. Selenocysteine in proteins-properties and biotechnological use[J]. Biochim Biophys Acta.2005;1726(1):1-13.
    [65]Forstrom JW, Zakowski JJ, Tappel AL. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine[J]. Biochemistry.1978;17(13):2639-44.
    [66]Vernet P, Rigaudiere N, Ghyselinck N, et al. In vitro expression of a mouse tissue specific glutathione-peroxidase-like protein lacking the selenocysteine can protect stably transfected mammalian cells against oxidative damage[J]. Biochem Cell Biol.1996;74(1):125-31.
    [67]Utomo A, Jiang X, Furuta S, et al. Identification of a novel putative non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) essential for alleviating oxidative stress generated from polyunsaturated fatty acids in breast cancer cells[J]. J Biol Chem. 2004;279(42):43522-9.
    [68]Schweizer U, Schomburg L. New insights into the physiological actions of selenoproteins from genetically modified mice[J]. IUBMB Life.2005;57(11):737-44.
    [69]Ho YS, Magnenat JL, Bronson RT, et al. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia[J]. J Biol Chem.1997;272(26):16644-51.
    [70]de Haan JB, Bladier C, Griffiths P, et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide[J]. J Biol Chem.1998;273(35):22528-36.
    [71]Ichimura Y, Habuchi T, Tsuchiya N, et al. Increased risk of bladder cancer associated with a glutathione peroxidase 1 codon 198 variant[J]. J Urol.2004;172(2):728-32.
    [72]Chu FF, Esworthy RS, Chu PG, et al. Bacteria-induced intestinal cancer in mice with disrupted Gpxl and Gpx2 genes[J]. Cancer Res.2004;64(3):962-8.
    [73]Esworthy RS, Yang L, Frankel PH, et al. Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice[J]. J Nutr. 2005;135(4):740-5.
    [74]Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors[J]. Biol Chem.2006;387(10-11):1329-35.
    [75]Al-Taie OH, Uceyler N, Eubner U, et al. Expression profiling and genetic alterations of the selenoproteins GI-GPx and SePP in colorectal carcinogenesis[J]. Nutr Cancer.2004;48(1):6-14.
    [76]Hough CD, Cho KR, Zonderman AB, et al. Coordinately up-regulated genes in ovarian cancer[J]. Cancer Res.2001;61(10):3869-76.
    [77]Lodygin D, Epanchintsev A, Menssen A, et al. Functional epigenomics identifies genes frequently silenced in prostate cancer[J]. Cancer Res.2005;65(10):4218-27.
    [78]Lee OJ, Schneider-Stock R, McChesney PA, et al. Hypermethylation and loss of expression of glutathione peroxidase-3 in Barrett's tumorigenesis[J]. Neoplasia.2005;7(9):854-61.
    [79]Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells[J]. Free Radic Biol Med.2003;34(2):145-69.
    [80]Ursini F, Heim S, Kiess M, et al. Dual function of the selenoprotein PHGPx during sperm maturation[J]. Science.1999;285(5432):1393-6.
    [81]Yant LJ, Ran Q, Rao L, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults[J]. Free Radic Biol Med. 2003;34(4):496-502.
    [82]Olson GE, Winfrey VP, Hill KE, et al. Sequential development of flagellar defects in spermatids and epididymal spermatozoa of selenium-deficient rats[J]. Reproduction.2004;127(3):335-42.
    [83]Foresta C, Flohe L, Garolla A, et al. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase[J]. Biol Reprod.2002;67(3):967-71.
    [84]Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase[J]. Eur J Biochem.2000;267(20):6102-9.
    [85]Novoselov SV, Gladyshev VN. Non-animal origin of animal thioredoxin reductases:implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions[J]. Protein Sci.2003;12(2):372-8.
    [86]Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations[J]. J Biol Chem.2000;275(24):18121-8.
    [87]Holmgren A. Thioredoxin[J]. Annu Rev Biochem.1985;54:237-71.
    [88]Biterova E1, Turanov AA, Gladyshev VN, et al. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism[J]. Proc Natl Acad Sci U S A.2005; 102(42):15018-23.
    [89]Rundlof AK, Carlsten M, Giacobini MM, et al. Prominent expression of the selenoprotein thioredoxin reductase in the medullary rays of the rat kidney and thioredoxin reductase mRNA variants differing at the 5'untranslated region[J]. Biochem J.2000;347 Pt 3:661-8.
    [90]Arscott LD, Gromer S, Schirmer RH, et al. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli[J]. Proc Natl Acad Sci U S A.1997;94(8):3621-6.
    [91]Sun QA, Wu Y, Zappacosta F, et al. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases[J]. J Biol Chem.1999;274(35):24522-30.
    [92]Chang EY, Son SK, Ko HS, et al. Induction of apoptosis by the overexpression of an alternative splicing variant of mitochondrial thioredoxin reductase[J]. Free Radic Biol Med. 2005;39(12):1666-75.
    [93]Miranda-Vizuete A, Spyrou G. Genomic organization and identification of a novel alternative splicing variant of mouse mitochondrial thioredoxin reductase (TrxR2) gene[J]. Mol Cells. 2002;13(3):488-92.
    [94]Sun QA, Zappacosta F, Factor VM, et al. Heterogeneity within animal thioredoxin reductases. Evidence for alternative first exon splicing[J]. J Biol Chem.2001;276(5):3106-14.
    [95]Luthman M, Holmgren A. Glutaredoxin from calf thymus. Purification to homogeneity[J]. J Biol Chem.1982;257(12):6686-90.
    [96]Lundstrom-Ljung J, Birnbach U, Rupp K, et al. Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase:comparison with protein disulfide isomerase[J]. FEBS Lett.1995;357(3):305-8.
    [97]Andersson M, Holmgren A, Spyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity[J]. J Biol Chem.1996;271(17):10116-20.
    [98]Rundlof AK, Arner ES. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events[J]. Antioxid Redox Signal. 2004;6(1):41-52.
    [99]Hintze KJ, Wald KA, Zeng H, et al. Thioredoxin reductase in human hepatoma cells is transcriptionally regulated by sulforaphane and other electrophiles via an antioxidant response element[J]. J Nutr.2003;133(9):2721-7.
    [100]Arner ES, Zhong L, Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase[J]. Methods Enzymol.1999;300:226-39.
    [101]Arner ES, Nordberg J, Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase[J]. Biochem Biophys Res Commun.1996;225(1):268-74.
    [102]Nikitovic D, Holmgren A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide[J]. J Biol Chem.1996;271(32):19180-5.
    [103]Zhao R, Masayasu H, Holmgren A. Ebselen:a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant[J]. Proc Natl Acad Sci U S A.2002;99(13):8579-84.
    [104]Matsui M, Oshima M, Oshima H, et al. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene[J]. Dev Biol.1996; 178(1):179-85.
    [105]Jakupoglu C, Przemeck GK, Schneider M, et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development [J]. Mol Cell Biol.2005;25(5):1980-8.
    [106]Conrad M, Jakupoglu C, Moreno SG, et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function[J]. Mol Cell Biol.2004;24(21):9414-23.
    [107]Nalvarte I, Damdimopoulos AE, Spyrou G. Human mitochondrial thioredoxin reductase reduces cytochrome c and confers resistance to complex Ⅲ inhibition[J]. Free Radic Biol Med. 2004;36(10):1270-8.
