用户名: 密码: 验证码:
强震作用下圆形隧道响应及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化促进了城市地下交通的快速发展,我国大中城市相继开展了大规模地铁建设,其中部分城市位于地震高发地带。近年来强震频发,地铁隧道等地下结构抗震成为城市防灾减灾研究的重要课题。本文在总结国内外有关圆形隧道地震响应研究的基础上,采用理论分析、数值模拟和模型试验等方法,对强震作用下圆形隧道渐进破坏机理和抗震设计方法进行了研究,取得了如下研究成果:
     (1)通过土与结构接触面剪切试验揭示了土与结构接触面的剪切变形特征及破坏形式,基于界面力学提出了反映接触面变形性态的土结相对位移描述方法,明确了土结接触面相对位移的内涵,并建立了相应的能考虑应变软化特性及接触面法向脱离、切向滑移破坏的粘聚区域本构模型,基于强化有限单元法构造了无厚度接触面单元,揭示了直剪试验过程中接触面渐进破坏机制,指出直剪试验得到的平均剪应力-剪切位移曲线不能真实反映土结接触面应力和变形特征。
     (2)基于实体弹性理论,采用复变函数级数解法,获得了地震剪应力作用下,土结接触面“完全粘结”和“光滑接触”时深埋圆形隧道的拟静力解析解及考虑接触面渐进破坏过程的半解析解。分析表明,在强地震剪应力作用下,土与结构接触面在正负45度位置最先发生剪切破坏。随着地震剪应力的增加,剪切破坏区域逐渐向两侧扩展。受接触面渐进剪切破坏影响,强地震作用下结构轴力远小于“完全粘结”,但高于“光滑接触”条件轴力,而弯矩值则几乎与“光滑接触”的结果重合。
     (3)饱和砂土自由场地动响应分析表明,地震剪应力折减系数沿深度的分布不仅与地震峰值加速度有关,还与地震波形、振动历史和场地土体性质有关。当峰值加速度较小时,Seed等提出的rd经验公式能反映折减系数沿深度的变化规律,但由于不同时刻土骨架软化程度不同,rd计算值间的差异可达10%;当峰值加速度较大、砂土液化时,rd随深度变化受液化区域影响显著,经验方法不能反映这一特性。
     (4)单相和饱和砂土场地中圆形隧道地震动力响应分析表明,结构内力和变形与地震动时程相关,单纯以加速度峰值作为抗震设计指标难以合理反映结构响应;常见地铁隧道对周围土体的影响范围约为一倍管径,结构变形主要受场地变形控制;对于高烈度地震,场地塑性变形使得基于自由场位移的隧道设计方法过于保守。基于此,提出了适用于高烈度地震的、基于修正自由场位移的圆形隧道拟静力设计方法。
     (5)在系统评价浙江大学新建土工离心机ZJU400及振动台性能基础上,开展了不同激励荷载作用下饱和砂土自由场地和含隧道场地的离心机振动台模型试验。通过对不同场地中孔隙水压力和加速度及结构应变的监测,获得了不同波形、不同烈度地震动作用下自由场应力折减系数沿深度的分布规律;研究了圆形隧道对周围场地动力响应的影响规律、隧道本身的变形性态,验证了基于修正自由场位移设计方法的合理性。
A large number of subways have been constructed in big cites of China along with the development of the underground transportation promoted by urbanization. Meanwhile some of these cities are located in earthquake high-incidence area. In recent years, strong earthquakes occurred frequently. And the anti-seismic analysis of underground structures, such as subway tunnel, is becoming a critical topic in the study of urban disaster prevention and mitigation. Based on the summarization of domestic and foreign research achievement about the seismic response of circular tunnel, this thesis studies the progressive failure mechanism and the seismic design method of circular tunnel under severe earthquakes in the methods of theoretical analysis, numerical simulation and model test. The research results are as follows:
     (1) The features of shear deformation and the failure modes of the interface between soil and structure is revealed through the shear test, and the description method of relative displacement between soil and structure which indicates the interfacial deformation behavior is presented on the basis of interface mechanics. The connotation of relative displacement of interface is defined, and the corresponding cohesive zone interface constitutive model, which considers the property of strain softening and the interfacial failure in the form of normal detachment and tangential slip, is built. The zero thickness interface element is formed through the enhanced finite element method, and the progressive failure mechanism of interface in shear test is concealed. The average shear stress-shear displacement curves from shear test is pointed out not to be able to truly reflect the characteristics of stress and deformation of the soil-structure interface.
     (2) On the basis of solid elasticity theory and in the use of complex function series solution, both the pseudo-static analytical solutions of deep buried circular tunnel under "no-slip" and "'full-slip" soil-structure interface condition and the semi-analytical solution which considers the progressive failure process of the interface under high seismic shear stress are derived. Analysis shows that the plus or minus 45°position of the interface is the earliest to undergoing shear failure under severe shear stress. As the seismic stress grows, the shear failure zone extends to both sides. Due to the effect of the progressive shear failure of interface, the axial force of tunnel is much smaller than the one under the conditon of "no-slip", but higher than that under the condtion of "full slip". Meanwhile, the bending moment value almost coincides with the one under the condtion of "full-slip".
