用户名: 密码: 验证码:
重组人血管抑素对碱烧伤角膜新生血管作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     眼碱烧伤是严重的致盲性眼病,碱烧伤后角膜新生血管(corneal neovascularization,CNV)形成是导致视力下降的主要原因。其病理过程复杂,涉及诸多因素,确切的发病机理尚未完全阐明。CNV的治疗方法较多,但目前的治疗效果仍不太理想,因此研究CNV发病机制和探讨有效的治疗措施,将对防治CNV、防盲、治盲都具有极其重要的现实意义。
     重组人血管抑素(angiostatin,AS)是近年来发现的血纤溶酶原的裂解片段,其前3个Kringle片段(Kringle 1-3,K1-3)对新生血管有较强的抑制作用,但作用机理尚未完全阐明,亦尚未见其对碱烧伤CNV中炎症细胞浸润、成纤维细胞及IL-1α表达影响的报道。本课题从建立角膜碱烧伤CNV模型着手,探讨AS对碱烧伤CNV的作用,利用免疫组化、ELISA和大鼠白细胞耗竭模型,探讨炎症细胞浸润、白细胞介素-1α(interleukin-1α,IL-1α)以及血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)等在AS对碱烧伤CNV抑制作用中的作用机制。
     材料与方法
     1、30只SD大鼠制作左眼碱烧伤CNV模型,碱烧伤后观察角膜及新生血管动态生长情况,于碱烧伤后6h、1、3、7、14、21天随机取5只大鼠处死,取角膜行组织病理学检查了解碱烧伤后角膜组织学变化及炎症细胞浸润情况,探索合适的CNV模型。
     2、重组人血管抑素K1-3:灭菌生理盐水无菌操作配制成10μg/ml、20μg/ml滴眼液,4℃冰箱保存备用。
     3、105只SD大鼠随机取5只作正常对照(不作任何处理,取角膜作正常对照),其余100只制作左眼碱烧伤CNV模型,随机分为4组(每组25只):实验对照组、地塞米松组、K1组、K2组,分别点生理盐水、0.1%地塞米松眼液和10μg/ml、20μg/ml的K1-3滴眼液;于碱烧伤后1、3、7、14、21天每组随机取5只大鼠,测量CNV长度,计算CNV面积,分析K1-3眼液对CNV的作用。随后处死大鼠,取角膜备组织病理学检查、电镜检查、免疫组化和ELISA检测。
     3、角膜切片HE染色,观察角膜组织学变化,各组碱烧伤后不同时间炎症细胞计数,比较各组角膜组织变化及炎症细胞浸润情况。
     4、电镜观察碱烧伤后K1-3治疗组与对照组角膜超微结构改变。
     5、制作大鼠白细胞耗竭模型,角膜碱烧伤,观察白细胞耗竭后角膜炎症细胞浸润及CNV生长情况,分析白细胞在碱烧伤角膜炎症反应及CNV形成中的作用及K1-3对碱烧伤角膜CNV及炎症细胞浸润的作用。
     6、免疫组化检测4组碱烧伤后不同时间角膜VEGF表达,病理图像分析仪测量平均光密度值(optical density,OD)。CD34标记新生血管,检测各组角膜新生血管密度(microvessel density,MVD)。分析K1-3对碱烧伤角膜VEGF表达及MVD的影响。
     7、ELISA检测各组角膜IL-1α表达,分析K1-3对碱烧伤角膜IL-1α表达的影响。
     结果
     1、成功建立碱烧伤CNV模型,大鼠角膜碱烧伤40s,为较理想的时间。
     2、碱烧伤后3天对照组出现CNV,碱烧伤后7天生长旺盛,14天达高峰,布满角膜,21天略消退,但仍占据大部分角膜;K1-3治疗组碱烧伤后3天未见明显CNV,7天仅达碱烧伤斑边缘,14天仅少量CNV长至瞳孔区,21天消退明显。各时间点K1-3治疗组CNV面积及MVD均较对照组减少(P<0.05),表明AS对碱烧伤CNV有明显的抑制作用。
     3、碱烧伤后1-3天,对照组角膜切片中可见大量炎症细胞浸润(主要是中性粒细胞),7-14天时炎症细胞仍较多,21天时炎症细胞减少;碱烧伤后1、3、7、14天,K1组、K2组、地塞米松组角膜中炎症细胞浸润较对照组少(P<0.05),K2组较K1组和地塞米松组少(P<0.05)。21天时地塞米松组炎症细胞较K1-3治疗组增多(P<0.05)。提示局部浸润的炎症细胞在角膜碱烧伤CNV形成过程中起重要作用;AS可通过抑制炎症细胞浸润而抑制CNV,其效果优于地塞米松。
     4、角膜组织切片显示,碱烧伤后21天,对照组角膜中央混浊,K1-3治疗组角膜较透明。电镜超微结构显示,碱烧伤后对照组角膜上皮基底膜连接松散,前弹力膜和基质层间半桥粒数量减少,细胞间隙变宽。基质胶原纤维排列紊乱,成纤维细胞增大,细胞内线粒体、粗面内质网增多;K1-3治疗组角膜损伤较对照组轻,细胞间连接较对照组紧密,基质层胶原纤维排列相对整齐,成纤维细胞形态及结构变化不明显。显示AS可抑制角膜成纤维细胞过度增生,抑制角膜瘢痕形成。
     5、大鼠灌服环磷酰胺3天后外周血白细胞总数及淋巴细胞、中性粒细胞数均明显下降(P<0.05);白细胞耗竭鼠角膜碱烧伤,发现角膜中浸润的炎症细胞及CNV面积较对照组减少(P<0.05)。
     6、正常角膜中VEGF无表达或仅在上皮层有微弱表达,碱烧伤后4组角膜VEGF表达上升,1周左右达高峰,主要表达于新生血管内皮细胞及浸润的炎症细胞内,碱烧伤后各时间点K1-3治疗组VEGF表达及OD值均明显低于对照组(P<0.05)。提示AS可降低碱烧伤角膜VEGF表达,从而抑制CNV。
     7、IL-1α在正常角膜中有少量表达,碱烧伤后4组IL-1α表达均明显升高,3天时达高峰,7天后开始回落,21天回落至正常水平。碱烧伤后各时间点K1-3治疗组IL-1α表达均明显低于对照组(P<0.05),表明AS可降低IL-1α表达,从而抑制CNV。
     结论
     1、角膜碱烧伤40s是一种简单方便的CNV模型,可成功诱导CNV,且无严重并发症。
     2、重组人血管抑素K1-3可抑制碱烧伤CNV形成、减轻炎症反应、促进角膜愈合,作用呈剂量依赖性。