    [108]Kocdor H, Cehreli R, Kocdor MA, et al. Toxicity induced by the chemical carcinogen 7,12-dimethylbenz[a]anthracene and the protective effects of selenium in Wistar rats[J]. J Toxicol Environ Health A.2005;68(9):693-701.
    [109]Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer[J]. Free Radic Biol Med.2000;29(3-4):312-22.
    [110]Gan L, Yang XL, Liu Q, et al. Inhibitory effects of thioredoxin reductase antisense RNA on the growth of human hepatocellular carcinoma cells[J]. J Cell Biochem.2005;96(3):653-64.
    [111]Yoo MH, Xu XM, Carlson BA, et al. Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells[J]. J Biol Chem.2006;281(19):13005-8.
    [112]St Germain DL, Hernandez A, Schneider MJ, et al. Insights into the role of deiodinases from studies of genetically modified animals[J]. Thyroid.2005;15(8):905-16.
    [113]Maia AL, Kim BW, Huang SA, et al. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans[J]. J Clin Invest.2005;115(9):2524-33.
    [114]Bianco AC, Larsen PR. Cellular and structural biology of the deiodinases[J]. Thyroid. 2005;15(8):777-86.
    [115]Baqui M, Botero D, Gereben B, et al. Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes[J]. J Biol Chem. 2003;278(2):1206-11.
    [116]Kohrle J, Jakob F, Contempre B, et al. Selenium, the thyroid, and the endocrine system[J]. Endocr Rev.2005;26(7):944-84.
    [117]Bianco AC, Salvatore D, Gereben B, et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases[J]. Endocr Rev.2002;23(1):38-89.
    [118]Akesson B, Bellew T, Burk RF. Purification of selenoprotein P from human plasma[J]. Biochim Biophys Acta.1994;1204(2):243-9.
    [119]Burk RF, Hill KE. Selenoprotein P. A selenium-rich extracellular glycoprotein[J]. J Nutr. 1994;124(10):1891-7.
    [120]Moschos MP. Selenoprotein P[J]. Cell Mol Life Sci.2000;57(13-14):1836-45.
    [121]Schweizer U, Streckfuss F, Pelt P, et al. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply[J]. Biochem J.2005;386(Pt 2):221-6.
    [122]Sasakura C, Suzuki KT. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P[J]. J Inorg Biochem.1998;71(3-4):159-62.
    [123]Whanger PD. Selenium and the brain:a review[J]. Nutr Neurosci.2001;4(2):81-97.
    [124]Arteel GE, Mostert V, Oubrahim H, et al. Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration[J]. Biol Chem.1998;379(8-9):1201-5.
    [125]Takebe G, Yarimizu J, Saito Y, et al. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P[J]. J Biol Chem. 2002;277(43):41254-8.
    [126]Steinbrenner H, Bilgic E, Alili L, et al. Selenoprotein P protects endothelial cells from oxidative damage by stimulation of glutathione peroxidase expression and activity[J]. Free Radic Res. 2006;40(9):936-43.
    [127]Steinbrenner H, Alili L, Bilgic E, et al. Involvement of selenoprotein P in protection of human astrocytes from oxidative damage[J]. Free Radic Biol Med.2006;40(9):1513-23.
    [128]Traulsen H, Steinbrenner H, Buchczyk DP, et al. Selenoprotein P protects low-density lipoprotein against oxidation[J]. Free Radic Res.2004;38(2):123-8.
    [129]Xia Y, Hill KE, Byrne DW, et al. Effectiveness of selenium supplements in a low-selenium area of China[J]. Am J Clin Nutr.2005;81(4):829-34.
    [130]Wenstrup D, Ehmann WD, Markesbery WR. Trace element imbalances in isolated subcellular fractions of Alzheimer's disease brains[J]. Brain Res.1990;533(1):125-31.
    [131]Labunskyy VM, Ferguson AD, Fomenko DE, et al. A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase[J]. J Biol Chem. 2005;280(45):37839-45.
    [132]Ferguson AD, Labunskyy VM, Fomenko DE, et al. NMR structures of the selenoproteins Sep15 and Sel M reveal redox activity of a new thioredoxin-like family[J]. J Biol Chem. 2006;281(6):3536-43.
    [133]Apostolou S, Klein JO, Mitsuuchi Y, et al. Growth inhibition and induction of apoptosis in mesothelioma cells by selenium and dependence on selenoprotein SEP15 genotype[J]. Oncogene. 2004;23(29):5032-40.
    [134]Kumaraswamy E, Malykh A, Korotkov KV, et al. Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology[J]. J Biol Chem. 2000;275(45):35540-7.
    [135]Tapiero H, Townsend DM, Tew KD. The antioxidant role of selenium and seleno-compounds[J]. Biomed Pharmacother.2003;57(3-4):134-44.
    [136]Gu QP, Beilstein MA, Barofsky E, et al. Purification, characterization, and glutathione binding to selenoprotein W from monkey muscle[J]. Arch Biochem Biophys.1999;361(1):25-33.
    [137]Whanger PD. Selenoprotein W:a review[J], Cell Mol Life Sci.2000;57(13-14):1846-52.
    [138]Yeh JY, Beilstein MA, Andrews JS, et al. Tissue distribution and influence of selenium status on levels of selenoprotein W[J]. Faseb J.1995;9(5):392-6.
    [139]Beilstein MA, Vendeland SC, Barofsky E, et al. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety [J]. J Inorg Biochem.1996;61(2):117-24.
    [140]Amantana A, Vorachek WR, Butler JA, et al. Identification of putative transcription factor binding sites in rodent selenoprotein W promoter[J]. J Inorg Biochem.2004;98(9):1513-20.
    [141]Hooven LA, Vorachek WR, Bauman AB, et al. Deletion analysis of the rodent selenoprotein W promoter[J]. J Inorg Biochem.2005;99(10):2007-12.
    [142]Wimmer U, Wang Y, Georgiev O, et al. Two major branches of anti-cadmium defense in the mouse:MTF-1/metallothioneins and glutathione[J]. Nucleic Acids Res.2005;33(18):5715-27.
    [143]Kim HY, Gladyshev VN. Methionine sulfoxide reduction in mammals:characterization of methionine-R-sulfoxide reductases[J]. Mol Biol Cell.2004;15(3):1055-64.
    [144]Stadtman ER. Protein oxidation and aging[J]. Free Radic Res.2006;40(12):1250-8.
    [145]Marchetti MA, Pizarro GO, Sagher D, et al. Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells[J]. Invest Ophthalmol Vis Sci.2005;46(6):2107-12.
    [146]Ferreiro A, Quijano-Roy S, Pichereau C, et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease:reassessing the nosology of early-onset myopathies[J]. Am J Hum Genet. 2002;71(4):739-49.
    [147]Moghadaszadeh B, Petit N, Jaillard C, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome[J]. Nat Genet.2001;29(1):17-8.
    [148]Petit N, Lescure A, Rederstorff M, et al. Selenoprotein N:an endoplasmic reticulum glycoprotein with an early developmental expression pattern[J]. Hum Mol Genet.2003;12(9):1045-53.
    [149]Thisse C, Degrave A, Kryukov GV, et al. Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in zebrafish[J]. Gene Expr Patterns.2003;3(4):525-32.
    [150]Korotkov KV, Novoselov SV, Hatfield DL, et al. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element[J]. Mol Cell Biol.2002;22(5):1402-11.
    [151]Hwang DY, Cho JS, Oh JH, et al. Differentially expressed genes in transgenic mice carrying human mutant presenilin-2 (N141I):correlation of selenoprotein M with Alzheimer's disease[J]. Neurochem Res.2005;30(8):1009-19.