     (3) The seismic response analysis of the free field of saturated sand manifest that, the distribution of seismic stress reduction coefficient with depth not only have relation with seismic peak acceleration, but also have something to do with seismic waveform, vibration history and the properties of site soil. When peak acceleration is small, the empirical formula of rd brought by Seed etc can reflect the change law of stress reduction coefficient. However, the difference of calculated value of rd can reach to 20% because of the different softening degree of soil skeleton at different times. At the moment when the peak acceleration is big, the sand is liquefied, the variation rd with depth is greatly influenced by the liquefaction zone, and the empirical method can not express this character.
     (4) The seismic respose analysis of circular tunnel under single-phase and saturated sand site reveals that the internal force of structure is related to the dynamic time history of earthquake, and the seismic design specification only using the peak acceleration can not suitably reflect the structural response. The influence area of the common subway tunnel to the surrounding soil is about one time the tunnel diameter, and the deformation form of structure is restricted by the site. The tunnel design method based on free-field displacement will be much conservative due to the plastic deformation of site under high-intensity earthquake. In view of this, a pseudo-static design methond of circular tunnel based on modified free-field displacement is proposed, which is suitable to be used in high seismic intensity area.
     (5) After systematically evaluating the performance of geotechnical centrifuge ZJU400 and shaking table newly built in Zhejiang University, centrifuge-shaking table model tests of free field and underground tunnel in saturated sand site under different seismic excitations are carried out. Through monitoring pore water pressure, acceleration and structural strain, the distribution of stress reduction coefficient in free field under different earthquake excitation is obtained. The influence of circular tunnel to the dynamic respose of surrounding soil is studied, as well as the deformation form of the tunnel itself. The rationality of the design method based on modified free-field displacement is also verified.
引文
[1]Abdoun T H, O'Rourke M J. Symans M D. et al. Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones [J]. Journal of Geotechnical& Geoenvironmental Engineering.2008.134(10):1501-1515.
    [2]Adachi N, Miyamoto Y, Koyamada K. Shaking table test and lateral loading test for pile foundation in saturated sand [C]. Centrifuge 98,1998:289-294.
    [3]Alonso E E, Josa A, Ledesma A. negative skin friction on piles:a simplified analysis and prediction procedure [J]. Geotechnique,1984,34(3):341-357.
    [4]Amorosi A, Boldini D. Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils[J]. Soil Dynamics and Earthquake Engineering,2009,29(6):1059-1072.
    [5]Ariizumi T, Igarashi H, Kaneko S. Centrifuge Modeling of long-term load acting on a tunnel fixed in space in soft clay [J]. International Journal of Physical Modelling in Geotechnics,2005:13-26.
    [6]Arulanandan K, Canclini J, Anandarajah A. Simulation of earthquake motions in the centrifuge [J]. Journal of the Geotechnical Engineering Division. ASCE,1982,108(5):730-742.
    [7]Barenblatt GI. Yielding of steel sheets containing slits [J]. Advances in applied mechanics.1962, 7:55-129.
    [8]Bastani S A. Evaluation of deformations of earth structures due to earthquakes [D]. Davis:University of California at Davis,2003.
    [9]Bilotta E, Lanzano G, Russo G. et al. Methods for the seismic analysis of transverse section of circular tunnels in soft ground[C]. Proceedings of the ISSMGE-ERTC 12 workshop at XIV ECSMGE geotechnical aspects of EC8. Madrid, Spain,2007.
    [10]Bilotta E, Lanzano G, Russo G, et al. Seismic analyses of shallow tunnels by dynamic centrifuge tests and finite elements[C]. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, Egypt,2009.
    [11]Bobet A. Effect of pore water pressure on tunnel support during static and seismic loading[J]. Tunnelling and Underground Space Technology,2003,18(4):377-393.
    [12]Bobet A. Drained and undrained response of deep tunnels subjected to far-field shear loading[J]. Tunnelling and Underground Space Technology,2010,25(1):21-31.
    [13]Boulon M. Nova R. Modeling of soil-structure interface behavior a comparison between elastioplastic and rate type laws[J]. Computers and Geotechnics,1990,9(1-2):21-46.
    [14]Brandenberg S J. Behavior of pile foundations in liquefied and laterally spreading ground [D]. Davis: University of California at Davis,2005.
    [15]Burns J Q. Richard RM. Attenuation of stresses for buried cylinders [C]. In:Proc. Symp. on soil-structure interaction.1964.378-392.
    [16]Byrne P M. Park S S, Beaty M. et al. Numerical modeling of liquefaction and comparison with centrifuge tests[J]. Canadian Geotechnical Journal,2004,41:193-211.
