用户名: 密码: 验证码:
高层斜交网格筒结构体系力学性能及地震失效控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪初,Norman Foster将斜交网格筒结构成功应用于瑞士再保险大厦(2004)和纽约赫斯特大厦(2006),引起了世界各国建筑师和结构工程师的关注。在随后的几年中,国内外该类型高层、超高层建筑日益增多,然而现阶段该类型体系的抗震性能研究,特别是强烈地震作用下的失效模式和失效控制指标尚不明确。为解决目前高层建筑斜交网格筒结构体系理论研究落后于工程实践的问题,本文分别从体系的受力特点、协同工作性能、抗震性能、大震失效模式优选及失效控制指标等方面展开研究。
     (1)针对高层斜交网格筒结构体系的重要受力元素——斜交网格筒,研究其在竖向和侧向荷载作用下的受力特点,包括水平环梁和交叉斜柱的内力特点、分布规律以及网筒平面形状对其受力特点的影响。补充给出斜交网格平面的抗弯刚度简化计算方法并对网筒整体抗弯刚度的计算方法进行修正,提出了斜交网格筒在典型侧向荷载作用下的侧移简化计算方法,基于该方法探讨了网筒主要参数的敏感性并给出敏感性排序。
     (2)在同时考虑内外筒的弯曲变形和剪切变形的基础上,对体系进行了连续化等效,建立了体系平衡微分方程,给出了体系在工程常见三种侧向荷载作用下的结构侧移以及内外筒楼层内力的解析解。总结了内外筒协同工作性能,阐述了斜交网格筒网格形式的主要影响因素,探讨了不同斜交网格筒网格形式以及不同网筒高宽比对结构侧向刚度和外筒斜柱材料用量的影响并给出相关参数的优选取值方法。
     (3)对典型钢管混凝土斜交网格筒-钢筋混凝土核心筒结构进行了模态静力弹塑性推覆分析和动力弹塑性时程分析。总结了体系塑性发展过程及构件屈服顺序,阐述了斜交网格筒构件屈服路径及空间工作性能,并从斜交网格筒作用力的变化解释了内外筒间内力重分配的原因,明确了内外筒内力分配特点,基于内外筒抗侧刚度的发展过程,说明了结构抗侧刚度退化的主要原因,分析了体系抗侧刚度、塑性耗能的关键构件,探讨了体系的抗震概念。
     (4)通过对高层斜交网格筒结构典型模块缩尺模型进行拟静力试验,较好地验证了体系构件的塑性发展顺序、斜交网格筒构件失效路径、斜柱屈服机制等抗震性能。基于高层斜交网格筒结构工程项目,将论文前期研究成果应用到典型实际结构中,一方面较好地验证了研究成果,另一方面也有效地指导了实际工程应用,取得了较好的经济效益。
     (5)基于高层斜交网格筒结构的抗震性能分析了体系主要的影响因素,并基于体系的塑性耗能分布规律和分配特点探讨了其对体系大震失效模式的影响规律,结合结构抗震概念设计思想建立了体系的失效模式优选原则,得到了体系的大震优选失效模式。
     (6)通过斜交网格筒结构受力机理分析,提出以结构有害层间位移角作为体系大震失效控制指标,建立了通过斜交网格筒几何参数直接计算外网筒抗侧力退化点性能指标的方法并探讨了主要参数的取值,基于结构“大震不倒”抗震设防目标给出了体系大震失效控制指标。
In the early 21st century, the diagrid tube was applied to the Swiss Re Tower(2004) and Hearst Tower (2006) by Norman Foster which attracted attentions ofarchitects and structural engineers all over the world. In the next few years, more andmore of this kind of high-rise structures were built, however, the seismic behaviourssuch as structure failure mode and failure control index were not clear. In order tosolve the problem of seismic theory of diagrid tube structures being far behind theengineering practice, the mechanical property, cooperative working performance ofinner and outer tubes, seismic performance, structure failure mode under rareearthquake and failure control index were studied in the thesis.