    [152]Walder K, Kantham L, McMillan JS, et al. Tanis:a link between type 2 diabetes and inflammation?[J]. Diabetes.2002;51(6):1859-66.
    [153]Gao Y, Hannan NR, Wanyonyi S, et al. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells[J]. Cytokine.2006;33(5):246-51.
    [154]Lu C, Qiu F, Zhou H, et al. Identification and characterization of selenoprotein K:an antioxidant in cardiomyocytes[J]. FEBS Lett.2006;580(22):5189-97.
    [155]秦顺义,黄克和,高建忠.富硒益生菌对小鼠免疫功能及抗氧化能力的影响[J].营养学报.2006;28(05):423-6.
    [156]Sakaguchi S, Powrie F. Emerging challenges in regulatory T cell function and biology[J]. Science. 2007;317(5838):627-9.
    [157]Jackson SH, Devadas S, Kwon J, et al. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation[J]. Nat Immunol.2004;5(8):818-27.
    [158]Peterson JD, Herzenberg LA, Vasquez K, et al. Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns[J].Proc Natl Acad Sci U S A.1998;95(6):3071-6.
    [159]Hoffmann FW, Hashimoto AC, Shafer LA, et al. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols[J]. J Nutr.2010;140(6):1155-61.
    [160]Won HY, Sohn JH, Min HJ, et al. Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing Th2 and Th17 cell development[J]. Antioxid Redox Signal.2010;13(5):575-87.
    [161]Xue H, Wang W, Li Y, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice[J]. Endocr J. 2010;57(7):595-601.
    [162]Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity:from molecular mechanisms to therapeutic opportunities[J]. Antioxid Redox Signal.2012;16(7):705-43.
    [163]Placek K, Coffre M, Maiella S, et al. Genetic and epigenetic networks controlling T helper 1 cell differentiation[J]. Immunology.2009; 127(2):155-62.
    [164]Zeng H, Yan L, Cheng WH, et al. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa[J]. J Nutr.2011;141(8):1464-8.
    [165]Cyr AR, Domann FE. The redox basis of epigenetic modifications:from mechanisms to functional consequences[J]. Antioxid Redox Signal.2011; 15(2):551-89.
    [166]Cox R, Goorha S. A study of the mechanism of selenite-induced hypomethylated DNA and differentiation of Friend erythroleukemic cells[J]. Carcinogenesis.1986;7(12):2015-8.
    [167]Wang RD, Wang CS, Feng ZH, et al. Investigation on the effect of selenium on T lymphocyte proliferation and its mechanisms[J]. J Tongji Med Univ.1992;12(1):33-8.
    [168]杜立芹,程五凤,史奎雄,等.硒对小鼠免疫功能的影响[J].上海第二医科大学学报.2000;20(01):29-31.
    [169]程道胜.硒对细胞免疫功能影响的研究进展[J].国外医学(临床生物化学与检验学分册).1999;20(04):177-9.
    [170]Kiremidjian-Schumacher L, Roy M, Wishe HI, et al. Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells[J]. Biol Trace ElemRes.1994;41(1-2):115-27.
    [171]黄克和,陈万芳.硒对雏鸡T淋巴细胞转化和自然杀伤细胞活力的影响[J].南京农业大学学报.1999;22(02):79-82.
    [172]王玉娥,龚晨睿,田洁.酵母硒对小鼠肿瘤生长和机体非特异性免疫功能的影响[J].公共卫生与预防医学.2006;17(04):91-2.
    [173]Hayek MG, Mitchell GE, Jr., Harmon RJ, et al. Porcine immunoglobulin transfer after prepartum treatment with selenium or vitamin E[J]. J Anim Sci.1989;67(5):1299-306.
    [174]沈玉先,汪思应,魏伟,等.富硒酵母对小鼠巨噬细胞功能及抗体生成的影响[J].微量元素与健康研究.1996;13(03):5-6.
    [175]黄克和,陈振旅,王小龙.硒对雏鸡生长体液免疫功能和抗自然感染能力的影响[J].南京农业大学学报.1990;13(04):98-102.
    [176]Rock MJ, Kincaid RL, Carstens GE. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs[J]. Small Rumin Res. 2001;40(2):129-38.
    [177]马艳弘,刘安军,朱振元,等.硒精氨酸对衰老小鼠的抗氧化及免疫调节作用[J].江苏农业学报.2011;27(04):883-7.
    [178]Rafai P, Tuboly S, Biro H, et al. Effect of selenium, vitamin E and riboflavin supplementation of the feed on the humoral and cell-mediated immune responses of growing pigs[J]. Acta Vet Hung. 1989;37(3):201-17.
    [179]Panousis N, Roubies N, Karatzias H, et al. Effect of selenium and vitamin E on antibody production by dairy cows vaccinated against Escherichia coli[J]. Vet Rec.2001;149(21):643-6.
    [180]张华,黄克和,薛家宾,等.不同硒源对兔体液免疫及抗氧化能力影响的研究[J].营养学报.2006;28(03):209-12.
    [181]苏惠龙,韩卓宙,李永红,等.富硒益生菌对清远鹅疫苗免疫效果的影响[J].畜牧与兽医.2010;42(06):76-8.
    [182]Carlson BA, Yoo MH, Sano Y, et al. Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression[J]. BMC Immunol.2009;10:57.
    [183]Ahrens I, Ellwanger C, Smith BK, et al. Selenium supplementation induces metalloproteinase-dependent L-selectin shedding from monocytes[J]. J Leukoc Biol. 2008;83(6):1388-95.
    [184]Vunta H, Davis F, Palempalli UD, et al. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Deltal2,14-prostaglandin J2 in macrophages[J]. J Biol Chem. 2007;282(25):17964-73.
    [185]Zamamiri-Davis F, Lu Y, Thompson JT, et al. Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency[J]. Free Radic Biol Med.2002;32(9):890-7.
    [186]Stachowska E, Dolegowska B, Dziedziejko V, et al. Prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) synthesis is regulated by conjugated linoleic acids (CLA) in human macrophages[J]. J Physiol Pharmacol.2009;60(1):77-85.
    [187]Gandhi UH, Kaushal N, Ravindra KC, et al. Selenoprotein-dependent up-regulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR) gamma[J]. J Biol Chem. 2011;286(31):27471-82.
    [1]Working group report. Guidelines for the Evaluation of Probiotics in Food, Joint Food and Agriculture Organisation of the United Nations and The World Health Organisation, Http://wvw.fao.org/es/ESN/Probio/Probio.htm
    [2]孙鸣,潘宝海,陈伟兴,等.益生菌、益生元及合生素的作用机制和相互关系[J].饲料研究.2008(04):62-4+6.
    [3]Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer[J]. Am J Clin Nutr.2001;73(2 Suppl):451S-5S.
    [4]Agarwal R, Sharma N, Chaudhry R, et al. Effects of oral Lactobacillus GG on enteric microflora in low-birth-weight neonates[J]. J Pediatr Gastroenterol Nutr. 2003;36(3);397-402.
    [5]Meurman JH, Antila H, Korhonen A, et al. Effect of Lactobacillus rhamnosus strain GG (ATCC 53103) on the growth of Streptococcus sobrinus in vitro[J]. Eur J Oral Sci. 1995;103(4):253-8.
    [6]Cadieux P, Burton J, Gardiner G, et al. Lactobacillus strains and vaginal ecology [J]. JAMA. 2002;287(15):1940-1.