    [17]Cao J. Huang M S. Centrifuge tests on the seismic behavior of a tunnel[C].7th International Conference on Physical Modelling in Geotechnics. ETH Zurich. Switzerland.2010.
    [18]Caporaletti P. Burghignoli A, Taylor R N. Centrifuge study of tunnel movements and their interaction with structure[C]. Geotechnical Aspects of Underground Construction in Soft Ground:Proceedings of the 5th International Symposium TC28. Amsterdam, the Netherlands.2005.
    [19]Cetin K. O. Seed R B. Nonlinear shear mass participation factor (rd) for cyclic shear stress ratio evaluation[J]. Soil Dynamics and Earthquake Engineering,2004,24(2):103-113
    [20]Chambon P, Corte J F. Shallow Tunnels in Cohesionless Soil:Stability of Tunnel Face [J]. Journal of Geotechnical & Geoenvironmental Engineering,1994.120 (7):1148-1165.
    [21]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1971,97 (12):1657-1673.
    [22]Craig W H. Simulation of foundations for offshore structures using centrifuge modeling. Developments in soil mechanics and foundation engineering:model studies[M]. London:Applied Science Publishiers LTD,1983.
    [23]Date K. Mair R J, Soga K. Reinforcing effects of forepoling and facebolts in tunnelling [C]. Proceedings of the 6th international symposium (IS-Shanghai 2008). Shanghai,2008:635-641.
    [24]Desai C S, Zaman M M, Lightner J G, et al. Thin layer element for interfaces and joints [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(1):19-43.
    [25]Desai C S, Drumm E C, Zaman M M. Cyclic testing and modeling interfaces[J] Journal of Geotechnical Engineering, ASCE,1985,111(6):793-815
    [26]Desai C S. Ma Y Z. Modeling of joints and interfaces using the disturbed-stated concept [J]. International Journal for Numerical and Analytical Metheods in Geomechanic,1992.16(1):623-653.
    [27]Dewoolkar M M. Ko HY. Stadler A T. et al. A substitute pore fluid for seismic centrifuge modeling [J]. ASTM geotechnical testing journal.1999,22(3):196-210.
    [28]Ding J H, Jin X L, Guo Y Z, et al. Numerical simulation for large-scale seismic response analysis of immersed tunnel[J]. Engineering Structures 2006,28(10):1367-1377.
    [29]Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8:100-108.
    [30]Einstein H H. Schwartz C W. Simplified analysis for tunnel supports [J]. Journal of the Geotechnical Engineering Division,1979,105(10):499-518.
    [31]Elgamal A, Yang Z, Parra E. Computational modeling of cylic mobility and post-liquefaction site response [J]. Soil Dynamics and Earthquake Engineering,2002,22(4):259-271.
    [32]Esmaeili M, Vahdani S. Noorzad A. Dynamic response of lined circular tunnel to plane harmonic waves [J]. Tunnelling and Underground Space Technology,2006,21(5):511-519.
    [33]Exadaktylos GE, Liolios PA, Stavropoulou MC. A semi-analytical elastic stress-displacement solution for notched circular openings in rocks [J]. International Journal of Solids and Structures,2003, 40:1165-1187.
    [34]Fujii N. Development of an electromagnetic centrifuge earthquake simulator [A]. Centrifuge 91 [C], Colorado:Ko(ed.),1994,.351-354.
    [35]Gomez J E. Development of an Extended Hyperbolic Model for Concrete-to-Soil Interfaces [D]. Blacksburg:Virginia Polytechnic Institute and State Univ.,2000.
    [36]Goodman R E, Taylor R L, Berkke T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division,1968,94(SM3):637-659.
    [37]Hardin B O, Drnevich V P. Shear Modulus and Damping in Soil:Measurement and Parameter Effects[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98:603-624.
    [38]Hashash Y M A, Hook J J, Schmidt B, et al. Seismic design and analysis of underground structures [J]. Tunnelling and Underground Space Technology,2001,16:247-293.
    [39]Hasheminejad S M, Avazmohammadi R. Dynamic stress concentrations in lined twin tunnels within fluid-saturated soil[J]. Journal of Engineering Mechanics,2008,134(7):542-554.
    [40]Hendron A J. Fernandez G. Dynamic and static design considerations for underground chambers[C]. In: Howard, T.R. (Ed.)-Seismic Design of Embankments and Caverns. ASCE. NY.1983.157-197.
    [41]Hoeg K. Stresses against underground structural cylinder. Journal of the Soil Mechanics and Foundations Division. ASCE 1968; 94(SM4):833-858.
    [42]Hu J X. Earthquake Engineering [M]. Beijing:Earthquake Press.2006.(in Chinese)
    [43]Hu L M, Pu J L. Application of damage model for soil-structure interface [J]. Computers and Geotechnics.2003,30(2):165-183.