     3、重组人血管抑素K1-3抑制碱烧伤CNV形成的作用机制可能是通过抑制角膜IL-1α、VEGF的表达及抑制炎症细胞浸润实现的。
     4、重组人血管抑素K1-3可抑制成纤维细胞的过度激活,抑制瘢痕形成,减轻角膜混浊。
     5、电镜超微结构显示K1-3治疗CNV未见角膜细胞损伤,对角膜无毒副作用,提示K1-3可能成为临床治疗CNV的一个新途径。
Background and Objective
     Alkali injury of the eye is a serious blinding disease. Corneal neovascularization (CNV) after alkali burn is the major cause that influences the vision. The blindness cause by CNV becomes a prominent problem in our country. Multiple factors take part in the complex process of CNV formation. The exact mechanism of CNV is unknown. There isn’t ideal medical treatment of CNV though there are many therapies. Investigate the mechanism and the antiangiogenic drug is extremely important.
     Recombinant human angiostatin is a kringle-containing fragment of plasminogen. The kringle1-3(K1-3) is a potent inhibitor of angiogenesis in vivo. The antiangiogenic mechanism of K1-3 is unknown. The previous study about AS was focus on the antiangiogenic effect of tumor angiogenesis and the inhibition of vascular endothelial cells. There are no publications of K1-3 eye drops on CNV and corneal inflammatory cells and the expression of IL-1αin rat after alkali burn. Leukocyte depletion rat models were established to investigate the effect of leukocyte on CNV induced by alkali burn. Rat CNV models were established to investigate the anti-angiogenenesis effect of K1-3 eye drops on CNV and the effect on the expression of IL-1αand VEGF.
     Materials and Methods
     1. 30 SD rats were burned on central cornea of left eye by 1mol/L NaOH for 40s to observe the change of cornea and the development of CNV after alkali burn. Five rats were killed randomly at 6th hour(6h)、1、3、7、14、21day(d) after alkali burn. The corneas were taken for histopathological examinations.
     2. 105 SD rats were devided into five groups at ramdon, five for normal control (the rats were sacrificed and corneas were taken for control before the experiment). 100 rats for experiment (four groups, 25 rats each group) were burned on the central cornea of left eye by 1mol/L NaOH for 40s. saline to the control group , dexamethasone eye drops to dexamethasone group , K1-3 eye drops with different concentrations to group K1、K2. The eye drops were applied four times daily. Observe the cornea and CNV by ophthalmic surgical microscope, calculated the area of CNV on day 3、7、14、21. Then 5 rats of each group were killed randomly and the corneas were taken for histopathological、transmission electron microscop(eTEM)examinations、Immunohistochemistry and ELISA test.