    [7]杨家军,黄克和,秦顺义,等.四株益生菌体外抑制大肠杆菌K88株的研究[J].江苏农业学报.2008,24(03):302-6.
    [8]Bernet-Camard MF, Lievin V, Brassart D, et al. The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo[J]. Appl Environ Microbiol.1997;63(7):2747-53.
    [9]Mack DR, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression[J]. Am J Physiol.1999;276(4 Pt 1):G941-50.
    [10]Wilson KH, Perini F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora[J]. Infect Immun.1988;56(10):2610-4.
    [11]Pothoulakis C, Kelly CP, Joshi MA, et al. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum[J]. Gastroenterology. 1993;104(4):1108-15.
    [12]Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells[J]. J Biol Chem.2002;277(52):50959-65.
    [13]Buts JP, De Keyser N, De Raedemaeker L. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines[J]. Pediatr Res.1994;36(4):522-7.
    [14]Rachmilewitz D, Katakura K, Karmeli F, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis [J]. Gastroenterology. 2004;126(2):520-8.
    [15]Jijon H, Backer J, Diaz H, et al. DNA from probiotic bacteria modulates murine and human epithelial and immune function[J]. Gastroenterology.2004;126(5):1358-73.
    [16]Dahan S, Dalmasso G, Imbert V, et al. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells [J]. Infect Immun.2003;71(2):766-73.
    [17]Petrof EO, Kojima K, Ropeleski MJ, et al. Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition [J]. Gastroenterology.2004;127(5):1474-87.
    [18]Kaila M, Isolauri E, Saxelin M, et al. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea[J]. Arch Dis Child.1995;72(1):51-3.
    [19]Kaila M, Isolauri E, Soppi E, et al. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain[J]. Pediatr Res. 1992;32(2):141-4.
    [20]de Vrese M, Rautenberg P, Laue C, et al. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination[J]. Eur J Nutr. 2005;44(7):406-13.
    [21]Park JH, Um JI, Lee BJ, et al. Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production [J]. Cell Immunol.2002;219(1):22-7.
    [22]Buts JP, Bernasconi P, Vaerman JP, et al. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii[J]. Dig Dis Sci.1990;35(2):251-6.
    [23]Christensen HR, Frokiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells[J]. J Immunol. 2002;168(1):171-8.
    [24]Parra MD, Martinez de Morentin BE, Cobo JM, et al. Daily ingestion of fermented milk containing Lactobacillus casei DN114001 improves innate-defense capacity in healthy middle-aged people[J]. J Physiol Biochem.2004;60(2):85-91.
    [25]Wehkamp J, Harder J, Wehkamp K, et al. NF-kappaB-and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917:a novel effect of a probiotic bacterium[J]. Infect Immun.2004;72(10):5750-8.
    [26]Kalliomaki MA, Isolauri E. Probiotics and down-regulation of the allergic response[J]. Immunol Allergy Clin North Am.2004;24(4):739-52, viii.
    [27]Viljanen M, Savilahti E, Haahtela T, et al. Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants:a double-blind placebo-controlled trial[J]. Allergy. 2005;60(4):494-500.
    [28]Pochard P, Gosset P, Grangette C, et al. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients[J]. J Allergy Clin Immunol.2002; 110(4):617-23.
    [29]Mastrandrea F, Coradduzza G, Serio G, et al. Probiotics reduce the CD34+hemopoietic precursor cell increased traffic in allergic subjects[J]. Eur Ann Allergy Clin Immunol. 2004;36(4):118-22.
    [30]Rosenfeldt V, Benfeldt E, Nielsen SD, et al. Effect of probiotic Lactobacillus strains in children with atopic dermatitis[J]. J Allergy Clin Immunol.2003; 111(2):389-95.
    [31]Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10[J]. Science.2000;289(5483):1352-5.
    [32]Mclntosh GH, Royle PJ, Playne MJ. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats[J]. Nutr Cancer. 1999;35(2):153-9.
    [33]Zabala A, Martin MR, Haza AI, et al. Anti-proliferative effect of two lactic acid bacteria strains of human origin on the growth of a myeloma cell line[J]. Lett Appl Microbiol. 2001;32(4):287-92.
    [34]McConnell MA, Tannock GW. A note on lactobacilli and beta-glucuronidase activity in the intestinal contents of mice[J]. J Appl Bacteriol.1993;74(6):649-51.
    [35]Haberer P, du Toit M, Dicks LM, et al. Effect of potentially probiotic lactobacilli on faecal enzyme activity in minipigs on a high-fat, high-cholesterol diet-a preliminary in vivo trial[J]. Int J Food Microbiol.2003;87(3):287-91.
    [36]Matar C, Nadathur SS, Bakalinsky AT, et al. Antimutagenic effects of milk fermented by Lactobacillus helveticus L89 and a protease-deficient derivative[J]. J Dairy Sci. 1997;80(9):1965-70.
    [37]Genovese KJ, Anderson RC, Harvey RB, et al. Competitive exclusion of Salmonella from the gut of neonatal and weaned pigs[J]. J Food Prot.2003;66(8):1353-9.
    [38]Setia A, Bhandari SK, House JD, et al. Development and in vitro evaluation of an Escherichia coli probiotic able to inhibit the growth of pathogenic Escherichia coli K88[J]. J Anim Sci. 2009;87(6):2005-12.
    [39]张丽萍,王永生.猪源乳酸杆菌对仔猪肠道微生物的影响[J].吉林畜牧兽医.2007;28(11):10-2.
    [40]Scharek L, Guth J, Reiter K, et al. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets[J]. Vet Immunol Immunopathol. 2005;105(1-2):151-61.
    [41]Zeyner A, Boldt E. Effects of a probiotic Enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets[J]. J Anim Physiol Anim Nutr (Berl).2006;90(1-2):25-31.
    [42]Lodemann U, Hubener K, Jansen N, et al. Effects of Enterococcus faecium NCIMB 10415 as probiotic supplement on intestinal transport and barrier function of piglets [J]. Arch Anim Nutr.2006;60(1):35-48.
    [43]Taras D, Vahjen W, Macha M, et al. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets[J]. J Anim Sci.2006;84(3):608-17.
    [44]Konstantinov SR, Smidt H, Akkermans AD, et al. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets[J]. FEMS Microbiol Ecol.2008;66(3):599-607.
    [45]Zhang L, Xu YQ, Liu HY, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses[J]. Vet Microbiol.2010;141(1-2):142-8.
    [46]Fajardo Bernardez P, Fucinos Gonzalez C, Mendez Batan J, et al. Performance and intestinal coliform counts in weaned piglets fed a probiotic culture (Lactobacillus casei subsp. casei CECT 4043) or an antibiotic[J]. J Food Prot.2008;71(9):1797-805.
    [47]Siggers RH, Siggers J, Boye M, et al. Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs[J]. J Nutr.2008; 138(8):1437-44.
    [48]Collado MC, Grzeskowiak L, Salminen S. Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa[J]. Curr Microbiol.2007;55(3):260-5.
    [49]Shu Q, Qu F, Gill HS. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model[J]. J Pediatr Gastroenterol Nutr.2001;33(2):171-7.
    [50]胡友军,林映才,郑黎,等.活性酵母对早期断奶仔猪生产性能和免疫机能的影响[J].动物营养学报.2003;15(04):49-53.
    [51]王玲,蒲万霞,扎西英派,等.活性酵母制剂对早期断乳仔猪腹泻率、生产性能和肠道pH值的研究[J].中国兽药杂志.2008;42(09):1-5.
