用户名: 密码: 验证码:
包覆微粒润滑镀层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电沉积润滑镀层有利于提高金属表面的耐磨、耐蚀性能,在贫油工况或一些不能施加润滑油的特殊润滑体系中,显示出很大的优越性。润滑复合镀层的添加微粒多为导电微粒,如MoS2、石墨等,导电的微粒粘附于阴极表面上,由于表面尖端效应,会使表面粗糙度增加,甚至形成树枝状结晶。
     本文采用微粒改性技术在MoS2微粒表面包覆绝缘材料,研究并优化包覆工艺,观察包覆微粒表面形貌,及分析微粒包覆表面成分。采用复合镀制备含有包覆微粒MoS2/Al2O3的镍基润滑镀层,解决由于MoS2微粒的电导性引起的镀层树枝状结晶问题;研究分散剂对镀液中微粒分散性的影响,研究包覆微粒的复合镀工艺并优化其最佳工艺参数;建立包覆微粒在复合镀中的沉积模型,研究包覆微粒在镀层中的分布,用扫描电镜观察镀层表面形貌,用XRD分析相结构变化;研究镀层的结合强度、显微硬度、摩擦磨损性能及耐腐蚀性能。
     采用电解加工技术制备织构化微孔,通过改变暴露面积、电流密度、电解时间,从而获得不同尺寸、深度及分布的织构化微孔。采用电沉积技术在表面织构化微孔中沉积Ag-MoS2/Al2O3润滑镀层,制备织构化表面Ag-MoS2/Al2O3润滑镀层。织构化表面Ag-MoS2/Al2O3润滑镀层与GCr15钢进行环/盘式摩擦磨损试验,测试不同直径、间距等织构参数对织构化表面Ag-MoS2/Al2O3润滑镀层摩擦磨损性能的影响,用织构化表面MoS2干膜润滑做摩擦磨损性能的对比研究。
     研究了Al2O3或PS包覆MoS2微粒的工艺,Al2O3包覆MoS2微粒的最佳工艺为,温度80℃,pH值7.0,Al3+浓度为0.2mol/L;XPS检测结果表明MoS2微粒表面成功地包覆了均匀完整的Al2O3层。PS包覆MoS2最佳工艺为:引发剂为0.2wt%的偶氮二异丁腈(AIBN)(基于苯乙烯单体质量分数),聚合时间为2h,苯乙烯单体与微粒用量的比例为1ml:10g,得到包覆均匀、不团聚的PS/MoS2复合微粒。
     本文采用电沉积技术制备减摩复合镀层,得出以下结论:十六烷基溴化铵(CTAB)用量在0.4mg/l时,微粒在镀液中的分散性达到最优;在各个用量时对比,CTAB对镀液中微粒的分散性均优于OP-10及十二烷基磺酸钠。优化出复合镀最佳工艺参数为:电镀液中微粒浓度为25g/l,电流密度为11A/dm2,搅拌速度为600rpm,pH值为4.5,温度为55℃;对比包覆微粒MoS2/Al2O3与MoS2微粒对镀层性能的影响,在相同的条件下,MoS2/Al2O3微粒在镀层中的沉积量均高于未包覆微粒的沉积量;MoS2微粒的镀层出现树枝状结晶,而包覆微粒MoS2/Al2O3的镀层则避免了树枝状结晶的出现,镀层表面形貌平整,厚度均匀;梯度复合镀层的结合力优于普通复合镀层,包覆微粒在镀层中的分布均匀。
     对复合镀层的摩擦磨损、腐蚀性能进行了研究,并探讨了耐磨、耐蚀机理,结果表明:用PS包覆MoS2微粒的复合镀层摩擦系数低于MoS2复合镀层,而用Al2O3包覆MoS2微粒的复合镀层摩擦系数高于MOS2,镀层的摩擦系数都随着复合镀层中微粒含量的增加而降低。用扫描电镜和光学显微镜观察磨痕表面形貌,能谱分析和XPS分析磨痕成分变化,结果表明结果表明在摩擦磨痕表面形成润滑膜,对磨陶瓷球表面形成了减摩润滑转移膜。PS或Al2O3包覆微粒的镀层具有较好的耐蚀性,这是由于在相同的腐蚀介质中,复合镀层的腐蚀电位增大,而腐蚀电流减小。
     结果表明:织构化表面Ag-MoS2/Al2O3润滑镀层比织构化表面MoS2干膜润滑和光滑表面具有更好的摩擦磨损性能,当表面织构化的微孔和微孔间距均为500μm时,织构化表面Ag-MoS2/Al2O3润滑镀层的摩擦系数和磨损率都达到最低,研究织构化表面Ag-MoS2/Al2O3润滑镀层的摩擦磨损机理。
Electrodeposition lubricating coating can be propitious to improve the wear-resistant and corrosion resistance of metal surface. Poor working conditions in oil or some special requirements of the lubrication system for lubricating oil can not be supplied sufficiently, this coating will show a great deal of the superiority. Most of self-lubricating particles are conductive particles, such as MoS2, graphite, etc. And when conductive particles were adhesion on the cathode surface, the surface of coating becomes more rough and even the formation of dendritic crystallization, which may be caused by cutting-edge effects.
     In this paper, insulating material was coated onto MoS2 particles by particle surface modification technology. Research and optimization of coating process, observation of surface morphology of coated particles. Ni-based lubricant coating containing coated particles of MOS2/Al2O3 was preparated by composite plating, which avoiding dendritic crystallization caused of the coating by the conductivity of MoS2 particles. Study on impact of dispersing agent on the of particles scattered in the solution. Research process of composite plating with coated particles and the optimization of best process parameters. The deposition model of of coated particles during composite plating was established. Distribution of coated particles in the coating was investigated. Observation of surface morphology of coatings and analysis of structural changes by XRD. Study on bonding strength, microhardness, friction and wear properties and corrosion resistance of coating.