    [44]Huo H, Bobet A. Fernandez G et al. Analytical solution for deep rectangular structures subjected to far-field shear stresses [J]. Tunnelling and Underground Space Technology.2006,21(6):613-625.
    [45]Hyodo M, Tanimizu H. Yasufuku N. et al. Undrained cyclic and monotonic triaxial behaviour of saturated loose sand [J]. Soils and Foundations.1994,34(1):19-32.
    [46]Imai T, Tonouchi K. Kanemori T. The simple evaluation method of shear stress generated by earthquakes in soil ground[R]. Bureau of Practical Geological Investigation,1981.
    [47]lshihara K. Simple method of analysis for liquefaction of sand deposits during earthquakes[J]. Soils and Foundations.1977.17(3):1-17.
    [48]Itasca consulting group. Inc. FLAC3D-Fast Lagrangian Analysis of Continua in 3 Dimension. User's Guide [M]. Minneapolis. MN:Itasca.2006.
    [49]Iwasaki T. Soil liquefaction studies in Japan:state-of-the-art[J]. Soil Dynamics and Earthquake Engineering.1986,5(1):1-68.
    [50]John C M St, Zahrah t. Aseismic design of underground structure[J]. Tunnelling and Underground Space Technology,1987,2(2):165-197.
    [51]Juneja A, Dutta S. Ground loss due to circular tunnel deformation in sands [C]. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India,2008.
    [52]Kishida H, Uesugi M. Tests of the interface between sand and steel in the simple shear apparatus [J]. Geotechnique,1989,37(1):45-52.
    [53]Kong L G, Zhang L M. Centrifuge modeling of torsionally loaded pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(11):1374-1384.
    [54]Kuhlemeyer R L, Lysmer J. Finite Element Method Accuracy for Wave Propagation Problems [J]. Journal of Soil Mechanics and Foundation Division. ASCE.1973.99:421-427.
    [55]Kuesel T R. Earthquake design criteria for subways[J]. Journal of the Structural Divisions. ASCE,1969, 95(ST6):1213-1231.
    [56]Kulasingam R. Effects of void redistribution on liquefaction-induced deformations [D]. Davis: University of California at Davis.2003.
    [57]Kutter B L. Chou J C. Travasarou T. Centrifuge Testing of the Seismic Performance of a Submerged Cut-and-Cover Tunnel in Liquefiable Soil[C]. Proceedings of the Geotechnical Earthquake Engineering and Soil Dynamics IV Congress 2008. Sacramento. California.2008.
    [58]Lee C J. Chiang K H. Ground movement and tunnel stability when tunneling in sandy ground [J]. Journal of the Chinese Institute of Engineers.2004.27(7):1021-1032.
    [59]Li X S. Centrifuge modeling and finite element analysis of pipeline buried in liquefiable soil [D]. NY: Columbia University.2001.
    [60]Liang J W. Zhang H. Lee V W. A series solution for surface motion amplification due to underground twin tunnels:incident SV waves[J]. Earthquake Engineering and Engineering Vibration,2003, 2(2):289-298.
    [61]Liao S S C. Whitman R V. Overburden correction factors for SPT in sands[J]. Journal of the Geotechnical Engineering Divisions, ASCE,1986,112(3):373-377.
    [62]Liu Ru-shan, Shi Hong-bin. An improved pseudo-static method for seismic resistant design of underground structures[J]. Earthquake engineering and engineering vibration.2006,5(2):189-193
    [63]Liyanathirana D S. Poulos H G. Numerical simulation of soil liquefaction due to earthquake loading [J]. Soil Dynamics and Earthquake Engineering,2002.22(7):511-523
    [64]Lu M W. Luo X F. Foundations of Elasticity [M]. Beijing and NY:Tsinghua University Press and Springer-Verlag Wien.2001.
    [65]Martin G R, Finn WDL, Seed H B. Fundamentals of Liquefaction under Cyclic Loading[J]. Journal of the Geotechnical Engineering Division,1975,101(5):423-438.
    [66]Mononobe N. Considerations on the vertical earthquake motion and some vibration problems[J]. Journal of the Japan Society of Civil Engineering,1924,15(5):1063-1094.
    [67]Muskhelishvili N 1. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Groningen, the Netherlands:Noordhoof Ltd.,1963
    [68]Ng C W W. Li X S. Laak P A V, et al. Centrifuge modeling of loose fill embankment subjected to uni-axial and bi-axial earthquakes [J]. Soil Dynamics and Earthquake Engineering 2004,24(4): 305-318.
    [69]Nomoto T. Imamura S, Hagiwara T, et al. Shield tunnel construction in centrifuge [J]. Journal of geotechnical and geoenvironmental engineering,1999,125(4):289-300.
    [70]Ovesen N K. The scaling law relationship:panel discussion[C]. Proc 7th European Conference on Soil Mechanics and Foundation Engineering,1979,4:319-323.