    [52]Lessard M, Dupuis M, Gagnon N, et al. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge[J]. J Anim Sci. 2009;87(3):922-34.
    [53]胡未一,江林,李东成,等.猪微生物饲料添加剂(8701A)对仔猪促生长试验[J].四川农业大学学报.1994;12(S1):564-6+605.
    [54]Bhandari SK, Xu B, Nyachoti CM, et al. Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea:effects on gut microbial ecology[J]. J Anim Sci.2008;86(4):836-47.
    [55]Collinder E, Cardona ME, Berge GN, et al. Influence of zinc bacitracin and Bacillus licheniformis on microbial intestinal functions in weaned piglets[J]. Vet Res Commun. 2003;27(7):513-26.
    [56]Alexopoulos C, Georgoulakis IE, Tzivara A, et al. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters[J]. J Anim Physiol Anim Nutr (Berl). 2004;88(11-12):381-92.
    [57]戴荣国,曹国文,姜永康,等.四种芽孢益生菌组合对仔猪生产性能影响的比较[J].甘肃畜牧兽医.2006(01):14-6.
    [58]陈文辉,周映华,李秋云,等.复合益生菌制剂对断奶仔猪生产性能和腹泻率的影响[J].湖南畜牧兽医.2007(03):14-5.
    [1]Arthur JR. The glutathione peroxidases[J]. Cell Mol Life Sci.2000;57(13-14):1825-35.
    [2]Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells[J]. Free Radic Biol Med.2003;34(2):145-69.
    [3]Arai M, Imai H, Koumura T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells[J]. J Biol Chem. 1999;274(8):4924-33.
    [4]张丹英,雷艳霞.动物硒蛋白-磷脂氢谷胱甘肽过氧化物酶[J].国外医学(医学地理分册).2005;25(04):152-5+68.
    [5]Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase[J]. Eur J Biochem.2000;267(20):6102-9.
    [6]Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification[J]. Biotechniques.1998;24(6):954-8,60,62.
    [7]Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol.2000;25(2):169-93.
    [8]张立国,张琚.实时定量PCR技术的介绍[J].生物技术.2003;13(02):39-40.
    [9]刘小荣,张笠,王勇平.实时荧光定量PCR技术的理论研究及其医学应用[J].中国组织工程研究与临床康复.2010;14(02):329-32.
    [10]廉红霞,高腾云,傅彤,等.实时荧光定量PCR定量方法研究进展[J].江西农业学报.2010;22(10):128-9+32.
    [11]Bengtsson M, Karlsson HJ, Westman G, et al. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR[J]. Nucleic Acids Res.2003;31(8):e45.
    [12]Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology[J]. Nucleic Acids Res. 2002;30(6):1292-305.
    [13]袁亚男,刘文忠.实时荧光定量PCR技术的类型、特点与应用[J].中国畜牧兽医.2008;35(03):27-30.
    [14]Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction[J]. Anal Biochem.1997;245(2):154-60.
    [15]邓文星,张映.实时荧光定量PCR技术综述[J].生物技术通报.2007;27(05):93-5+103.
    [16]栗文凯,张智勇,胡建和,等.实时荧光定量PCR应用技术综述[J].中国畜禽种业.2008;4(19):71-2.
    [17]Chervoneva I, Hyslop T, Iglewicz B, et al. Statistical algorithm for assuring similar efficiency in standards and samples for absolute quantification by real-time reverse transcription polymerase chain reaction[J]. Anal Biochem.2006;348(2):198-208.
    [18]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods.2001;25(4):402-8.
    [19]肖国生,曹三杰,文心田.荧光定量PCR技术及其在动物传染病定量检测中的应用[J].动物医学进展.2005;26(02):13-7.
    [20]Zhang X, Ding L, Sandford AJ. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR[J]. BMC Mol Biol.2005;6(1):4.
    [21]Nygard AB, Jorgensen CB, Cirera S, et al. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR[J]. BMC Mol Biol.2007;8:67.
    [1]McKenzie RC, Rafferty TS, Beckett GJ. Selenium:an essential element for immune function[J]. Immunol Today.1998;19(8):342-5.
    [2]Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity:from molecular mechanisms to therapeutic opportunities[J]. Antioxid Redox Signal. 2012;16(7):705-43.
    [3]Hoffmann FW, Hashimoto AC, Shafer LA, et al. Dietary selenium modulates activation and differentiation of CD4+T cells in mice through a mechanism involving cellular free thiols[J]. J Nutr.2010;140(6):1155-61.
    [4]Safir N, Wendel A, Saile R, et al. The effect of selenium on immune functions of J774.1 cells[J]. Clin Chem Lab Med.2003;41(8):1005-11.
    [5]杨家军,黄克和,秦顺义,等.富硒益生菌工业化生产培养条件的探索[J].食品与发酵工业.2007;33(12):56-9.
    [6]Pan C, Huang K, Zhao Y, et al. Effect of selenium source and level in hen's diet on tissue selenium deposition and egg selenium concentrations[J], J Agric Food Chem. 2007;55(3):1027-32.
    [7]刘金旭,陆肇海,苏琪.家畜家禽的硒营养缺乏的调查研究——Ⅰ.我国饲料牧草含硒量的分布(初报)[J].中国农业科学.1985(04):76-9+99-100.
    [8]Wang Y. Differential effects of sodium selenite and nano-Se on growth performance, tissue se distribution, and glutathione peroxidase activity of avian broiler[J]. Biol Trace Elem Res. 2009;128(2):184-90.
    [9]Mahan DC, Cline TR, Richert B. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality[J]. J Anim Sci.1999;77(8):2172-9.
    [10]Fajardo Bemardez P, Fucinos Gonzalez C, Mendez Batan J, et al. Performance and intestinal coliform counts in weaned piglets fed a probiotic culture (Lactobacillus casei subsp. casei CECT 4043) or an antibiotic[J]. J Food Prot.2008;71(9):1797-805.
    [11]王玲,蒲万霞,扎西英派,等.活性酵母制剂对早期断乳仔猪腹泻率、生产性能和肠道pH值的研究[J].中国兽药杂志.2008;42(09):1-5.
    [12]陈文辉,周映华,李秋云,等.复合益生菌制剂对断奶仔猪生产性能和腹泻率的影响[J].湖南畜牧兽医.2007(03):14-5.
    [13]黄克和,陈振旅,王小龙.硒对雏鸡生长体液免疫功能和抗自然感染能力的影响[J].南 京农业大学学报.1990;13(04):98-102.
    [14]Rafai P, Tuboly S, Biro H, et al. Effect of selenium, vitamin E and riboflavin supplementation of the feed on the humoral and cell-mediated immune responses of growing pigs[J]. Acta Vet Hung.1989;37(3):201-17.
    [15]Panousis N, Roubies N, Karatzias H, et al. Effect of selenium and vitamin E on antibody production by dairy cows vaccinated against Escherichia coli[J]. Vet Rec.2001;149(21):643-6.
    [16]张华,黄克和,薛家宾,等.不同硒源对兔体液免疫及抗氧化能力影响的研究[J].营养学报.2006;28(03):209-12.
    [17]苏惠龙,韩卓宙,李永红,等.富硒益生菌对清远鹅疫苗免疫效果的影响[J].畜牧与兽医.2010;42(06):76-8.
    [18]Kaila M, Isolauri E, Saxelin M, et al. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea[J]. Arch Dis Child.1995;72(1):51-3.
    [19]Kaila M, Isolauri E, Soppi E, et al. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain[J]. Pediatr Res.1992;32(2):141-4.