     3. The corneas were stained with hematoxylin and eosine and leukocytes were counted by microscope. Observe the cornea ultrastructure of group K2 and saline group by TEM.
     4. Leukocyte depletion and CNV rat models were established to observe the occurrence and development of CNV after alkali burn. Compare the number of inflammatory cells and the area of CNV between leukocyte depletion group and control group, determine the effect of leukocyte in the development of CNV.
     5. Test the expression of VEGF and IL-1αof cornea at different time after alkali burn between four groups. The average optical density and microvessel density of cornea were analyzed.
     Result
     1. CNV in rats is successful induced by 1mol/L NaOH for 40s. On 3rd day after alkali burn, short vessels at the edge of the cornea can be seen, on 7th、14th day the vessels become very dense, the vessels growth slower after that. There were leukocytes in the cornea 6h after alkali burn, the leukocytes increased on 1st day and at the top of peak on 3rd day after alkali burn, after three days, the leukocytes decreased.
     2. Cornea ultrastructure: after alkali burn, the junction between the epithelial basement membrane and the stroma was loosed, the semidesmosomes decreased. The extracellular space was wider and the fibroblasts were larger than normal. Mitochondrions and rough endoplasmic reticulums were inceased in the control group. The damage of cornea in group K2 was lighter than that in control group.
     3. On 1st、3rd、7th、14th day after alkali burn, the number of leukocytes in group K1、K2、dexamethasone was less than that in control group(P<0.05). On 21th day, no significant difference was found between K1、K2 group and control group(P>0.05). But the leukocytes in dexamethasone group were increased. The MVD and area of CNV in group K1、K2 was smaller than that in group control(P<0.05).
     4. Significant difference(P<0.05)in the number of leukocytes、lymphocytes、neutrophils was found between cyclophosphamide group and control group. Area of CNV and the number of infiltrated inflammatory cells in the cyclophosphamide group were less than that in control group(P<0.05).
     5. VEGF was expressed in the epithelial weakly, the expression increased after alkali burn, the expression of VEGF arrived it’s peak on 7th day. Significant difference(P<0.05)in the expression was found between K1-3 treated group and control group.
     6. Little IL-1αcan be tested in normal cornea, the expression of IL-1α increased after alkali burn and arrived it’s peak on 3rd day , decreased on 7th day. Compared with control group, the expression of IL-1αdecreased significant(P<0.05)in K1-3 treated group.
     Conclusion
     1. Injury by 1mol/L NaOH for 40s is a simple and successful way to induced CNV. There is no severe complication take place in the cornea.
     2. The inflammatory cells play an important role in the occurrence and development of CNV, exhaust the leukocytes in the peripheral blood of rats can significant suppress inflammatory cell infiltration and the development of CNV.
     3. K1-3 can suppress inflammatory cell infiltration, inhibit inflammatory response, promote the healing of cornea and suppress the development of CNV in a dose-dependent manner.
     4. The anti CNV mechanism of K1-3 is that it can suppress inflammatory cell infiltration and inhibit the expression of VEGF and IL-1α.
     5. No toxicity was found in K1-3 treated cornea. K1-3 is hopeful to be applied in the future clinical therapy of CNV.
引文
1.陈家祺,刘祖国.加强对角膜病的基础和临床研究.中华眼科杂志, 2000; 36(1):10-2.
    2. Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc, 2006; 104:264-302.
    3.邱培瑾.角膜新生血管的动物模型.国外医学眼科学分册, 2000; 24(6):360-3.
    4. Ziche M, Donnini S, Morbidelli L, et al. Linomide blocks angiogenesis by breast carcinoma vascular endothelial growth factor transfectants. Br J Cancer, 1998; 77(7):1123-9.
    5. Wagoner MD, Kenyon KR, Gipson IK, et al. Polymorphonuclear neutrophils delay corneal epithelial wound healing in vitro. Invest Ophthalmol Vis Sci, 1984; 25(10):1217-20.
    6. Foster CS, Zelt RP, Mai-Phan T, et al. Immunosuppression and selective inflammatory cell depletion. Studies on a guinea pig model of corneal ulceration after ocular alkali burning. Arch Ophthalmol, 1982; 100(11):1820-4.