     In this paper, surface texturing was prepared by electrolysis. Surface texturing with various dimensions and densities were generated in material surfaces, by means of changing the exposed area, current density and electrolysis time. Electrodeposited lubricating coating was prepared in porous of surface texturing, which is the preparation of surface texturing Ag-MoS2/Al2O3 lubricating coating. Friction and wear performance of surface texturing Ag-MoS2/Al2O3 lubricating coating and GCr15 steel mates ring/disc were estimates. And the effect of texturing parameters, such as diameter and density on tribological properties of estimates was also tested. Lubricated friction and wear-resistant of surface texturing Ag-MoS2/Al2O3 lubricating coating and surface texturing MoS2 dry film lubricant were studied comparativly.
     Process parameters of MoS2 particles were coated with PS or Al2O3 was studied, the optimum process parameters for MoS2 particles coated with Al2O3 was temperature of 80℃, pH value of 7.0 and the range of Al3+ concentration is 0.1~0.25mol/l. Under the conditions of optimization process parameters can be prepared uniformly Al2O3 coating on MoS2. Uniform coated, non-agglomeration PS/MoS2 particles was prepared, the optimum process parameters for MoS2 particles coated with PS was:0.2wt% AIBN (based on the mass fraction of styrene monomer), polymerization time 2h, the amount of styrene monomer and the ratio for particles with 1ml:10g, styrene monomer was added under intense stirring slowly.
     In this paper, self-lubricating composite coating was prepared by sediment co-deposition technique. The effect of dispersant on dispersion of particles in the plating bath have been studied. The experimental results show that: the dispersion of particles in solution of 0.4mg/l CTAB is superior to OP-10 and sodium dodecyl sulfate. The proeess parameters affecting the particles contents in composite coatings were investigated, the optimum proeess parameters were chosen: particle concentration in the plating bath:25g/l, current density:11A/dm2, stirring speed: 600rpm, pH value:4.5, temperature:55℃. The effect of coated particles or non-coated particles on the coating properties has been studied. Content of coated particles in the coating were higher than those of non-coated particles under the same conditions. Coating that emboded by non-coated conductive particles appeared dendritic organization. While coating that emboded by coated particles are to avoid the appearance of the dendritic organization and provided with uniformity surface morphology. Binding force of Gradient composite coating is superior to those of even the composite coating, coated particles in the coating was distributed uniformity.
     Friction and wear and corrosion resistance of composite coating were studied. And the mechanism of wear-resistant and anti-corrosion has been studied too, the results showed that: friction coefficient of Ni-PS/MoS2 coating is lower than those of Ni-MoS2 coating; but friction coefficient of Ni-MoS2/Al2O3 coating is higher than those of Ni-MoS2 coating. The friction coefficient of these composite coatings are decreasing with the increasing of particle content in bath. Image microscopy of worn scar was observed by SEM and optical microscope. Change of components on worn scar was analysed by EDS and XPS. The results show that:the lubricating film formed on the surface of worn scar. Transfer lubricating film formed on the surface of ceramic ball. Coating that emboded with particles coated with PS or Al2O3 possess of good corrosion resistance. Which is due to the corrosion potential of composite coating increased, while the corrosion current decreases, when was corroded in the same corrosion medium.
     The results show that: the friction and wear properties of surface texturing Ag-MoS2/Al2O3 lubricating coating were better than those of surface texturing MoS2 dry film lubricant and the smooth surface. The sample with dimples of 500μm in diameter and 500μm in clearance has a optimal tribological performance. Mechanism of friction and wear of surface texturing 2/Al2O3 lubricating coating was investigated.
引文
[1]梁志杰.现代表面镀覆技术[M].第1版.北京:国防工业出版社.2005.
    [2]郭鹤桐,张三元.复合镀层[M].第1版.天津:天津大学出版社.1991.
    [3]王利剑,郑水林.我国无机包覆型复合粉体制备研究现状[J].化工矿物与加工.2005(1):5-7.
    [4]魏明坤,肖辉,刘利.A1203包覆石墨颗粒的制备及表征[J].硅酸盐学报.2004,32(8):916-919.
    [5]杨俊佼,左育民.交联聚苯乙烯包覆二氧化锆柱填料的制备与评价[J].分析化学研究报告.2005,33(3):325-328.
    [6]崔洪涛,洪广言.聚苯乙烯包覆Y203:Eu3+颗粒及表征[J].应用化学.2001,18(3):208-211.
    [7]张胜涛,韩连漪,唐燕秋.电镀工程[M].第1版.北京:化学工业出版社.2002.
    [8]胡信国,王素琴.电沉积复合镀层[J].固体润滑.1982(4):246-250,245.
    [9]王丽琴,吴化,赵宇.铜基表面Ni-Si3N4纳米复合镀工艺研究[J].表面技术.2004,33(1):42-44.
    [10]陈小华,李德意,李学谦,等.碳纳米管增强镍基复合镀层的形貌及摩擦及磨损行为研究[J].摩擦学学报.2002,22(1):55-59.
    [11]王浪云.镍基纳米碳管复合镀层的磨擦磨损性能[D].浙江大学.2003:54-56.
    [12]Wang L P, Gao Y, Xue Q J. Effects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings[J]. Mater.Sci.Eng A.2005, 390(1-2):313-318.
    [13]李颖,陈家钊,涂铭族,等Ni-P-BNw化学复合镀层的组织与耐磨性[J].摩擦学学报.1998,18(1):71-74.
    [14]Wang Y Q, Zhou B L. Behaviour of coatings on reinofrcements in some metal matrix composites[J]. Composit.part A-Appl.S.1996,27(12):1139-1145.
    [15]Ghorbani M, Mazaheri M, Khangholi K, et al. Electrodeposition of graphite-brass composite coatings and characterization of the tribological properties[J]. Surface and Coatings Technology.2001,148(1):71-76.
    [16]Afshar A, Ghorbani M, Mazaheri M. Electrodeposition of graphite-bronze composite coatings and study of electroplating characteristics[J]. Surface and Coatings Technology. 2004,187(2-3):293-299.
    [17]Susumu Arai, Morinobu Endo, Norio Kaneko. Ni-deposited multi-walled carbon nanotubes by electrodeposition[J]. Carbon.2004 (42):641-644.
    [18]Susumu Arai, Morinobu Endo. Carbon nanofiber-copper composite powder prepared by electrochemistry communications [J]. Electrochemistry Communications.2003, (5): 797-799.
    [19]杜令忠,徐滨士,董世运.滑动速度对纳米颗粒复合镀层摩擦性能的影响[J].金属热处理.2005,30(1):51-53.