    [20]de Vrese M, Rautenberg P, Laue C, et al. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination[J]. Eur J Nutr.2005;44(7):406-13.
    [21]Park JH, Um JI, Lee BJ, et al. Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production[J]. Cell Immunol.2002;219(1):22-7.
    [22]Buts JP, Bernasconi P, Vaerman JP, et al. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii[J]. Dig Dis Sci.1990;35(2):251-6.
    [23]马锐,柳星,伞宝君,等.肿瘤化疗对细胞免疫系统的影响[J].中国实用内科杂志.2002;22(06):352-3.
    [24]Wang RD, Wang CS, Feng ZH, et al. Investigation on the effect of selenium on T lymphocyte proliferation and its mechanisms[J]. J Tongji Med Univ.1992;12(1):33-8.
    [25]程道胜.硒对细胞免疫功能影响的研究进展[J].国外医学(临床生物化学与检验学分册).1999;20(04):177-9.
    [26]金伯泉.细胞和分子免疫学.北京:科学出版社;2001.p.133-78.
    [27]赵任,郁宝铭,张国弛,等.硒增强T淋巴细胞抗大肠癌作用的实验研究[J].胃肠病学.2000;5(01):36-8+60.
    [1]Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins:synthesis, identity, and their role in human health[J]. Antioxid Redox Signal.2007;9(7):775-806.
    [2]Mahan DC, Cline TR, Richert B. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality [J]. J Anim Sci.1999;77(8):2172-9.
    [3]占秀安,许梓荣.不同硒源对肥育猪鲜肉肉色和滴水损失的影响[J].畜牧兽医学报.2004;35(05):505-9.
    [4]Chaudhary M, Garg AK, Mittal GK, et al. Effect of organic selenium supplementation on growth, Se uptake, and nutrient utilization in guinea pigs[J]. Biol Trace Elem Res. 2010;133(2):217-26.
    [5]Kim YY, Mahan DC. Effect of dietary selenium source, level, and pig hair color on various selenium indices[J]. J Anim Sci.2001;79(4):949-55.
    [6]Mateo RD, Spallholz JE, Elder R, et al. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium[J]. J Anim Sci.2007;85(5):1177-83.
    [7]Yoon I, McMillan E. Comparative effects of organic and inorganic selenium on selenium transfer from sows to nursing pigs[J]. J Anim Sci.2006;84(7):1729-33.
    [8]杨家军,黄克和,秦顺义,et al.富硒益生菌工业化生产培养条件的探索[J].食品与发酵工业.2007;33(12):56-9.
    [9]Pan C, Huang K, Zhao Y, et al. Effect of selenium source and level in hen's diet on tissue selenium deposition and egg selenium concentrations[J]. J Agric Food Chem. 2007;55(3):1027-32.
    [10]Mahan DC, Parrett NA. Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine[J]. J Anim Sci.1996;74(12):2967-74.
    [11]Kim YY, Mahan DC. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs[J]. J Anim Sci.2001;79(4):942-8.
    [12]潘翠玲,黄克和,赵玉鑫,et al.不同硒源对蛋鸡血硒含量及抗氧化能力的影响[J].南京农业大学学报.2008(02):91-6.
    [13]Reeves MA, Hoffmann PR. The human selenoproteome:recent insights into functions and regulation[J]. Cell Mol Life Sci.2009;66(15):2457-78.
    [14]Pan Q, Huang K, He K, et al. Effect of different selenium sources and levels on porcine circovirus type 2 replication in vitro[J]. J Trace Elem Med Biol.2008;22(2):143-8.
    [15]Wu X, Wei C, Pan C, et al. Regulation of expression and activity of selenoenzymes by different forms and concentrations of selenium in primary cultured chicken hepatocytes[J]. Br J Nutr.2010;104(11):1605-12.
    [16]Wu X, Huang K, Wei C, et al. Regulation of cellular glutathione peroxidase by different forms and concentrations of selenium in primary cultured bovine hepatocytes[J]. J Nutr Biochem.2010;21(2):153-61.
    [17]Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors[J]. Biol Chem.2006;387(10-11):1329-35.
    [18]Lei XG, Dann HM, Ross DA, et al. Dietary selenium supplementation is required to support full expression of three selenium-dependent glutathione peroxidases in various tissues of weanling pigs[J]. J Nutr.1998;128(1):130-5.
    [19]Hoffmann FW, Hashimoto AC, Shafer LA, et al. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols[J]. J Nutr.2010;140(6):1155-61.
    [20]Casado A, Encamacion Lopez-Fernandez M, Concepcion Casado M, et al. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias[J]. Neurochem Res. 2008;33(3):450-8.
    [21]Altuntas I, Kilinc I, Orhan H, et al. The effects of diazinon on lipid peroxidation and antioxidant enzymes in erythrocytes in vitro[J]. Hum Exp Toxicol.2004;23(1):9-13.
    [22]Buyukokuroglu ME, Cemek M, Yurumez Y, et al. Antioxidative role of melatonin in organophosphate toxicity in rats[J]. Cell Biol Toxicol.2008;24(2):151-8.
    [23]Molina H, Garcia M. Enzymatic defenses of the rat heart against lipid peroxidation[J]. Mech Ageing Dev.1997;97(1):1-7.
    [24]高建忠,黄克和,秦顺义.不同硒源对仔猪组织硒沉积和抗氧化能力的影响[J].南京农业大学学报.2006(01):85-8.
    [25]秦顺义,黄克和,高建忠.富硒益生菌对小鼠免疫功能及抗氧化能力的影响[J].营养学报.2006;28(05):423-6.
    [1]Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins:synthesis, identity, and their role in human health[J]. Antioxid Redox Signal.2007;9(7):775-806.
    [2]Arthur JR. The glutathione peroxidases[J]. Cell Mol Life Sci.2000;57(13-14):1825-35.
    [3]Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells[J]. Free Radic Biol Med.2003;34(2):145-69.
    [4]Arai M, Imai H, Koumura T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells[J]. J Biol Chem. 1999;274(8):4924-33.
    [5]张丹英,雷艳霞.动物硒蛋白-磷脂氢谷胱甘肽过氧化物酶[J].国外医学(医学地理分册).2005;25(04):152-5+68.
    [6]Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase[J], Eur J Biochem.2000;267(20):6102-9.
    [7]Sun QA, Wu Y, Zappacosta F, et al. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases[J]. J Biol Chem.1999;274(35):24522-30.
    [8]Gromer S, Eubel JK, Lee BL, et al. Human selenoproteins at a glance[J]. Cell Mol Life Sci. 2005;62(21):2414-37.
    [9]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease[J]. Antioxid Redox Signal.2011;14(7):1337-83.
    [10]Bellinger FP, Raman AV, Reeves MA, et al. Regulation and function of selenoproteins in human disease[J]. Biochem J.2009;422(1):11-22.
    [11]Finch JM, Turner RJ. Effects of selenium and vitamin E on the immune responses of domestic animals[J]. Res Vet Sci.1996;60(2):97-106.
    [12]Tiwary AK, Stegelmeier BL, Panter KE, et al. Comparative toxicosis of sodium selenite and selenomethionine in lambs[J]. J Vet Diagn Invest.2006;18(1):61-70.
    [13]Kim YY, Mahan DC. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs[J]. J Anim Sci.2001;79(4):942-8.
    [14]Sunde RA, Raines AM, Barnes KM, et al. Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome[J]. Biosci Rep. 2009;29(5):329-38.