     (1) The mechanical properties of high-rise diagrid tube under vertical and lateralforces were reaserched, the mechanical characteristics of beams and inclined columnsof the diagrid tube were presented and the influences of the tube plane shapes weretalked about. The bending rigidity of the web was proposed and the bending rigidityof the diagrid tube module is modified. Then the formulas to calculate the top lateraldisplacement under three typical lateral forces were proposed. The sensitivityanalysis of the diagrid tube main parameters was carried out and the sensitivity orderof these parameters was given.
     (2) A simplified analysis method on linear elastic interaction behavior of diagridtube-core tube structures under lateral loads was presented, considering the flexuraldeflection and shear deflection of both inner and outer tubes. The analytical solutionsof structure lateral deflection and distribution of the applied lateral load betweeninner and outer tubes under typical lateral loads are obtained based on the equilibriumdifferential equations of the tubes through the continuum approach. The interactionbehaviors of tubes are summarized and the effects of grid forms are researched.Besides this, the crucial parameter to judge the optimal diagrid forms is obtainedfrom the structure lateral deflection and material usage point of view. The method toobtain the optimal inclined column angle from diagrid tube height-width aspect ratiois proposed at last.
     (3) The typical CFST diagrid tube-cocrete core tube structures were analyzed byModal Pushover method and elastic-plastic time history analysis method. Thestructure plastic development process and the component yield order weresummarized. The failure path and the space performance of the diagrid tube werepresented. The force distributions of diagrid and core tubes were researched and thereasons of force redistributions between them were explained by analyzing the changes of diagrid tube forces. The reason for structure lateral stiffness degradationwas discussed based on the development process of diagrid and core tube lateralstiffness. The key components of structure lateral stiffness and plastic energydissipation were achieved and the anti-seismic concepts were given.
     (4)Pseudo-static test of diagrid tube structure typical model was carried out,theresearch results of structure seismic perfomanc such as components plasticdevelopment process, diagrid tube faiure path and the column yield mechanism wereproved to be correct. The research results were applied to an actual project and againthe research results were proved to be correct and guided the practical applicationeffectively.
     (5)The main parameters that affect the structure seismic performance werediscussed and the structure failure modes were analyzed based on plastic energydistribution. At last the structure optimal failure mode uner rare earthquake wasachieved base on structure seismic conceptual design.
     (6)The mechanism of the diagrid tube structure was researched and the harmfulstory drift was used as structure failure control index. The method to calculate theharmful story drift was proposed and the main parameters were discussed. After thata method to get the diagrid tube lateral force degradation performance index fromdiagrid tube parameters was presented. Then the structure failure control index of thecore tube was given to reach the seismic fortification goal of“no collapsing withstrong earthquake”.
引文
[1]徐培福,傅学怡.复杂高层建筑结构设计[M].北京:清华大学出版,2005:1-15.
    [2]李真. 180m的生态环境摩天楼瑞士再保险公司大厦[J].时代建筑,2005,4:74-81.
    [3]周健,汪大绥.高层斜交网格结构体系的性能研究[J].建筑结构,2007,37(5):87-91.
    [4]王传峰,谢伟强.斜交网格结构体系的应用现状[C].第八届全国现代结构工程学术研讨会,2008:359-362.
    [5]赫斯特大厦美国纽约[J].城市建筑,2007,10:70-73.
    [6]胥传喜,丁晓唐.竖向承重网架墙体的稳定计算[J].河海大学学报,1998,26(4):59-64.
    [7]梁新华,龚景海.网壳筒体-混凝土芯筒结构的分析方法研究[J].四川建筑科学研究,2005,31(5):1-4.
    [8] Gong J H, Liang X H. Design Method Research into Latticed Shell Tube-ReinforcedConcrete(RC) Core Wall Structures[J]. Journal of Constructional Steel Research,2007, 63(8): 949-960.
    [9] Kyoung S M, Jerome J. Diagrid structural Systems for Tall Buildings Characteristicsand Methodology for Preliminary Design[J]. The Structural Design of Tall andSpecial Buildings. 2007, 16: 205-230.