    [20]Harayama A, T Imat. US Patent. 6013380.2000.
    [21]王浪云.镍基纳米碳管复合镀层的磨擦磨损性能[D].浙江大学.2003:54-56.
    [22]Murase Y. U.S Patent. 5660704.1997.
    [23]Ebdon P R. Composite electroless Nickel/PTFE coatings[J]. Surf.Eng.1987,3(2): 114-116.
    [24]薛逢元,张绪寿,薛群基,等.一种新型的减摩耐磨复合镀层[J].材料研究学报.1994,8(6):573-576.
    [25]王立平,高燕,刘惠文,等.憎水性Ni-PTFE复合镀层的制备及其摩擦磨损性能的研究[J].电镀与环保.2004,24(5):9-11.
    [26]Safranek W H, Miller H R. Copper plating on zinc die castings[J]. Plating.1968,55(3): 233-236.
    [27]Straffelini G, Colombo D, Molinari A. Surface durability of electroless Ni-P composite deposits[J]. Wear.1999,236(1-2):179-188.
    [28]郭忠诚,王明,刘鸿康.电镀法制取耐磨耐蚀复合镀层的性能研究[J].机械工程材料.1998,22(1):41-43.
    [29]Ma Keyi, Guo Zhong cheng, Yang Xianwan. Combination strengthening process of Ni-W-SiC composite coating and nitrocarburization[J].Transaction of Nonferrous Metals Soeiety of China.1997,7(4):148-151.
    [30]薛玉君,朱荻,靳广虎,等.电沉积Ni-La2O3纳米复合镀层的摩擦磨损性能[J].摩擦学学报.2005,125(1):1-5.
    [31]Xu B S, Wang H D, Dong S Y. Fretting wear-resistance of Ni-base electro-brush plating coating reinofrced by nano-alumina grains[J]. Mater.Lett.2006,60(5):710-713.
    [32]Du L Z, Xu B S, Dong S Y. Preparation microsturcture and tribological properties of nano-Al2O3/Ni bursh plated composite coatings[J]. Surf.Coat.Technol.2005,192(2-3): 311-316.
    [33]Ki S K, Yoo H J. Formation of bilayer Ni-SiC composite coatings by electrodeposition[J]. Surf.Coat.Technol.1998,108(3):564-569.
    [34]Xue D, Deng J F. Amorphous Ni-B alloy/ceramic composite membrane prepared by an improved electroless plating technique [J]. Mater.Lett.2001,47(4-5):271-275.
    [35]邵光杰,秦秀娟,王海燕,等.离心高速电沉积Ni-SiC复合镀层的研究[J].复合材料学报.2003,20(5):28-32.
    [36]吴化,李雪松,刘云旭,等.耐磨Ni-A1203复合镀层组成机理及性能研究[J].表面技术.2004,33(6):28-30.
    [37]Starosta R, Zielinski A. Eeffct of chemical composition on corrosion and wear behaviour of the composite Ni-Fe-Al2O3 coatings[J]. J.Mater.Process.Tech.2004, (157):434-441.
    [38]Stack M M, Mathew M T. Mapping the micro-abrasion resistance of WC/Co based coatings aqueous conditions[J]. Surf.Coat.Technol.2004,183(2-3):337-346.
    [39]Surende M, Bas B, Balasubramaniam R. Wear characterization of electrodeposited Ni-WC composite coatings[J]. Tribol.Int.2004,37(9):743-749.
    [40]Idem A. Mieromechanism for crystallization for amorphous alloys II:bulk crystallization process[J]. J.Cryst.Growth.1992,113(113):242-250.
    [41]Bozzini B, Martini C, Cavallotti P L. Relationships among crystallographic strueture, mechanical properties and tribological behaviour of electroless Ni-P(9%)/B4C films[J]. Wear.1999,225(2):806-813.
    [42]朱诚意.国内复合镀层最新进展及应用[J].电镀与环保.1998,18(1):3-7.
    [43]冈田益熊,松村宗顺,吉川逸治.复合电铸法应用于倾斜机能材料开发[J].1994(9):17-21.
    [44]施国洪.(Fe-Ni)-Al2O3复合镀层及其摩擦磨损性能研究[J].电镀与精饰.1994,16(5):8-11.
    [45]姚冠新.(Fe-Ni)-MoS2自润滑复合镀层的制备及其性能研究[J].电镀与精饰.1995,17(2):33-35.
    [46]胡信国.电沉积Cr-SiC高耐磨复合镀层的研究[J].电镀与环保.1987,7(1):811-816.
    [47]Bozzini B, Boniardi M, Fanigliulo A.Tribological properties of electroless Ni-P/diamond composite films[J]. Materials Research Bulletin.2001,36(15):1889-1902.
    [48]吴向清,谢发勤.铝合金基电沉积Ni-SiC复合镀层的结构及耐蚀性[J].表面技术.2003,32(2):23-25.
    [49]Chen X H, Chen C S, Xiao H N. Corrosion behavior of cabron nanotubes-Ni composite coating[J]. Surf.Coat.Technol.2005,191(2-3):351-356.
    [50]朱立群,张玮,刘锋.含有液体微胶囊的复合电沉积铜镀层性能的研究[J].材料工程.2004(1):12-15.
    [51]桑付明,成旦红.Ni-纳米Si02复合镀层耐蚀性的初探[J].电镀与环保.2003,23(11):16-18.
    [52]范云鹰,张英杰,杨显万.Zn-Fe-SiO2复合镀层的耐蚀性[J].腐蚀科学与防护技术.
    2004,16(4):245-247.
    [53]部华萍,杨勇.电沉积RE-Ni-W-P-SiC复合镀层的耐蚀性研究[J].云南冶金,2001,30(2):46-49.
    [54]Malaftti C F, Ferreira J Z, Santos C B. NiP/SiC composite coatings:the effects of particles on the electrochemical behaviour[J]. Corros.Sci.2005,47(3):567-580.
    [55]谢华.Ni-P-金刚石复合镀层的组织结构与性能[D].中南大学.2002:83-84.
    [56]Sun K K, Yoo H J. Formation of bilayer Ni-SiC composite coatings by electrodeposition[J]. Surf.Coat.Technol.1998,108-109(1-3):564-569.