    [15]Lei XG, Evenson JK, Thompson KM, et al. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium[J]. J Nutr.1995;125(6):1438-46.
    [16]Lei XG, Dann HM, Ross DA, et al. Dietary selenium supplementation is required to support full expression of three selenium-dependent glutathione peroxidases in various tissues of weanling pigs[J]. J Nutr.1998;128(1):130-5.
    [17]Qin S, Huang K, Gao J, et al. Comparison of glutathione peroxidase 1 and iodothyronine deiodinase 1 mRNA expression in murine liver after feeding selenite or selenized yeast[J]. J Trace Elem Med Biol.2009;23(1):29-35.
    [18]Hoffmann FW, Hashimoto AC, Shafer LA, et al. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols[J]. J Nutr.2010;140(6):1155-61.
    [19]Brown KM, Pickard K, Nicol F, et al. Effects of organic and inorganic selenium supplementation on selenoenzyme activity in blood lymphocytes, granulocytes, platelets and erythrocytes[J]. Clin Sci (Lond).2000;98(5):593-9.
    [20]Romanowska M, Kikawa KD, Fields JR, et al. Effects of selenium supplementation on expression of glutathione peroxidase isoforms in cultured human lung adenocarcinoma cell lines[J]. Lung Cancer.2007;55(1):35-42.
    [21]Sunde RA, Evenson JK, Thompson KM, et al. Dietary selenium requirements based on glutathione peroxidase-1 activity and mRNA levels and other Se-dependent parameters are not increased by pregnancy and lactation in rats[J]. J Nutr.2005; 135(9):2144-50.
    [22]Weiss Sachdev S, Sunde RA. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and-4 in rat liver[J]. Biochem J.2001;357(Pt 3):851-8.
    [23]Hadley KB, Sunde RA. Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver[J]. J Nutr Biochem.2001;12(12):693-702.
    [24]Barnes KM, Evenson JK, Raines AM, et al. Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity [J]. J Nutr. 2009;139(2):199-206.
    [25]Hu Y, McIntosh GH, Le Leu RK, et al. The influence of selenium-enriched milk proteins and selenium yeast on plasma selenium levels and rectal selenoprotein gene expression in human subjects[J]. Br J Nutr.2011;106(4):572-82.
    [26]Weiss SL, Sunde RA. Cis-acting elements are required for selenium regulation of glutathione peroxidase-1 mRNA levels[J]. RNA.1998;4(7):816-27.
    [27]Moriarty PM, Reddy CC, Maquat LE. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA[J]. Mol Cell Biol.1998;18(5):2932-9.
    [28]Low SC, Berry MJ. Knowing when not to stop:selenocysteine incorporation in eukaryotes[J]. Trends Biochem Sci.1996;21(6):203-8.
    [29]Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance[J]. Trends Biochem Sci.1998;23(6):198-9.
    [30]Maquat LE. Nonsense-mediated mRNA decay in mammals[J]. J Cell Sci.2005;118(Pt 9):1773-6.
    [31]Sun X, Li X, Moriarty PM, et al. Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues[J]. Mol Biol Cell.2001; 12(4):1009-17.
    [32]Muller C, Wingler K, Brigelius-Flohe R.3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency [J]. Biol Chem.2003;384(1):11-8.
    [33]Squires JE, Stoytchev I, Forry EP, et al. SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay[J]. Mol Cell Biol.2007;27(22):7848-55.
    [1]Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins:synthesis, identity, and their role in human health[J]. Antioxid Redox Signal.2007;9(7):775-806.
    [2]Ueno H, Kajihara H, Nakamura H, et al. Contribution of thioredoxin reductase to T-cell mitogenesis and NF-kappaB DNA-binding promoted by selenite[J]. Antioxid Redox Signal. 2007;9(1):115-21.
    [3]Gromer S, Eubel JK, Lee BL, et al. Human selenoproteins at a glance[J]. Cell Mol Life Sci. 2005;62(21):2414-37.
    [4]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease[J]. Antioxid Redox Signal.2011;14(7):1337-83.
    [5]Bellinger FP, Raman AV, Reeves MA, et al. Regulation and function of selenoproteins in human disease[J]. Biochem J.2009;422(1):11-22.
    [6]Finch JM, Turner RJ. Effects of selenium and vitamin E on the immune responses of domestic animals[J]. Res Vet Sci.1996;60(2):97-106.
    [7]Muth OH, Oldfield JE, Remmert LF, et al. Effects of selenium and vitamin E on white muscle disease[J]. Science.1958;128(3331):1090.
    [8]Baum MK, Shor-Posner G, Lai S, et al. High risk of HIV-related mortality is associated with selenium deficiency[J]. J Acquir Immune Defic Syndr Hum Retrovirol.1997;15(5):370-4.
    [9]Hoffmann FW, Hashimoto AC, Shafer LA, et al. Dietary selenium modulates activation and differentiation of CD4+T cells in mice through a mechanism involving cellular free thiols[J]. J Nutr.2010;140(6):1155-61.
    [10]Safir N, Wendel A, Saile R, et al. The effect of selenium on immune functions of J774.1 cells[J]. Clin Chem Lab Med.2003;41(8):1005-11.
    [11]Methenitou G, Maravelias C, Koutsogeorgopoulou L, et al. Immunomodulative effects of aflatoxins and selenium on human peripheral blood lymphocytes [J]. Veterinary and Human Toxicology.1996;38(4):274-7.
    [12]Jariwalla RJ, Gangapurkar B, Nakamura D. Differential sensitivity of various human tumour-derived cell types to apoptosis by organic derivatives of selenium[J]. Br J Nutr. 2009;101(2):182-9.
    [13]Zeng H, Combs GF, Jr. Selenium as an anticancer nutrient:roles in cell proliferation and tumor cell invasion[J]. J Nutr Biochem.2008;19(1):1-7.
    [14]Kuchan MJ, Fico Santoro M, Milner JA. Consequences of selenite supplementation on the growth and metabolism of cultures of canine mammary cells[J]. J Nutr Biochem. 1990;1(9):478-83.
    [15]Shrimali RK, Irons RD, Carlson BA, et al. Selenoproteins mediate T cell immunity through an antioxidant mechanism[J]. J Biol Chem.2008;283(29):20181-5.
    [16]Zhou JC, Zhao H, Li JG, et al. Selenoprotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess[J]. J Nutr. 2009;139(6):1061-6.
    [17]Butler JE, Lager KM, Splichal I, et al. The piglet as a model for B cell and immune system development[J]. Vet Immunol Immunopathol.2009;128(1-3):147-70.
    [18]Patterson JK, Lei XG, Miller DD. The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption[J]. Exp Biol Med (Maywood). 2008;233(6):651-64.
    [19]Fairbairn L, Kapetanovic R, Sester DP, et al. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease[J]. J Leukoc Biol. 2011;89(6):855-71.
    [20]Lei XG, Evenson JK, Thompson KM, et al. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium[J]. J Nutr.1995;125(6):1438-46.
    [21]Carter LL, Zhang X, Dubey C, et al. Regulation of T cell subsets from naive to memory [J]. J Immunother.1998;21(3):181-7.
    [22]Haddad JJ. A redox microenvironment is essential for MAPK-dependent secretion of pro-inflammatory cytokines:modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in the alveolar epithelium[J]. Cell Immunol.2011;270(1):53-61.
    [23]Collins RJ, Boyle PJ, Clague AE, et al. In vitro OKT3-induced mitogenesis in selenium-deficient patients on a diet for phenylketonuria[J]. Biol Trace Elem Res. 1991;30(3):233-44.