    [10] Kyoung S M. Sustainable Structural Engineering Strategies for Tall Buildings [J].The Structural Design of Tall and Special Buildings, 2008, 17: 895-914.
    [11] Kyoung S M. Optimal Grid Geometry of Diagrid Structure for Tall Buildings[J].Architectural Science Review, 2008, 51(3): 239-251.
    [12] Kyoung S M. Stiffness-Based Design Methodology for Steel Braced Tube Structures:a Sustainable Approach[J]. Engineering Structures, 2010, 32: 3163-3170.
    [13] Mir M A, Kyoung S M. Structural Developments in Tall Buildings: Current Trendsand Future Prospects[J]. Architectural Science Review, 2007, 50(3): 205-223.
    [14]张崇厚,赵丰.高层网筒结构体系的基本概念[J].清华大学学报(自然科学版),2008,48(9):19-23.
    [15]张崇厚,赵丰.高层斜交网格筒结构体系抗侧性能相关影响因素分析[J].土木工程学报,2009,42(11):41-46.
    [16] Zhang C H, Zhao F, Liu Y S. Diagrid Tube Structures Composed of StraightDiagonals With Gradually Varying Angles[J]. The Structure Design of Tall andSpecial Buildings,2010.
    [17]张新华.二维斜交网格框架结构的性能研究[J].浙江建筑,2010,27(7):30-33.
    [18]黄超,韩小雷,王传峰.斜交网格结构体系的参数分析及简化计算方法研究[J].建筑结构学报,2010,31(1):70-77.
    [19] Lawson R S, Vance V K H. Nonlinear Static Push-Over Analysis-Why, When andHow[C]. 5th US Earthquake Engineering, 1994, 283-292.
    [20] Valles R E, Reinhom A M, Kunnath S K. IDARC2D Version 4.0. A Program for theInelastic Damage Analysis of Buildings[R]. Techncal Report NCEER-96-0010,1996.
    [21] Faella G. Evaluation of the R/C Structural Seismic Response by Means of NonlinearState Push-over Analysis[C]. 11th World Conference on EarthquakeEngineering.1996.
    [22] Moghadam A S, Tso W K. Damage Assessment of Eccentric Multistory BuildingsUsing 3-D Pushover Analysis[C]. 11th World Conference on EarthquakeEngineering, 1996.
    [23] Federal Emergency Management Agency, Guidelines and Commentary for theSeismic Rehabilitation of Buildings[S] . FEMA273Π274,1998.
    [24]杨溥,李英民.结构静力弹塑性分析(Pushover)方法的改进[J].建筑结构学报,2000,21(1):44-54.
    [25]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具[J].建筑结构,2000,3(6):23-26.
    [26] Chopra A K, Goel R K. A Modal Pushover Analysis Procedure for EstimatingSeismic Demands of Buildings[J]. Earthquake Engineering and Structural Dynamics,2002, 31: 561-582.
    [27]汪梦甫,周锡元.高层建筑结构静力弹塑性分析方法的研究现状与改进策略.工程抗震[J]. 2003,(4):12-15.
    [28]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究[J].土木工程学报,2003,36(11):44-49.
    [29]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89-97.
    [30]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究.地震工程与工程振动,2005,25(1):58-66.
    [31]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用[D].长沙:湖南大学,2006.
    [32]沈浦生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用[J].工程力学,2006,23(8):69-73.
    [33]张朋来.静力Pushover分析在大震作用下变形验算中的应用研究[D].杭州:浙江大学,2006.
    [34]方鄂华.高层建筑钢筋混凝土结构概念设计[M].北京:机械工业出版社,2006.
    [35]陈麟,张耀春.大型支撑框筒结构的非线性地震反应分析[J].地震工程与工程振动,2005,25(2):43-45.
    [36]朱杰江,吕西林.上海环球金融中心大厦弹塑性时程分析[J].自然灾害学报,2006,15(2):49-56.
    [37]李志山,容柏生.高层建筑结构在罕遇地震影响下的弹塑性时程分析研究[J].建筑结构,2006,36:142-149.