    [71]Pakbaz M C. Yareevand A.2-D analysis of circular tunnel against earthquake loading[J]. Tunnelling and Underground Space Technology,2005,20(5):411-417.
    [72]Park K H. Tantayopin K. Tontavanich B, et al. Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions:A revisit[J]. Tunnelling and Underground Space Technology.2009.24(2):231-235
    [73]Park S S. Byrne P M. Stress densification and its evaluation[J]. Canadian Geotechnical Journal. 2004.41:181-186.
    [74]Pakbaz Z. Treadwell M.2-D analysis of circular tunnel against earthquake loading [J]. Tunnelling and Underground Space Technology,2005,20(5):411-417.
    [75]Peck R B. Hendron A J, Mohraz B. State of the art of soft ground tunneling. In:Proc.1st Rapid Excavation and Tunneling Conf,1972,259-286.
    [76]Penzien J. Wu C L. Stresses in linings of bored tunnels[J]. Earthquake engineering and structural dynamics,1998,27:83-300.
    [77]Potyondy JG. Skin Friction between Various Soils and Construction Materials[J]. Geotechnique,1961, 11(4):339-353.
    [78]Rayhani M H T. Centrifuge modeling of seismic site response and soil-structure interaction [D]. London:The University of Western Ontario,2007.
    [79]Seed H B, Idriss I M. Simplified procedure for evaluating soil liquefaction potentialfJ]. Journal of the Soil Mechanics and Foundations Division, ASCE,1971,97(SM9):1-15.
    [80]Shahrour I, Khoshnoudian F, Sadek M, et al. Elastoplastic analysis of the seismic response of tunnels in soft soils [J].Tunnelling and Underground Space Technology,2010,24(4):478-482.
    [81]Sharp M K. Dobry R, Abdoun T. Centrifuge Modelling of Liquefaction and Lateral Spreading of Virgin, Overconsolidated and Pre-shaken Sand Deposits [J]. International Journal of Physical Modelling in Geotechnics,2003.3(2):11-22.
    [82]Shet C, Chandra N. Analysis of energy balance when using cohesive zone models to simulate fracture processes [J]. Journal of Engineering Materials and Technology,2002,124(4):440-450.
    [83]Taboada V M. Centrifuge modeling of earthquake-induced lateral spreading in sand using a laminar box [D]. NY:Rensselaer Polytechnic Institute,1995.
    [84]Taiebat M, Shahir H. Pak A. Study of pore pressure variation during liquefaction using two constitutive models for sand [J]. Soil Dynamics and Earthquake Engineering,2007,27(1):60-72.
    [85]Taylor R N. Geotechnical centrifuge technology [M]. Blackie Academic & Professional.1995.
    [86]Timoshenko S P, Goodier J N. Theory of elasticity (3ed) [M]. New York:McGraw Hill.1970.
    [87]Turan A, Hinchberger S D. Naggar H El. Design and commissioning of a laminar soil container for use on small shaking tables [J]. Soil Dynamics and Earthquake Engineering.2009.29(2):404-414.
    [88]Ubilla J O. Physical modeling of the effects of natural hazards on soil-structure [D]. N.Y.:Rensselaer Polytechnic Institute,2007.
    [89]Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half-plane [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1997,21:77-89.
    [90]Vucetic M. Pore pressure buildup and liquefaction of level sandy sites during earthquakes[D]. N.Y: Rensselaer Polytechnic Institute,1986.
    [91]Wang J N. Seismic design of tunnels:a simple state-of-the-art design approach[M]. N.Y.:Parsons Brinckerhoff Quade and Douglas Inc,1993.
    [92]Wang J S, Suo Z. Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches[J]. Acta Metallurgica et Materialia,1990,38(7):1279-1290.
    [93]Wang M B, Li S C. A complex variable solution for stress and displacement field around a lined circular tunnel at great depth [J]. International journal for numerical and analytical methods in geomechanics,2009,33:939-951.
    [94]Whitman R V, Lambe P C. Effect of boundary conditions upon centrifuge experiments using ground motion simulation [J]. Geotechnical Testing Journal, ASTM,1986,9(2):61-71.
    [95]Wilson D W. Soil-pile-superstructure interaction in liquefying sand and soft clay [D]. Davis:University of California at Davis,1998.
    [96]Wood D M. Geotechnical modeling [M]. London:Taylor & Francis,2004.
    [97]Yang D. Naesgaard E, Byrne P M. et al. Numerical model verification and calibration of George Massey Tunnel using centrifuge models [J]. Canadian Geotechnical Journal,2004,41(5):921-942.
    [98]Yang Q D. Thouless M D. Mixed-mode fracture analyses of plastically-deforming adhesive joints[J]. International Journal of Fracture,2001,110(2):175-187.
    [99]Yin Z Z. Zhu H, Xu G H. A study of deformation in the interface between soil and concrete[J]. Computers and Geotechnics.1995.17(1):75-92.