    [57]Orlovskaya L, Medeliene V. Electrodeposition of multiplayer cobalt sillicon carbide composite coatings from a single bath[J]. Bull.Electrochem.2001,17(8):371-377.
    [58]Zhao Q, Liu Y, Muller-Steinhagen H. Graded Ni-P-PTFE coatings and their potential applications[J]. Surf.Coat.Technol.2002,155(2-3):279-284.
    [59]王宏智,张卫国,姚素薇.电沉积梯度功能材料的研究进展[J].电镀与环保.2001,21(3):1-4.
    [60]文明芬,刘晓冰,张晶,等.功能梯度材料的新型制备法--多层复合镀[J].电镀与涂饰,1999(1):44-46.
    [61]高红霞,商全义,张贵州,等(Ni-P)-SiC-PTFE化学复合镀层摩擦性能研究[J].表面技术.2003,2(32):31-35.
    [62]张欢,郭忠诚,韩夏云.脉冲电沉积RE-Ni-W-P-SiC复合镀层工艺[J].机械工程材料.2004,7(28):29-34.
    [63]Viswanathan M, Doss K S G. Sediment codeposition-a new technique for occlusion plating[J]. MeTal Finishing.1972,70(2):83-84.
    [64]Viswanathan M. Occlusion plating to form nickel cermets[J]. Metal Finishing.1973, 71(1):38-43.
    [65]Viswanathan M, Ghouse M. Occlusion plating of Nickel-graphite composites[J]. Metal Finishing.1979,77(10):67-69.
    [66]Ghouse M, Viswanathan M, Ramachandran E G. Occlusion plating of copper-silicon carbide composites[J]. Metal Finishing.1980,78(3):31-35.
    [67]Ghouse M, Viswanathan M, Ramachandran E G. Electrocodeposition of Nickel Molybdenum disulfide and Nickel-Tungsten disulfide[J]. Metal Finishing.1980,78(4): 44-47.
    [68]Ghouse M, Ramachandran E G. Antifiction properties of electrodeposited composites of graphite and molybdenum disulfide with copper[J]. Metal Finishing.1981,79(6):85-89.
    [69]Pushpavanam M,Varadarajan G, Krishnamoorthy S, et al. Occlusion plating with nickel codeposition of titanium dioxide particles[J]. Metal Finishing.1974,72(10):46-52.
    [70]Ramesh C S, Seshadri S K. Tribological characteristics of nickel based composite coatings[J]. Wear.2003,255(7-12):893-902.
    [71]Balaji R, Pushpavanam M, Kumar K Y. Electrodeposition of bronze-PTFE composite coatings and study on their tribological characteristics[J]. Surface and Coatings Technology.2006,201(6):3205-3211.
    [72]Pushpavam M, Manik N S H, Ramanathan K. Preparation and characterization of Nickel-Cobalt-diamond electro-composites by sediment co-deposition[J]. Surface and Coatings Technology.2007,201(14):6372-6379.
    [73]李君,王殿龙,胡信国,等.沉降法电铸Ni-PSZ复合镀层[J].材料保护.1996,29(9):17-19.
    [74]李君,王殿龙,胡信国Ni-PSZ复合镀层750℃氧化行为的研究[J].腐蚀科学与防护技术.1996,8(2):130-133.
    [75]李君,王殿龙,陈莉,等.电沉积Ni-PSZ梯度镀层过程中阴极电流效率的研究[J].电化学.1997,3(1):61-66.
    [76]李君,胡信国,王殿龙,等.电沉积Ni-PSZ复合镀层摩擦磨损行为的研究[J].摩擦学学报.1997,17(4):308-313.
    [77]张文峰,朱荻.极板放置方式对电铸层中微湘纳米SiC复合量影响的研究[J].中国机械工程.2004,15(24):2241-2243,2251.
    [78]Liu H, Chen W. Electrodeposition Ni-Al composite coatings with high Al content by sediment co-deposition[J]. Surface and Coatings Technology.2005,191(2-3):341-350.
    [79]Bahrololoom M E, Sani R. The Influence of pulse plating parameters on the hardness and wear resistance of Nickel-alumina composite coatings[J]. Surf.Coat.Technol.2005, 193(2-3):154-163.
    [80]王军丽,徐瑞东,龙晋明等.脉冲电沉积RE-Ni-W-B-PTFE-Al2O3复合镀层性能的研究[J].材料保护.2006,38(3):18-20.
    [81]Qu N S, Chan K C, Zhu D. Pulse co-electrodeposition of nano Al2O3 whiskers Nickel composite coating[J]. Scripta.Mater.2004,50(8):1131-1134.
    [82]Stroumbouli M, Gyftou P, Pavlatou E A, et al. Codeposition of ultrafine WC particles in Ni matrix composite electrocoatings[J]. Surf.Coat.Technol.2005,195(2-3):325-332.
    [83]Lee W H, Tang S C, Chung K C. Effects of direct current and pulse-plating on the co-deposition of Nickel and nanometer diamond powder[J]. Surf.Coat.Technol.1999, 120(2):607-611.
    [84]张欢,郭忠诚.脉冲电沉积Ni-W-P-SiC复合镀层的硬度研究[J].材料开发与应用. 2004,19(3):29-32.
    [85]张欢,郭忠诚,朱晓云(Ni-W-P)-SiC复合镀层的脉冲电沉积及其耐蚀性[J].电镀与精饰.2004,26(2):4-7.
    [86]张欢,郭忠诚.脉冲电沉积EZE-Ni-W-P-SiC复合镀层的硬度研究[J].机械工程材料.2004,28(11)25-27.
    [87]刘龙玉,郭忠诚,张欢等.脉冲电沉积Ni-W-P系多元复合镀层性能研究[J].昆明理工大学学报(理工版).2004,29(3):21-25.
    [88]宋曰海,郭忠诚.脉冲与直流电沉积RE-Ni-W-P-SiC复合镀层性能研究[J].电镀与环保.2003,23(6):10-11.
    [89]张欢,郭忠诚,徐瑞东.脉冲电沉积Ni-W-P-SiC复合电镀的研究[J].电镀与环保.2004,24(1):1-3.