    [38]汪大绥,李志山.复杂结构弹塑性时程分析在ABAQUS软件中的实现[J].建筑结构,2007,37(5):92-95.
    [39]傅学怡,吴兵等.卡塔尔某超高层建筑结构设计研究综述[J].建筑结构学报,2008,29(1):1-9.
    [40]周健,汪大绥.高层斜交网格结构体系的性能研究[J].建筑结构,2007,37(5):87-91.
    [41]汪大绥,姜文伟等.中央电视台(CCTV)新主楼的结构设计及关键技术[J].建筑结构,2007,37(5):1-7.
    [42]容柏生.国内高层建筑结构设计的若干新进展[J].建筑结构,2007,37(9):1-5.
    [43]王传峰,谢伟强.斜交网格结构体系的应用现状[C].第八届全国现代结构工程学术研讨会,2008:359-362.
    [44]张小冬,刘界鹏.大连中国石油大厦结构方案优化设计[J].建筑结构学报(增刊1),2010,27-33.
    [45]方晓丹,韩小雷,韦宏.广州西塔巨型斜交网格平面相贯节点试验研究[J].建筑结构学报,2010,31(1):56-62.
    [46]韩小雷,黄超,方晓丹等.广州西塔巨型斜交网格空间相贯节点试验研究[J].建筑结构学报,2010,31(1):63-69.
    [47] Han X L, Huang C, Ji J. Experimental and Numerical Investigation of the AxialBehavior of Connection in CFST Diagrid Structures[J]. Tsinghua Science andTechnology, 2008, 12(S1): 108-113.
    [48]韩小雷,唐剑秋,黄艺燕.钢管混凝土巨型斜交网格筒体结构非线性分析[J].地震工程与工程振动,2009,29(4):77-84.
    [49] Kim J, Park J. Design of Steel Moment Frames Considering Progressive Collapse[J].Steel and Composite Structures, 2008, 8(1): 85-98.
    [50] Kim J, Park J, Shin S. Seismic Performance of Tubular Structures with BucklingRestrained Braces[J]. The Structural Design of Tall and Special Buildings, 2008.
    [51] Jinkoo K, Yong H L. Progressive Collapse Resisting Capacity of Tube-TypeStructures[J]. The Structural Design of Tall and Special Buildings, 2010, 19:761-777.
    [52] Jinkoo K, Yong H L. Seismic Performance Evaluation of Diagrid SystemBuildings[J]. The Structural Design of Tall and Special Buildings, 2010.
    [53] Kimura Y, MacRae G A, Roeder C. Column Stiffness Effects on Braced FrameSeismic Behavior[C]. 7th US National Conference on Earthquake Engineering,Boston.
    [54] Tremblay R, Bolduc P, Neville R et al. Seismic Testing and Performance ofBuckling-Restrained Bracing Systems[j]. Canadian Journal of Civil Engineering,2006, 33: 183-198.
    [55] State of the Art of Buckling-Restrained Braces in Asia[J]. Journal of ConstructionalSteel Research, 2005, 61: 727-748.
    [56] Clough R W, Benuska K L. Study of Seismic Design Criteria for High-Rise Building,RUDTS-3, FHA, 1966.
    [57] Kacyra B.K, Banavalkar P.V. Seismic Analysis of The 101 California Building[C].8th World Conference on Earthquake Engineering, San Francisco, 1984: 21-28.
    [58] Charles W R, Stephen P S. Seismic Behavior of Moment-Resisting Steel FramesAnalytical Study[J]. Journal of Structural Engineering, 1993, 119(6): 1866-1884.
    [59] Stephen P S, Charles W R. Seismic Behavior of Moment-Resisting Steel FramesExperimental Study[J]. Journal of Structural Engineering, 1993, 119(6): 1885-1902.
    [60] Saeid R, M A S. Seismic Performance of Low and Medium-Rise SteelFrames[M].ASCE, 2004.
    [61] International Building Code 2000[S]. International Code Council, 2000.
    [62]刘建新.高层框-剪结构中框架地震内力的确定[J].建筑结构学报,1999,20(3):15-22.