    7. Amano S, Rohan R, Kuroki M, et al. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci, 1998; 39(1):18-22.
    8.贺玖成,郑小红,外园千惠.基质金属蛋白酶抑制剂治疗角膜新生血管的实验研究.眼科研究, 2001; 19(2):128-30.
    9.刘祖国.眼表疾病学.北京:人民卫生出版社, 2003.
    10. Bock F, Onderka J, Rummelt C, et al. Safety profile of topicalVEGF-neutralization at the cornea. Invest Ophthalmol Vis Sci, 2009.
    11. Klauber N, Browne F, Anand-Apte B, et al. New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo. Circulation, 1996; 94(10):2566-71.
    12. Arbiser JL, Klauber N, Rohan R, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 1998; 4(6):376-83.
    13. Demir T, Celiker UO, Kukner A, et al. Effect of Octreotide on experimental corneal neovascularization. Acta Ophthalmol Scand, 1999; 77(4):386-90.
    14. Duenas Z, Torner L, Corbacho AM, et al. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci, 1999; 40(11):2498-505.
    15. Vogler WR, Liu J, Volpert O, et al. The anticancer drug edelfosine is a potent inhibitor of neovascularization in vivo. Cancer Invest, 1998; 16(8):549-53.
    16. Joussen AM, Kruse FE, Volcker HE, et al. Topical application of methotrexate for inhibition of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol, 1999; 237(11):920-7.
    17. Suzuki T, Sano Y, Kinoshita S. Effects of 1alpha,25-dihydroxyvitamin D3 on Langerhans cell migration and corneal neovascularization in mice. Invest Ophthalmol Vis Sci, 2000; 41(1):154-8.
    18. Joussen AM, Germann T, Kirchhof B. Effect of thalidomide and structurally related compounds on corneal angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol, 1999; 237(12):952-61.
    19. Dana MR, Zhu SN, Yamada J. Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea, 1998; 17(4):403-9.
    20. Volpert OV, Tolsma SS, Pellerin S, et al. Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun, 1995; 217(1):326-32.
    21. Samolov B, Steen B, Seregard S, et al. Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res, 2005; 80(2):159-66.
    22. Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci, 2002; 43(4):955-62.
    23. Lam VM, Nguyen NX, Martus P, et al. Surgery-related factors influencing corneal neovascularization after low-risk keratoplasty. Am J Ophthalmol, 2006; 141(2):260-6.
    24. Kheirkhah A, Johnson DA, Paranjpe DR, et al. Temporary sutureless amniotic membrane patch for acute alkaline burns. Arch Ophthalmol, 2008; 126(8):1059-66.
    25. Gerten G. Bevacizumab (avastin) and argon laser to treat neovascularization in corneal transplant surgery. Cornea, 2008; 27(10):1195-9.
    26. Sheppard JD, Jr., Epstein RJ, Lattanzio FA, Jr., et al. Argon laser photodynamic therapy of human corneal neovascularization after intravenous administration of dihematoporphyrin ether. Am J Ophthalmol, 2006; 141(3):524-9.
    27. Ciulla TA, Criswell MH, Snyder WJ, et al. Photodynamic therapy with PhotoPoint photosensitiser MV6401, indium chloride methyl pyropheophorbide, achieves selective closure of rat corneal neovascularisation and rabbit choriocapillaris. Br J Ophthalmol, 2005; 89(1):113-9.
    28. Gohto Y, Obana A, Kanai M, et al. Treatment parameters for selectiveocclusion of experimental corneal neovascularization by photodynamic therapy using a water soluble photosensitizer, ATX-S10(Na). Exp Eye Res, 2001; 72(1):13-22.
    29. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997; 88(2):277-85.
    30. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994; 79(2):315-28.
    31. Kirsch M, Strasser J, Allende R, et al. Angiostatin suppresses malignant glioma growth in vivo. Cancer Res, 1998; 58(20):4654-9.
    32. Matsumoto G, Ohmi Y, Shindo J. Angiostatin gene therapy inhibits the growth of murine squamous cell carcinoma in vivo. Oral Oncol, 2001; 37(4):369-78.
    33. Jung SP, Siegrist B, Wang YZ, et al. Effect of human Angiostatin protein on human angiogenesis in vitro. Angiogenesis, 2003; 6(3):233-40.
    34. Tandle A, Blazer DG, 3rd, Libutti SK. Antiangiogenic gene therapy of cancer: recent developments. J Transl Med, 2004; 2(1):22.
    35. Murata M, Nakagawa M, Takahashi S. Inhibitory effects of plasminogen fragment on experimentally induced neovascularization of rat corneas. Graefes Arch Clin Exp Ophthalmol, 1997; 235(9):584-6.