    [90]Hou K H, Hwu W H. Ni-P-SiC composite produced by pulse and direct current plating[J]. Mater.Chem.Phys.2006.
    [91]Gyftou P, Stroumbouli M, Pavlatou E A, et al. Tribological study of Ni matrix composite coatings containing nano and micro SiC particles[J]. Electrochimica.Acta.2005,50(23): 4544-4550.
    [92]Haseko Y, Shrestha N K, Teruyama S, et al. Reversal pulsing electrodeposition of Ni/polypyrrole composite film[J]. Electrochimica.Acta.2006.
    [93]Wand F, Arai S, Endo M. Preparation of Nickel-carbon nanofiber composites by a pulse-reverse electrodeposition process[J]. Electrochem.Commun.2005,7(7):674-678.
    [94]Hovestad A, Janssen L J J. Electrochemical codeposition of inert particles in a metallic matrix[J]. Journal of Applied Electrochemistry.1995,25(6):519-527.
    [95]Bazzard R, Boden P J. Nickel-chromium alloys by codeposition: part I-codeposition of chromium particles in a Nickel matrix[J]. Transactions of the Institute of Metal Finishing. 1972,50(2):63-69.
    [96]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths[J]. Journal of the Electrochemical Society.1972,119(8):1009-1012.
    [97]Cells J P, Roos J R. Kinetics of the deposition of alumina particles from copper sulfate plating baths [J]. Journal of the Electrochemical Society.1977,124(10):1508-1511.
    [98]Suzuki Y, Asai O. Adsorption-codeposition process of Al2O3 particles onto Ag-Al2O3 dispersion films[J]. Journal of the Electrochemical Society.1987,134(8):1905-1910.
    [99]Lee C C, Wan C C. A study of the composite electrodeposition of copper with alumina powder[J]. Journal of the Electrochemical Society.1988,135(8):1930-1933.
    [100]覃奇贤,朱龙章,刘淑兰,等.镍—碳化钨微粒复合电沉积机理的研究[J].物理化 学学报.1994,10(10):892-896.
    [101]郭鹤桐,王兆勇.在柠檬酸镀金溶液中复合镀层的形成机理[J].天津大学学报.1985,(1):13-19.
    [102]黎德育,李宁,杜明华,等.氨基磺酸盐复合镀Ni-Al2O3[J].材料科学与工艺.2004,12(2):199-201.
    [103]Wang S C, Wei W C J. Kinetics of electroplating process of nano-sized ceramic particle/Ni composite[J]. Materials Chemistry and Physics.2003,78(3):574-580.
    [104]Narayan R, Chattopadhyay S. Electrodeposited Cr-Al2O3 Composite coatings[J]. Surface Technology.1982,16(3):227-234.
    [105]Kariapper A M J, Foster J. Further studies on the mechanism of formation of electrodeposited composite coatings[J]. Transactions of the Institute of Metal Finishing. 1974,52(3):87-91.
    [106]Celis J P, Roos J R, Buelens C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix[J]. Journal of the Electrochemical Society.1987, 134(6):1402-1408.
    [107]Valdes J L. Electrodeposition of colloidal particles[J]. Journal of the Electrochemical Society.1987,134(4):223C-225C.
    [108]Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication [J]. Tribology International.2005,38:249~256.
    [109]Xiaolei Wang, Koji Kato. Improving the anti-seizure ability of SiC seal in water with RIE texturing [J]. Tribology Letters.2003,14(4):275~280.
    [110]Uehara Y, Wakuda M, Yamauchi Y, et al. Tribological properties of dimpled silicon nitride under oil lubrication [J]. Journal of the European Ceramic Society.2004,24: 369~373.
    [101]郭鹤桐,王兆勇.在柠檬酸镀金溶液中复合镀层的形成机理[J].天津大学学报.1985,(1):13.19.
    [102]黎德育,李宁,杜明华,等.氨基磺酸盐复合镀Ni-Al2O3[J].材料科学与工艺.2004,12(2):199-201.
    [103]Wang S C, Wei W C J. Kinetics of electroplating process of nano-sized ceramic particle/Ni composite[J]. Materials Chemistry and Physics.2003,78(3):574-580.
    [104]Narayan R, Chattopadhyay S. Electrodeposited Cr-Al2O3 Composite coatings[J]. Surface Technology.1982,16(3):227-234.
    [105]Kariapper A M J, Foster J. Further studies on the mechanism of formation of electrodeposited composite coatings [J]. Transactions of the Institute of Metal Finishing. 1974,52(3):87-91.
    [106]Celis J P, Roos J R, Buelens C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix[J]. Journal of the Electrochemical Society.1987, 134(6):1402-1408.
    [107]Valdes J L. Electrodeposition of colloidal particles[J]. Journal of the Electrochemical Society.1987,134(4):223C-225C.
    [108]Erdemir A. Review of engineered tribological interfaces for improved boundary lubrication [J]. Tribology International.2005,38:249~256.
    [109]Xiaolei Wang, Koji Kato. Improving the anti-seizure ability of SiC seal in water with RIE texturing [J]. Tribology Letters.2003,14(4):275~280.
    [110]Uehara Y, Wakuda M, Yamauchi Y, et al. Tribological properties of dimpled silicon nitride under oil lubrication [J]. Journal of the European Ceramic Society.2004,24: 369~373.
    [111]闫利文.微机械制造工艺及其应用[J].现代制造工程.2004(3):83~85.
    [112]Etsion I, Halperin G, Greenberg Y. Increasing mechanical seal life with laser textured seal faces [C].15th International Conference on Fluid Seal. London: Professional Engineering Publishing Limited.1997:3~10.
    [113]Etsion I, Kligerman Y, Haplerin G. Analytical and experimental investigation of laser-texture mechanical seal faces[J]. Tribology Transactions.1999,42(3):511~516.
    [114]Etsion I, Halperin G. A laser surface textured hydrostatic mechanical seal[J]. Tribology Transaction.2002,45(3):430~434.
    [115]Pride S, Folkert K. Effect of micro-surface texturing on breakaway torque and blister formation on carbon-graphite faces in a mechanical seal[J]. Lubrication Engineering. 2002,58(10):16~21.