    [63]经杰,叶列平.双重抗震结构体系在高层建筑中的应用[J].建筑科学,2001,17(1):42-45.
    [64]钟华,易伟建,袁贤讯.钢筋混凝土框架-剪力墙结构中框架的地震层剪力[J].建筑结构,2004,34(1):52-55.
    [65]储德文,梁博,王明贵.钢框架-混凝土筒体组合结构抗震性能振动台试验研究[J].建筑结构,2005,35(8):69-72.
    [66]钱稼茹,魏勇.外钢框架-混凝土核心筒结构协同受力性能研究[J].建筑结构,2006,36:1-7.
    [67]王全凤,施士升.框架-剪力墙高层建筑结构抗地震荷载剪力墙数量的优化分析[J].土木工程学报,1981,(3):1-12.
    [68]屠成松,廖晓明.钢筋混凝土筒中筒结构的优化设计[J].土木工程学报,1989,22(04):1-9.
    [69]周世炜.高层建筑结构抗震分析与优化设计[D].西安:西安建筑科技大学,2004.
    [70]李芳.高层建筑短肢剪力墙-核心筒结构合理刚度优化设计研究[D].武汉:武汉理工大学,2006.
    [71]胡健.框架-剪力墙结构的抗震分析和优化设计[D].武汉:武汉理工大学,2006.
    [72]卿科.剪力墙数量与空间位置对框架-剪力墙结构抗震性能影响的研究[D].长沙:湖南大学,2007.
    [73]刘天云,赵国藩.一种识别结构主要失效模式的有效算法[J].大连理工大学学报,1998,38:97-100.
    [74]徐格宁,王建民.大型钢结构系统广义强度失效模式分析方法研究[J].机械工程学报,2003,39(4):39-43.
    [75]陈卫东,张铁军.高效识别结构主要失效模式的方法[J].哈尔滨工程大学学报,2005,26(2):202-204.
    [76]朱俊峰,王东炜.基于位移的RC高层框架结构在大震作用下失效模式相关性分析[J].郑州大学学报(工学版),2006,27(3):9-14.
    [77]朱俊峰,王东炜.基于位移的RC多层框架结构失效模式相关性分析[J].郑州大学学报(理学版),2007,39(1):100-115.
    [78] California Office Emergency Services Vision 2000: Performance Based SeismicEngineering of Buildings[R]. Structural Engineers Sacramento: Association ofCalifornia, 1995.
    [79] Priestley M J N. Myths and Fallacies in Earthquake Engineering-Conflicts betweenDesign and Reality[R]. Bulletin of New Zealand National Society for earthquakeengineering, 1993, 26(3): 329-341.
    [80] Priestley M J N. Performance Based Seismic Design[C]. 12th World Conference onEarthquake Engineering, 2000.
    [81] Moehle J P. Displacement Based Design of RC Structures subjected toEarthquake[J]. Earthquake spectra, 1992, 8(3): 403-428.
    [82] Kowalsky M J., Priestley M J N, Macrae G A. Displacement-Based Design of RCBridge Column in Seismic Regions[J]. Eqrthquake Engineering and StructuralDynamics, 1995, 24(12): 1623-1643.
    [83] Kowalsky M J. Deformation Limit States for Circular Reinforced Concrete BridgeColumns[J]. Journal of Structural Engineering, ASCE, 2000, 126(8): 869-878.
    [84] Sozen M A. Review of Earthquake Response of RC Buildings with a View to DriftControl[C]. Ankara: State of the Art in Earthquake Engineering, 1981, 383-418.
    [85] Priestley M J N. Displacement-Based Seismic Assessment of Reinforced ConcreteBuildings[J]. Journal of earthquake Engineering, 1997,1(1): 157-192.
    [86] Mazzoni S, Fenves G L. Displacement-Based Seismic Design of Statically-Indeterminate Bridge Piers[A]. 12th World Conference on Earthquake Engineering,2000.
    [87] Chandler A M, Mendis P A. Performance of Reinforced Concrete Frames usingForce and Displacement Based Seismic Assessment Methods[J]. EngineeringStructures, 2000, 22(5): 352-363.