    [100]Zeghal M, Elgamal AW, Zeng X, et al. Mechanism of liquefaction response in sand-silt dynamic centrifuge tests [J]. Soil Dynamics and Earthquake Engineering.1999,18(1):71-85.
    [101]Zelikson A. Devature B, Badel D. Scale modeling of soil structure interaction using a programmed series of explosions during centrifugation [A]. Proc. Int. Conf. on recent advances in Geotechnical Earthquake Engineering and Soil Dynamics[C].1981.361-366.
    [102]Zhou Y G, Chen Y M. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity [J].Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2007. 133(8):959-972.
    [103]Zhou Y G, Chen Y M. Shamoto Y. Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2010,136(1):165-177.
    [104]包承纲.我国离心模拟试验技术的现状与展望[J].岩土工程学报,1991,13(6):92-97.
    [105]蔡晓光,袁晓铭,刘汉龙等.近岸水平场地液化侧向大变形影响因素分析[J].世界地震工程,2007,23(2):20-25.
    [106]蔡国军.刘松玉,童立元等.基于静力触探测试的国内外砂土液化判别方法[J].岩石力学与工程学报,2008,27(5):1020-1027.
    [107]蔡正银.李相菘.材料状态对干砂小应变特性的影响[J].岩土力学,2004,25(1):10-14.
    [108]曹炳政,罗奇峰,马硕等.神户大地震车站的地震反应分析[J].地震工程与工程振动,2002,22(4):102-107.
    [109]陈国兴.岩上地震工程学[M].北京:科学出版社,2007.
    [110]陈国兴.胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动,2002,22(1):141-151.
    [111]陈国兴.庄海洋.程绍革等.土-地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程振动.2006.26(6):178-183.
    [112]陈文化,门福录.倾斜场地地震液化和滑移的有限元分析[J].地震工程与工程振动,2002,22(1):132-140.
    [113]陈育民.砂土液化后流动大变形试验与计算方法研究[D].南京:河海大学.2007.
    [114]陈云敏.陈仁朋.詹良通等.岩土工程的多尺度试验[C]//第25届全国土工测试学术研讨会论文集.杭州:浙江大学出版社.2008:43-56.
    [115]陈正勋,王泰典,黄灿辉.山岭隧道受震损害类型与原因之案例研究[J].岩石力学与工程学报,2011,30(1):45-57.
    [116]地盘工学会[日].盾构法的调查·设计·施工.[M].牛清山,陈凤英,徐华译.北京:中国建筑工业出版社.2008.
    [117]丁峻宏.金先龙.郭毅之等.沉管隧道地震响应的三维非线性数值模拟方法及应用[J].振动与冲击,2005.24(5):18-22.
    [118]冯谦,黄江.大跨度地下结构震害特征及破坏机理探讨[J].大地测量与地球动力学,2009,29(s):98-102.
    [119]高波.王峥峥,袁松等.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-341.
    1120]高长胜.陈生水,徐光明等.堤防边坡稳定离心模型试验技术[J].岩石力学与工程学报,2005,24(23):4308-4312.
    [121]高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,33(4):42-46.
    [122]高艳平,王余庆,辛鸿博.尾矿坝地震液化简化判别法[J].岩土工程学报,1995,17(5):72-79.
    [123]侯瑜京.土工离心机振动台及其试验技术[J].中国水利水电科学研究院学报,2006,4(1):15-22.
    [124]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报,2001,23(4):431-435.
    [125]黄春霞,张鸿儒,隋志龙.大型叠层剪切变形模型箱的研制[J].岩石力学与工程学报,2006,25(10):2128-2134.
    [126]黄茂松,曹杰.隧道地震响应简化分析与动力离心试验验证[J].岩石力学与工程学报,2010,29(2):271-280.
    [127]黄润秋,王贤能,唐胜传.深埋隧道地震动力响应的复反应分析[J].工程地质学报,1997,5(1):1-7.
    [128]黄雨,金晨,庄之敬.基于地震变形控制的隧道地基注浆抗液化加固效果评价[J].岩石力学与工程学报.2009.28(7):1484-1490.
    [129]黄志全,王思敬.离心模型试验技术在我国的应用概况[J].岩石力学与工程学报.1998.17(2):199-203.
    [130]吉随旺,唐永建,胡德贵等.四川省汶川地震灾区干线公路典型震害特征分析[J].岩石力学与工程学报,2009,28(6):1250-1260.
    [131]姜涛.尾矿坝砂土液化的简化判别方法[A].见:构筑物抗震[C].北京:测绘出版社.1990.
    [132]蒋通,苏亮.地震作用下盾构法隧道的弹塑性受力分析[J].岩土工程学报,1999,21(2):200-204.
    [133]孔戈,周健,徐建平等.盾构隧道横向地震响应规律研究[J].岩石力学与工程学报.2007.26(s1):2872-2879.