    [116]Etsion I. Improving tribological performance of mechanical seals by laser surface texturing[A]. In Proc.17th Intnational Pump Users Symposium[C] 2000:17~22.
    [117]Etsion I, Halppern G, Geranberg Y. Increasing mechanical seals life with laser-textured seal faces [A].15th International conference on fluid seal. London:Professional Engineering Publishing Limited[C].1997,3210-3214.
    [118]Ogihara H, et al. Technology for reducing engine rubbing resistance by means of surface improvement[J]. HONDA R&D Technicl Review.2000,12(2):93-98.
    [119]Hamilton D B, J.A Walowit, C.M Allen Hamiton. A theory of lubrication by micro-irregularities[J]. J. Basic Engineering.1966,88 (1):177-185.
    [120]Wang X, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Trib.Int.2003, (36):189-197.
    [121]Suh N P, Mosleh M, Howard P S. Control of Friction[J]. Wear.1994,175(1-2): 151-158.
    [122]Ranjan R, Lambeth D N, Tromel M, et al. Laser texturing for Low flying height media[J]. J. Applied Physics.1991,69(8):5745-5747.
    [123]Pettersson U, Jacobson S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding[J]. Tribology Letters.2004,17 (3):553-559.
    [124]王美玲,苏风兰,李同生.PPS-2干膜之研究[J].固体润滑.1981(3):1-5.
    [125]HOIINSKL R. Successfull solutions of tribological problem in Eurpopean vehicle by bonded coatings[J]. EUROTRIB.1985 (1):211-217.
    [126]MARSHAL L B, PETERGO N. Some practical consideration found in the use of solid film lubricant in aircraft systems[J]. Lub.Eng.1976,7(31):357-361.
    [127]王美玲,党鸿辛.IF-3干膜润滑剂的研制及其应用[J].固体润滑.1985(3):23-26.
    [128]肖军,周惠娣,李铁虎,等.导弹发射装置滑轨表面MoS2干膜防护高温高速两相燃气流应用研究[J].摩擦学学报.2003,5(23):435-439.
    [129]王美玲.PPS-2干膜润滑剂的研究[J].固体润滑.1983,3(1):19-25.
    [130]郑友华,李冀生.FM-510型粘结固体润滑涂层的摩擦性能摩擦学学报[J].1998,18(4):373-376.
    [131]周惠娣.一种高比压润滑涂层的研制[C].99#摩擦学表面技术会议论文集,武汉.1999.70-74.
    [132]陈建敏,冶银平,党鸿辛.粘结固体润滑膜及其应用[J].摩擦学学报.1994,14(2):180-189.
    [133]徐进,朱旻昊,周仲荣.聚四氟乙烯粘结固体润滑涂层微动磨损性能研究[J].中国机械工程.2003,14(20):1786-1788.
    [134]张宏祥,王为.电镀工艺学[M].天津:天津科学技术出版社出版.2002.
    [135]Jianliang Li, Dangsheng Xiong. Tribological properties of molybdenized silver containing nickel base alloy at elevated temperatures [J]. Tribol.Int.2009 (10): 1016-1013.
    [136]军奇贤.电镀原理与工艺[M].北京:冶金出版社.1992:180-183,
    [1371霍伟荣,刘家臣,许黎明,等.纳米微粒Ni-ZrO2复合镀层电镀液的制备[J].电镀与精饰.2003,25(6):1-4.
    [138]杨于兴.X射线衍射分析[M].上海:上海交通大学出版社.1994.
    [139]Zhao H, Liu L, Wu Y, et al. Investigation on wear and corrosion behavior of Cu-graphite composites prepared by electroforming[J]. Composites Science and Technology.2007,67(6):1210-1217.
    [140]Wang L, Zhang J, Zeng Z, et al. Fabrication of a nanocrystalline layer with excellent electrochemical corrosion and tribological of Ni-Co/CoO functionally graded performance[J]. Nanotechnology.2006,17(18):4614-4623
    [141]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封.2007,12(32):36-39.
    [142]SUNWOO S, KIM I.H, LEE K.G, et al. Preparation of ZrO2 coated graphite powders[J]. J.Mater.Sci.2000,35(14):3677-3640
    [143]HAN K R, LM C S, HONG M J, et al. Surface modification of silicon nitride powder with alunina[J]. J.Am.Geram.Soc.1996,79(2):574-577.
    [144]MIFCHELL T D Jr, De JONGHE L C. Processing and properties of particulate composites from coated powders[J]. J.Am.Geram.Soc.1995,78(1):199-202.
    [145]HARMER M A, BERGNA H, SALTZBERG M, et al. Preparation and properties of borosilicate-coated alumina particles from alkoxides[J]. J.Am.Ceram.Soc.1996,79(6): 1546-1551.
    [146]洪若瑜,刘璐,刘锋,等.ZnO/Al2O3复合纳米颗粒的制备与表征[J].纳米粉体技术.2005,(4):10-13.
    [147]姚超,高国生,林西平,等.氢氧化铝对纳米TiO2的表面包覆[J].应用化学.2005,22(7):759-763.
    [148]邹建,高家诚,王勇.纳米TiO2的氧化铝表面改性及表征[J].兵器材料科学及工程.2004,27(3):46-49.
    [149]沈钟,王果庭.胶体与表而化学[M].北京:化学工业出版社.1999,219-200.
    [150]1998,26(6):762-767. George T K, Fey H M, Kao P, et al. Electrochemical and solid-state NMR studies on LiCoO2 coated with Al2O3 derived from carboxylate-alumoxane[J]. Journal of Power Sources.2006 (163):135-143.
    [151]王淑勤,赵毅.聚苯乙烯/氧化铝复合物的合成与表征[J].应用化学,2008,11(25):1291-1295.
    [152]Nakada M. Trends in engine technology and tribology[J]. Tribology International,1994, 27(1):3-8.
    [153]王舜,赵振国.表面活性剂的吸附对在水中氧化铝微粉悬浮体稳定性的影响[J].北京大学学报:自科版.1998,34(6):735-740.
    [154]许育东,刘宁,李华.纳米TiN粉分散工艺优化研究[J].硬质合金.2002,19(2):78-82.
    [155]Davies J. The role of ammonium polyacrylate in dispersing concentrated alumina suspensions [J]. Journal of the European Ceramic Society.2000,20(10):1539-1553.