    [24]Sengupta A, Lichti UF, Carlson BA, et al. Selenoproteins are essential for proper keratinocyte function and skin development[J]. PLoS One.2010;5(8):e12249.
    [25]Sunde RA, Raines AM, Barnes KM, et al. Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome[J]. Biosci Rep. 2009;29(5):329-38.
    [26]Qin S, Huang K, Gao J, et al. Comparison of glutathione peroxidase 1 and iodothyronine deiodinase 1 mRNA expression in murine liver after feeding selenite or selenized yeast [J]. J Trace Elem Med Biol.2009;23(1):29-35.
    [27]Brown KM, Pickard K, Nicol F, et al. Effects of organic and inorganic selenium supplementation on selenoenzyme activity in blood lymphocytes, granulocytes, platelets and erythrocytes[J]. Clin Sci (Lond).2000;98(5):593-9.
    [28]Romanowska M, Kikawa KD, Fields JR, et al. Effects of selenium supplementation on expression of glutathione peroxidase isoforms in cultured human lung adenocarcinoma cell lines[J]. Lung Cancer.2007;55(1):35-42.
    [29]Wu X, Huang K, Wei C, et al. Regulation of cellular glutathione peroxidase by different forms and concentrations of selenium in primary cultured bovine hepatocytes[J]. J Nutr Biochem.2010;21(2):153-61.
    [30]Barnes KM, Evenson JK, Raines AM, et al. Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity [J]. J Nutr.2009; 139(2):199-206.
    [31]Maquat LE. Evidence that selenium deficiency results in the cytoplasmic decay of GPx1 mRNA dependent on pre-mRNA splicing proteins bound to the mRNA exon-exon junction[J]. Biofactors.2001;14(1-4):37-42.
    [32]Williams MS, Henkart PA. Role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas[J]. J Immunol.1996;157(6):2395-402.
    [33]Curello S, Ceconi C, Cargnoni A, et al. Improved procedure for determining glutathione in plasma as an index of myocardial oxidative stress[J]. Clin Chem.1987;33(8):1448-9.
    [34]Shen H, Yang C, Liu J, et al. Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells[J]. Free Radic Biol Med.2000;28(7):1115-24.
    [35]Lopes MF, dos Reis GA. Trypanosoma cruzi-induced immunosuppression:blockade of costimulatory T-cell responses in infected hosts due to defective T-cell receptor-CD3 functioning[J]. Infect Immun.1994;62(4):1484-8.
    [36]Miao B, Li J, Fu X, et al. T-cell receptor (TCR)/CD3 is involved in sulfated polymannuroguluronate (SPMG)-induced T lymphocyte activation[J]. Int Immunopharmacol. 2005;5(7-8):1171-82.
    [37]O'Flynn K, Krensky AM, Beverley PC, et al. Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor[J]. Nature.1985;313(6004):686-7.
    [38]Kesherwani V, Sodhi A. Differential activation of macrophages in vitro by lectin Concanavalin A, Phytohemagglutinin and Wheat germ agglutinin:production and regulation of nitric oxide[J]. Nitric Oxide.2007;16(2):294-305.
    [39]Pecanha LT, Dos Reis GA. Functional heterogeneity in the process of T lymphocyte activation; barium blocks several modes of T cell activation, but spares a functionally unique subset of PHA-activable T cells[J]. Clin Exp Immunol.1989;76(2):311-6.
    [40]Hoffmann PR. Selenium and asthma:a complex relationship[J]. Allergy.2008;63(7):854-6.
    [1]Brown KM, Arthur JR. Selenium, selenoproteins and human health:a review[J]. Public Health Nutr.2001;4(2B):593-9.
    [2]Papp LV, Lu J, Holmgren A, et al. From selenium to selenoproteins:synthesis, identity, and their role in human health[J]. Antioxid Redox Signal.2007;9(7):775-806.
    [3]Shrimali RK, Irons RD, Carlson BA, et al. Selenoproteins mediate T cell immunity through an antioxidant mechanism[J]. J Biol Chem.2008;283(29):20181-5.
    [4]Hoffmann FW, Hashimoto AC, Shafer LA, et al. Dietary selenium modulates activation and differentiation of CD4+T cells in mice through a mechanism involving cellular free thiols[J]. J Nutr.2010;140(6):1155-61.
    [5]Ueno H, Kajihara H, Nakamura H, et al. Contribution of thioredoxin reductase to T-cell mitogenesis and NF-kappaB DNA-binding promoted by selenite[J]. Antioxid Redox Signal. 2007;9(1):115-21.
    [6]Zeng H, Combs GF, Jr. Selenium as an anticancer nutrient:roles in cell proliferation and tumor cell invasion[J]. J Nutr Biochem.2008;19(1):1-7.
    [7]Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease[J]. Antioxid Redox Signal.2011;14(7):1337-83.
    [8]Vendeland SC, Deagen JT, Butler JA, et al. Uptake of selenite, selenomethionine and selenate by brush border membrane vesicles isolated from rat small intestine[J]. Biometals. 1994;7(4):305-12.
    [9]Chaudhary M, Garg AK, Mittal GK, et al. Effect of organic selenium supplementation on growth, Se uptake, and nutrient utilization in guinea pigs[J]. Biol Trace Elem Res. 2010;133(2):217-26.
    [10]Kim YY, Mahan DC. Effect of dietary selenium source, level, and pig hair color on various selenium indices[J]. J Anim Sci.2001;79(4):949-55.
    [11]Mateo RD, Spallholz JE, Elder R, et al. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium[J]. J Anim Sci.2007;85(5):1177-83.
    [12]Yoon I, McMillan E. Comparative effects of organic and inorganic selenium on selenium transfer from sows to nursing pigs[J]. J Anim Sci.2006;84(7):1729-33.
    [13]Kim YY, Mahan DC. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs[J]. J Anim Sci.2001;79(4):942-8.
    [14]Bell RR, Nonavinakere VK, Soliman MR, et al. Effect of in vitro treatment of rat hepatocytes with selenium, and/or cadmium on cell viability, glucose output, and cellular glutathione[J]. Toxicology.1991;69(2):111-9.
    [15]Williams MS, Henkart PA. Role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas[J]. J Immunol.1996;157(6):2395-402.
    [16]Shen H, Yang C, Liu J, et al. Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells[J]. Free Radic Biol Med.2000;28(7):1115-24.
    [17]Wu X, Huang K, Wei C, et al. Regulation of cellular glutathione peroxidase by different forms and concentrations of selenium in primary cultured bovine hepatocytes [J]. J Nutr Biochem. 2010;21(2):153-61.
    [18]Reeves MA, Hoffmann PR. The human selenoproteome:recent insights into functions and regulation[J]. Cell Mol Life Sci.2009;66(15):2457-78.
    [19]Sunde RA, Raines AM, Barnes KM, et al. Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome[J]. Biosci Rep. 2009;29(5):329-38.
    [20]Lei XG, Evenson JK, Thompson KM, et al. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium[J]. J Nutr.1995;125(6):1438-46.
    [21]Lei XG, Dann HM, Ross DA, et al. Dietary selenium supplementation is required to support full expression of three selenium-dependent glutathione peroxidases in various tissues of weanling pigs[J]. J Nutr.1998;128(1):130-5.
    [22]Weiss Sachdev S, Sunde RA. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and-4 in rat liver[J]. Biochem J.2001;357(Pt 3):851-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700