    [134]季倩倩.地铁车站结构振动台试验研究[D].上海:同济大学,2002.
    [135]李彬.地铁地下结构抗震理论分析与应用研究[D].北京:清华大学.2005.
    [136]李登华.面板堆石坝接触面试验研究和本构模型的建立[D].南京:南京水利科学研究院.2009.
    [137]李刚,钟启凯,尚守平.平面SH波入射下深埋圆形组合衬砌洞室的动力反应分析[J].湖南大学学报(自然科学版),2010,37(1):17-22.
    [138]李杰,岳庆霞,陈隽.地下综合管廊结构振动台模型试验与有限元分析研究[J].地震工程与工程振动,2009,29(4):41-45.
    [139]李守德 俞洪良Goodman接触面单元的修正与探讨[J].岩石力学与工程学报.2004,23(15):2628-2631.
    [140]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素[J].工程地质学报,2008,16(6):742-750.
    [141]李晓红,卢义玉,康勇等.岩石力学实验模拟技术[M].北京:科学出版社,2007.
    [142]梁建文,纪晓东Lee V W.地下圆形衬砌隧道对沿线地震动的影响(Ⅰ):级数解[J].岩土力学,2005,26(4):520-524.
    [143]廖雄华,李锡夔.关于土-结相互作用界面力学行为的数值模拟[J].计算力学学报,2002,19(4):450-455.
    [144]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,6(2):1-9.
    [145]林国华,贾兆宏,张立丽.砂土液化判别方法研究[J].岩土工程技术,2007,21(2):89-93.
    [146]林伟岸.复合衬垫系统剪力传递、强度特性及安全控制[D].杭州:浙江大学,2009.
    [147]凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(Ⅰ):基本理论[J].计算力学学报,2009,26(3):401-407.
    [148]凌道盛,韩超,陈云敏.数学网格和物理网格分离的有限单元法(Ⅱ):粘聚裂纹扩展问题中的应用[J].计算力学学报.2009,26(3):408-414.
    [149]凌贤长.王臣,王志强等.自由场地基液化大型振动台模型试验研究[J].地震工程与工程振动,2003,23(6):138-143.
    [150]刘殿魁.史守峡.界面上圆形衬砌结构对平面SH波的散射[J].力学学报,2004.34(5):796-803
    [151]刘光磊,宋二祥.刘华北等.饱和砂土地层中隧道结构动力离心模型试验[J].岩土力学,2008,29(8):2070-2076.
    [152]刘汉龙,高玉峰.余湘娟.残余强度对地震液化后地面大位移的影响[J].岩石力学与工程学报.2001.20(s1):1163-1167.
    [153]刘金云,陈健云,胡志强.输水隧道在行波激励下的三维地震反应分析[J].防灾减灾工程学报.2007,27(1):11-16.
    [154]刘晶波,李彬,谷音.地铁盾构隧道地震反应分析[J].清华大学学报(自然科学版),2005,45(6):757-760.
    [155]刘守华,蔡正银,徐光明等.超深厚吹填粉细砂地基大型离心模型试验研究[J].岩土工程学报,2004,26(6):846-850.
    [156]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报.2000,2:71-75.
    [157]吕和林.一种用于浅埋隧道抗震分析的拟静力数值方法[J1].西南交通大学学报,1999,34(3):315-319.
    [158]鲁晓兵,谈庆明,王淑云等.饱和砂土液化研究新进展[J].力学进展,2004,34(1):87-96.
    [159]卢志杰.隧道受震反应之研究[D].台湾桃园县:国立中央大学,2009.
    [160]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    [161]齐辉,王艳,刘殿魁.半无限空间界面附近SH波对圆形衬砌的散射[J].地震工程与工程振动,2003,23(3):41-46.
    [162]钱七虎,陈志龙,王玉北等.地下空间科学开发与利用[M].南京:江苏科学技术出版社,2007.
    [163]邵炜,金峰,王光纶.用于接触面模拟的非线性薄层单元[J].清华大学学报(自然科学版),1999,39(2):34-38.
    [164]苏栋,李相崧.地震历史对砂土抗液化性能影响的试验研究[J].岩土力学,2006,27(10) 1815-1818.
    [165]孙海峰.地下结构地震破坏机理研究[D].哈尔滨:中国地震局工程力学研究所.2011.
    [166]孙玲玲.浅埋地铁隧道的震动响应研究[D].北京:清华大学,2008.
    [167]孙锐,袁晓铭.液化土层地震动特征分析[J].岩土工程学报,2004,26(5):684-690.
    [168]孙锐,袁晓铭.第11届国际土动力学和地震工程会议及第13届世界地震工程会议砂土液化研究综述[J].世界地震工程,2006,22(1):15-20.
    [169]童磊.软土浅埋隧道变形、渗流及固结性状研究[D].杭州:浙江大学,2010.