    [156]Croll S. DLVO theory applied to TiO2 pigments and other materials in latex paints[J]. Progress in Organic Coatings.2002,44(2):131-146.
    [157]蒋天智,刘少友,周昊.十六烷基三甲基溴化铵对化学镀Co-Ni-P的影响[J],日用化学工艺.2007,4(37):219-222.
    [158]Ming-Der Ger. Electrochemical deposition of Nickel/SiC composites in the presence of surfactants[J]. Materials Chemistry and Physics.2004(87):67-74.
    [159]Stankovic V D, Gojo M. Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles[J]. Surface and Coatings Technology.1996, (81):225-232.
    [160]Straffelini G, Colombo D, Molinari A. Surface durability of electroless Ni-P composite deposits[J]. Wear.1999, (236):179-188.
    [161]Zhong-jia Huang, Dang-sheng Xiong. MoS2 coated with Al2O3 for Ni-MoS2/Al2O3 composite coatings by pulse electrodeposition[J]. Surface & Coatings Technology. 2008, (202):3208-3214.
    [162]Ghouse M, Viswanathan M. Occlusion plating of copper-silicon carbide composites[J]. Metal Finishing.1980,78(3):31-35.
    [163]Ghouse M, Viswanathan M, E G Ramachandran. Electrocodeposition of nickel-molybdenum disulfide and nickel-tungsten disulfide[J]. Metal Finishing.1980, 78(4):44-47.
    [164]Fawzy M H, Ashour M M, Abd El-Halim M. Effect of some operating variables on the characteristics of electrodeposited Cu-α-Al2O3 and Cu-TiO2 composites [J]. Transactions of the Institute of Metal Finishing.1995,73(4):132-138.
    [165]Foster J, Cameron B. Effect of current density and agitation on the formation of electrodeposited composite coatings[J]. Transactions of the Institute of Metal Finishing. 1976,54(4):178-183.
    [166]张文峰,朱荻.电沉积纳米复合材料的研究与应用[J].材料导报.2003,17(8):57-60.
    [167]肖科,郭鹤桐.Ti02-Ni电极的光电效应[J].太阳能学报.1985,6(2):143-149.
    [168]内藤邦子,西村和夫,久保光康,等.金属表面技术[J].1977,28(10):517-523.
    [169]桑付明,成旦红,曹铁华,等.电沉积技术制备Ni-纳米SiO2复合镀层的研究[J].电镀与精饰.2004,26(3):5-8,19.
    [170]Feng Q Y, Li T J, Teng H T, et al. Investigation on the corrosion and oxidation resistance of Ni-Al2O3 nano-composite coatings prepared by sediment co-deposition[J]. Surf.Coat.Technol.2008,202(17):4137-4144.
    [171]Pavlatou E A, Stroumbouli M, Gyftou P, et al. Hardening effect induced by incorporation of SiC particles in nickel electrodeposits[J]. Journal of Applied Electrochemistry.2006,36(4):385-394.
    [172]Wu G, Li N, Zhou D, Kurachi Mitsuo. Effect of Al2O3 particles on the electrochemical codeposition of Co-Ni alloys from sulfamate electrolytes[J]. Surf.Coat.Technol.2004, 87(2-3):411-419.
    [173]Meenu Srivastava, William Grips V K, Rajam K S. Influence of SiC, Si3N4 and A12O3 particles on the structure and properties of electrodeposited Ni. Materials Letters 2008, 62:3487-3489.
    [174]郭鹤桐.张三元.复合镀层[M].天津:天津大学出版社.1991.38
    [175]Miyake S, Watanabe S, Murakawa M, et al. Tribological study of cubic boron Nitride filrn[J]. Thin Solid Films.1992,212(1-2):262-266.
    [176]Braun O M, Peyrard M. Friction in a solid lubricant film. Physical Review E. Statistical Physics, Plasmas, Fluids, And Related Interdisciplinary Topics.2001,63(4):4611-4619.
    [177]Erdemir A, Eryilmaz O L, Fenske G R. Self-replenishing solid lubricant films on boron carbide[J]. Surface Engineering.1999,15(4):291-295.
    [178]Hilton Michael R, Bauer Reinhold, Didziulis Stephen V, et al. Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures[J]. Surface&Coatings Technology.1992,53(1):13-23.
    [179]Watanabe S, Noshiro J, Miyake S. Tribological characteristics of WS2/MoS2 solid lubricating multilayer films[J]. Surface and Coatings Technology.2004,183(2-3): 347-351.
    [180]Donnet C. Advanced solid lubricant coatings for high vacuum environments [J]. Surface and Coatings Technology.1996,80(1-2):151-156.
    [181]Dellacorte Christopher, Sliney Harold E, Deadmore Daniel L. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900℃[J]. NASA Technical Memorandum.1988:16-18.
    [182]Kezik V Ya, Kalinichenko A S, Kalinitchenko V A. The application of gallium as a liquid metal lubricant[J]. Materials Research and Advanced Techniques.2003,94(2): 81-90.
    [183]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社.2004.
    [184]Srivastava M, Grips V K W, Rajam K S. Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-partieles[J]. Applied Surface Seienee.2007,253(8):3814-3824.
    [185]Garcia I, Fransaer J, Celis J P. Electrodeposition and sliding wear resistance of nickel composite coatings containing micro and submicron SiC particles [J]. Surface and Coatings Technology.2001,148(2-3):171-178.
    [186]Zimmerman A F, Palumbo G, Aust K T, et al. Mechanical properties of nickel silicon carbide nanocomposites[J]. Materials Science and Engineering A.2002,328(1-2): 137-146.
    [187]冯秋元.Ni-Al2O3纳米复合镀层制备及性能研究[D].大连理工大学.2008.6
    [188]李长虹.梯度铜石墨自润滑材料及摩擦性能研究[D].北京交通大学.2006.
    [189]Abdel Hamid Z, Ghayad I M. Characteristics of electrodeposition of Ni-polyethylene composite coatings[J]. Materials Letters.2002,53:238-243.
    [190]温诗铸,黄平.摩擦学原理[M].第2版.北京:清华大学出版社.2002.