    [88] Fu C C, Layed H. Seismic Analysis of Bridges using Displacement-BasedApproach[R]. Washington D.C.: Transportation Research Board, 2003.
    [89] Shibata A, Sozen M A. Substitute-Structure Method for Seismic Design in RC[J].Journal of the Structural Division ASCE, 1976, 102(ST1):1-18.
    [90] Chopra A K, Goel R K D. Direct Displacement-Based Design: Use of Inelastic vsElastic Design Spectra[J]. Earthquake Spectra, 2001, 17(1): 47-64.
    [91] Qiang X. A Direct Displacement-Based Seismic Design Procedure of InelasticStructures[J]. Engineering structures, 2001, 23(11): 1453-1460.
    [92] Anderson E, Mahin S.A. Displacement-Based Design of Seismically IsolatedBridges[C]. 6th U.S. National Conference on Earthquake Engineering,.1998.
    [93] Kowalsky M J. A Displacement-Based Approach for the Seismic Design ofContinuous Concrete Bridge[J]. Earthquake Engineering and Structural Dynamics,2002, 31(3): 719-747.
    [94] Priestley M.J.N, Kowalsky M.J. Direct Displacement-Based Seismic Design ofConcrete Buildings[J]. Bulletin of the New Zealand National Society EarthquakeEngineering, 2000, 33(4): 421-444.
    [95] Jacobsen L S. Damping in Composite Structures[C]. 2nd World Conference onEarthquake Engineering, 1960, 2: 1029-1044.
    [96] Rosenblueth E, Herrera I. A kind of Hysteretic Damping[J]. Journal of EngineeringMechanics Division, ASCE, 1964, 90(1): 37-48.
    [97] Gulkan P, Sozen M A. Inelastic Response of Reinforced Concrete Structures toEarthquake Motions[J]. ACI Journal, 1974, 71(12): 604-610.
    [98] Kowalsky M J. Displacement-Based Design-a Methodology for Seismic DesignApplied to RC Bridge Columns[D]. San Diego: University of California, 1994.
    [99] Iwan W D. Estimating Inelastic Response Spectra From Elastic Spectra[J].Earthquake Engineering and Structural Dynamics, 1980, 8(4): 375-388.
    [100]Veletsos A S, Newmark N M. Effect of Inelastic Behavior on the Response ofSimple Systems to Earthquake Motions[C]. 2nd World Conference on EarthquakeEngineering, 1960, 2:895-912.
    [101]Miranda E. Inelastic Displacement Ratio for Structures on Firm Sites[J]. Journal ofStructural Engineering, ASCE, 2000,126(10):1150-1159.
    [102]Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of Existing Buildings for SeismicRisk-a case Study of Puget Sound Naval Shipyard[C]. Washington, 1st U.S.National Conference on Earthquake Engineering, 1975.
    [103]ATC-40, Seismic evaluation and retrofit of concrete buildings[R]. California:Applied Technology Council, Red Wood City,1996.
    [104]FEMA-273, NEHRP guidelines for the seismic rehabilitation of buildings[S].Federal Emergency Management Agency, Washington D.C., 1997.
    [105]Gupta B, Kunnath S K. Adaptive Spectra-Based Pushover Procedure for SeismicEvaluation of Structures[J]. Earthquake Spectra, 2000, 16(2):367-391.
    [106]Chopra A K, Goel R K. A Modal Pushover Analysis Procedure to Estimate SeismicDemands for Buildings: Theory and Preliminary Evaluation[R]. University ofCalifornia, Berkeley: Pacific Earthquake Engineering Research Center, 2001.
    [107]Priestley M J N, Seible F, Calvi G M. Seismic Design and Retrofit of Bridges[M].New York: John Wiley & Sons, 1996.
    [108]Park Y J, Ang A H S. Mechanistic Seismic Damage Mode for Reinforce Concrete[J].Journal of Structural Engineering, ASCE, 1985,111(4): 722-739.