    [170]王刚,张建民.地震液化问题研究进展[J].力学进展,2007,37(4):575-589.
    [171]汪越胜,王铎.SH波对有部分脱胶衬砌的圆形孔洞的散射[J].力学学报,1994,26(4):462-469.
    [172]夏红春,周国庆,商翔宇.基于Weibull分布的土-结构接触面统计损伤软化本构模型[J].地下空间与工程学报,2006,2(1):79-86.
    [173]许金泉.界面力学[M].北京:科学出版社.2006.
    [174]徐平,夏唐代,李晓龙.深埋圆形衬砌群对入射平面P波的多重散射[J].中国铁道科学,2008,29(3):46-51.
    [175]徐正中.桩承式路堤固结性状试验与理论研究[D].杭州:浙江大学,2009.
    [176]晏启祥,马婷婷,吴林等.圆形隧道抗震分析若干近似解析方法比较研究[J].西南交通大学学报,2011,46(1):12-17.
    [177]阎盛海,王常义.圆形隧洞双层衬砌在P波作用下的动力反应[J].大连理工大学学报,1989,29(6):707-714.
    [178]杨峻,宫全美,吴世明等.饱和土体中圆柱形孔洞的动力分析[J].上海力学,1996,17(1):37-44.
    [179]杨林德,刘齐建.土-结构物接触面统计损伤本构模型[J].地下空间与工程学报,2006,2(1):79-86.
    [180]杨有莲,朱俊高,余挺等.土与结构接触面力学特性环剪试验研究[J].岩土力学,2009,30(11):3256-3260.
    [181]杨小礼,李亮,刘宝琛.强震作用下交通隧道的拟静态反应[J].中国公路学报,2001,14(4):55-58.
    [182]杨小礼,李亮.层状地基中交通隧道地震反应分析[J].长沙铁道学院学报,2000,18(4):15-19.
    [183]袁勇,禹海涛,陈之毅.软土浅埋框架结构抗震计算方法评价[J].振动与冲击,2009,28(8):50-56.
    [184]张丙印,付建,李全明.散粒体材料间接触面力学特性的单剪试验研究[J].岩土力学,2004,25(10):1522-1526.
    [185]张嘎,牟太平,张建民.基于图像分析的土坡离心模型试验变形场测量[J].岩土工程学报,2007, 29(1):94-97.
    [186]张嘎.粗粒土与结构接触面静动力学特性及弹塑性损伤理论研究lD].北京:清华大学.2002.
    [187]张超,杨春和.尾矿坝液化判别简化方法研究[J].岩石力学与工程学报,2006,25(增2):3730-3736.
    [188]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用[J].岩土工程学报.1998.20(6):62-66.
    [189]张建红.劳敏慈.胡黎明.非饱和土中水分迁移及污染物扩散的离心模拟[J].岩土工程学报,2002,24(5):622-625.
    [190]张孝波.地铁隧道地震反应分析及土—结接触面问题初探[D].哈尔滨:中国地震局工程力学研究所学.2010.
    [191]张延亿,徐泽平,温彦锋等.糯扎渡高心墙堆石坝离心模拟试验研究[J].中国水利水电科学研究院学报.2008,6(2):85-92.
    [192]张治军,饶锡保.王志军等.泥皮厚度对结构接触面力学特性影响的试验研究[J].岩土力学,2008.29(9):2433-2438.
    [193]郑颖人,肖强,叶海林.地震隧洞稳定性分析探讨[J].岩石力学与工程学报,2010,29(6):1081-1088.
    [194]郑永来,杨林德,李文艺等.地下结构抗震[M].上海:同济大学出版社,2005.
    [195]中国建筑科学研究院.GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [196]周爱兆,卢廷浩.基于广义位势理论的接触面弹塑性本构模型[J].岩土工程学报,2008,30(10):1532-1536.
    [197]周储伟,杨卫,方岱宁.内聚力界面单元与复合材料的界面损伤分析[J].力学学报,1999,31(3):372-377.
    [198]周伟.靳萍,常晓林等.基于扩展Lagrange乘子的Clough接触面模型及应用[J].岩土力学,2008.29(1):69-74.
    [199]周香莲,周光明,王建华.饱和土中圆形衬砌结构对弹性波的散射[J].岩石力学与工程学报,2005,24(9):1572-1576
    [200]周燕国.土结构性的剪切波速表征及对动力特性的影响[D].杭州:浙江大学,2007.
    [201]周燕国,陈云敏,柯瀚.砂土液化势剪切波速简化判别法的改进[J].岩石力学与工程学报,2005, 24(13):2369-2375.
    [202]庄海洋,程绍革.陈国兴.阪神地震中大开地铁车站震害机制数值仿真分析[J].岩土力学,2008.29(1):245-250.
    [203]左熹,陈国兴,王志华等.近远场地震动作用下地铁车站结构地基液化效应的振动台试验[J].岩土力学,2010,31(12):3733-3740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700