    [191]黄海栋.片状纳米石墨和无机类富勒烯二硫化钼作为润滑油添加剂的摩擦学性能[D].浙江:浙江大学.2006.
    [192]夏正志.磁控溅射IF-MoS2及MoS2/Mo梯度镀层的摩擦磨损性能[D].浙江:浙江大学.2006.
    [193]薛茂权.镍基自润滑材料的摩擦学性能研究[J].常州轻工职业技术学院学报.2006,(12):7-9.
    [194]陈洁.MoS2在铁基粉末冶金摩擦材料中的作用机理[D].长沙:中南大学,2004.
    [195]周丽春,吴伟端,赵煌.纳米二硫化钼的制备与表征[J].电子显微学报.2004,23(6):618-620.
    [196]KEN T PARK, JIE KONG. Chemistry and physics of alkali metals on MoS2 surfaces[J]. Topics in Catalysis.2002,18(3-4):175-181.
    [197]胡坤宏,沃恒洲,韩效钊,等.纳米二硫化钼制备现状与发展趋势[J].现代化工.2003,23(8):14-17.
    [198]常立民,安茂忠,石淑云.复合镀研究的新进展[J].吉林师范大学学报(自然科学版).2005,(2):13-15.
    [199]姚冠新.电沉积(Fe-Ni)-MoS2复合镀层及摩擦磨损性能的研究[J].江苏理工大学学报.1995,16(2):68-73.
    [200]王海斗,刘家浚,徐滨士.复合镀渗MoS2薄膜及其组织性能分析[J].金属热处理.2004,29(4):29-32.
    [201]向军淮,陈范才,严旭辉.铝材表面Ni-MoS2自润滑复合镀层及其性能[J].材料保护.2001,34(4):21-24.
    [202]RENEVIER N M, LOBIONDO N, FOXA V C, et al. Performance of MoS2 metal composite coatings used for dry machining and other industrial applications [J]. Surface and Coatings Technology.2000,123(1):84-91.
    [203]MARTINS R C, PAULO S MOURA, SEABRA J O. MoS2/Ti low-friction coating for gears[J]. Tribology International.2006, (39):1686-1697.
    [204]余尚银.材料物理化学[M].西安:西安交通大学出版社.1995.
    [205]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社.1984.
    [206]肖纪美,曹楚南.材料腐蚀学原理[M].北京:化学工业出版社.2004.
    [207]Shi L, Sun C, Gao P, Zhou F, et al. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating[J]. Appl.Surf.Sci. 2006 (252):3591-3599.
    [208]Vaezi M R, Sadrnezhaad S K, Nikzad L. Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics[J]. Colloids Surf.A:Physicochem.Eng.Aspects 2008,315(1-2):176-182.
    [209]Golodnitsky D, Gudin N V, Volyanuk G A. Cathode process in Nickel-cobalt alloy deposition from sulfamate electrolytes-application to electroforming[J]. Plat. Surf. Finish.1998,85:65-73.
    [210]宋长生,王国荣.化学镀镍合金的耐蚀性[J].电镀与精饰.1995,17(3):21-24.
    [211]Hamdy A S, Shoeib M A, Hady H, et al. Corrosion behavior of electroless Ni-P alloy coatings containing tungsten or nano-scattered alumina composite in 3.5% NaCl solution[J]. Surf.Coat.Technol.2007,202 (1):162-171.
    [212]Liu C, Leyland A, Bi Q, et aL. Corrosion resistance of muti-layered plasma-assisted physical vapour deposition TiN and CrN coatings[J]. Surf.Coat.Technol.2001, 141(2-3); 164-173.
    [213]Chen X H, Chen C S, Xiao H N, et al. Corrosion behavior of carbon nanotubes-Ni composite coating[J]. Surf.Coat.Technol.2005,191(2-3):351-356.
    [214]Garcia I, Conde A, Langelaan G, Fransear J, Celis J P, Corros. Sci.2003,45: 1173-1189.
    [215]Szczygiel B, Kolodziej M. Composite Ni/Al2O3 coatings and their corrosion resistance [J]. Electrochim.Acta.2005,50(20):4188-4195.
    [216]Malfatti C F, Zoppas Ferreira J, Santos C B, et al. Ni P/SiC composite coatings:the effects of particles on the electrochemical behaviour[J]. Corros.Sci.2005, 47(3):567-580.
    [217]Podlaha E J, Landolt D. Pulse-reverse plating of nanocomposite thin films[J]. Journal of the Electrochemical Society.1997,144(7):200-202.
    [218]万轶.表面织构与合金化改善密封材料摩擦学性能研究[D].南京理工大学.2008.
    [219]Jianliang Li, Dangsheng Xiong, et al. Tribological properties of molybdenized silver-containing nickel base alloy at elevated temperatures[J]. Tribol.Int.2009 (10): 1016-1013.
    [220]Muratore C, Voevodin A A, Hu J J, et al. Multilayered YSZ-Ag-Mo/TiN adaptive tribological nanocomposite coatings[J]. Tribology Letters.2006 24(3):201-206.
    [221]Hu J J, Muratore C, Voevodin A A. Silver diffusion and high-temperature lubrication mechanisms of YSZ-Ag-Mo based nanocomposite coatings[J].2007,67:336-347.
    [222]Basnyat P, Luster B, Muratore C, et al. Surface texturing for adaptive solid lubrication[J]. Surface and Coatings Technology.2008,203:73-79.
    [223]Samir M, Aouadi, Yadab Paudel, et al. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications [J]. Tribol.Lett.2008,29:95-103.
    [224]Erdemir. A, Erck R A. Effect of niobium interlayer on high-temperature sliding friction and wear of silver films on alumina[J]. Tribology Letters.1996,2:23-36.
    [225]孙家枢.金属的磨损[M].北京:冶金工业出版社.1992.
    [226]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社.第1版.1988.
    [227]薄玉奎,戴振东,李祥明,等.高速重载下三种固体润滑膜耐磨性的实验研究[J].润滑与密封.2001(1):35-36.
    [228]沃恒洲.纳米润滑级二硫化钼摩擦学特性研究[D].合肥:合肥工业大学,2003.
    [229]全永昕,施高义.摩擦磨损原理[M].杭州:浙江大学出版社.第1版.1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700