    [109]Ang A H S, Kim W J, Kim S B. Damage Estimation of Existing BridgeStructures[C]. Structural Engineering in Natural Hazards Mitigation: Proceedings ofASCE Structures Congress, 1993: 1137-1142.
    [110]Fajfar P. Equivalent Ductility Factors Taking into Account Low-Cycle Fatigure[J].Earthquake Engineering and Structural Dynamics, 1992, 21(10): 837-848.
    [111]高小旺,沈聚敏.钢筋砼框架结构层间极限变形能力的简化计算方法[J].建筑结构学报,1993,14(2):28-37.
    [112]Christiana D, Andreas J. K, Morios K C. Seismic Reliability of RC Frame withUncertain Drift and Member Capacity[J]. Journal of Structural Engineering1999(9):1038-1047.
    [113]魏琏.高层建筑结构位移控制研讨[J].建筑结构,2000,(6):27-40.
    [114]熊朝晖,潘德恩.钢筋混凝土框架柱侧向变形能力的研究[J].地震工程与工程振动,2001,21(2):103-108.
    [115]李应斌,刘伯权等.结构的性能水准与评价指标[J].世界地震工程,2003,19(2):132-137.
    [116]马宏旺,吕西林.建筑结构“中震可修”性能指标的确定方法[J].工程抗震与加固改造,2005,27(5):26-32.
    [117]张国胜.四层钢筋混凝土模型框架的水平抗震变形能力分析[D].上海:同济大学,2006.
    [118]任晓崧,张国胜.对四层钢筋混凝土模型框架水平变形能力的讨论[J].四川建筑,2007,27(1):105-107.
    [119]武江传.钢筋混凝土框架-剪力墙结构直接基于位移的抗震设计——理论与方法[D].西安:西安建筑科技大学,2006.
    [120]史庆轩,门进杰.钢筋混凝土框架结构基于性能的抗震设计指标[J].四川建筑科学研究,2007,33:78-81.
    [121]门进杰,史庆轩.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报,2008,41(9):76-82.
    [122]洪伟.试验设计与分析:原理·操作·案例[M].北京:中国林业出版社,2004.
    [123]沈蒲生.高层建筑结构疑难释义[M].北京:中国建筑工业出版社,2006:195-206.
    [124]白国良,楚留声,李晓文.高层框架-核心筒结构抗震防线问题研究[J].西安建筑科技大学学报(自然科学版),2007,39(4):445-450.
    [125]韩林海.钢管混凝土结构——理论与实践(第二版)[M].北京:科学出版社,2007.
    [126]钟善桐.钢管混凝土统一理论——研究与应用[M].北京:清华大学出版社,2006.
    [127]Mander J B, Priestley M J N, Park R. Theoretical stress strain model for confinedconcrete [J]. Journal of Structure Engineering, 1988,114(8):1804-1826.
    [128]和雪峰.高层建筑结构弹塑性抗震分析中的精细化有限元模型研究[D].深圳:哈尔滨工业大学,2010.
    [129]和雪峰,滕军,李祚华. EEP超收敛法在梁弹塑性分析中的应用[J].工程力学,2010.
    [130]和雪峰,滕军,李祚华.基于变形增量EEP超收敛计算的空间梁柱单元弹塑性精细分析[J].工程力学,2010.
    [131]J Teng, X F He and Z H Li. Seismic Damage Assessment of High-rise RCStructures Based on Material Damage Model [C]. Guangzhou, InternationalSymposium on Innovation & Sustainability of Structures In Civil Engineering,2009.
    [132]包世华,张铜生.高层建筑结构设计和计算[M].北京:清华大学出版社,2005.
    [133]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报(自然科学版),2009,25(2):230-234.
    [134]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004,25(5):35-42.
    [135]李兵,李宏男.不同剪跨比钢筋混凝土剪力墙拟静力试验研究[J].工业建筑,2010,40(9):32-36.
    [136]鹏飞,程文瀼,陆和燕等.对称双肢短肢剪力墙的拟静力试验研究[J].建筑结构学报,2008,29(1):64-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700