    36. D'Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A, 1994; 91(9):4082-5.
    37. Edelman JL, Castro MR, Wen Y. Correlation of VEGF expression by leukocytes with the growth and regression of blood vessels in the rat cornea. Invest Ophthalmol Vis Sci, 1999; 40(6):1112-23.
    38. Kruse FE, Joussen AM, Rohrschneider K, et al. Thalidomide inhibitscorneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol, 1998; 236(6):461-6.
    39. Boneham GC, Collin HB. Steroid inhibition of limbal blood and lymphatic vascular cell growth. Curr Eye Res, 1995; 14(1):1-10.
    40. Conners MS, Urbano F, Vafeas C, et al. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Invest Ophthalmol Vis Sci, 1997; 38(10):1963-71.
    41. Sonoda K, Sakamoto T, Yoshikawa H, et al. Inhibition of corneal inflammation by the topical use of Ras farnesyltransferase inhibitors: selective inhibition of macrophage localization. Invest Ophthalmol Vis Sci, 1998; 39(12):2245-51.
    42. Benelli U, Lepri A, Nardi M, et al. Trapidil inhibits endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane and in the rat cornea. J Ocul Pharmacol Ther, 1995; 11(2):157-66.
    43. Li WW, Grayson G, Folkman J, et al. Sustained-release endotoxin. A model for inducing corneal neovascularization. Invest Ophthalmol Vis Sci, 1991; 32(11):2906-11.
    44. Murata T, Ishibashi T, Yoshikawa H, et al. Tecogalan sodium inhibits corneal neovascularization induced by basic fibroblast growth factor. Ophthalmic Res, 1995; 27(6):330-4.
    45. Becker MD, Kruse FE, Azzam L, et al. In vivo significance of ICAM-1--dependent leukocyte adhesion in early corneal angiogenesis. Invest Ophthalmol Vis Sci, 1999; 40(3):612-8.
    46. Benelli U, Ross JR, Nardi M, et al. Corneal neovascularization induced by xenografts or chemical cautery. Inhibition by cyclosporin A. Invest Ophthalmol Vis Sci, 1997; 38(2):274-82.
    47. Hayashi A, Popovich KS, Kim HC, et al. Role of protein tyrosine phosphorylation in rat corneal neovascularization. Graefes Arch Clin Exp Ophthalmol, 1997; 235(7):460-7.
    48.颜世龙,梁丹,林妙丽.碱烧伤大鼠角膜新生血管模型的初步探索.眼科学报, 2005; 21:165-9.
    49.李瑾,傅瑶,贾仁兵.大鼠角膜碱烧伤行培养角膜上皮移植后VEGF的表达.眼科研究, 2008年1月;第26卷(第1期):9-12.
    50.王一,陈小军,陈莉.人多核白细胞胶原酶潜酶活化的实验研究.眼科研究, 1994; 12(4):233-5.
    51. Pfister RR, Haddox JL, Sommers CI, et al. Identification and synthesis of chemotactic tripeptides from alkali-degraded whole cornea. A study of N-acetyl-proline-glycine-proline and N-methyl-proline-glycine-proline. Invest Ophthalmol Vis Sci, 1995; 36(7):1306-16.
    52.赵敏,陈家祺,杨培增.鼠角膜碱烧伤的免疫学研究.中华眼科杂志, 2000; 36(1):40-2.
    53. Sotozono C, He J, Matsumoto Y, et al. Cytokine expression in the alkali-burned cornea. Curr Eye Res, 1997; 16(7):670-6.
    54. Kao WW, Zhu G, Benza R, et al. Appearance of immune cells and expression of MHC II DQ molecule by fibroblasts in alkali-burned corneas. Cornea, 1996; 15(4):397-408.
    55. Jackson JR, Seed MP, Kircher CH, et al. The codependence of angiogenesis and chronic inflammation. Faseb J, 1997; 11(6):457-65.
    56. Riazi-Esfahani M, Peyman GA, Aydin E, et al. Prevention of corneal neovascularization: evaluation of various commercially available compounds in an experimental rat model. Cornea, 2006; 25(7):801-5.
    57. Benelli R, Morini M, Carrozzino F, et al. Neutrophils as a key cellular targetfor angiostatin: implications for regulation of angiogenesis and inflammation. Faseb J, 2002; 16(2):267-9.
    58. Warejcka DJ, Vaughan KA, Bernstein AM, et al. Differential conversion of plasminogen to angiostatin by human corneal cell populations. Mol Vis, 2005; 11:859-68.
    59. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci, 2000; 41(9):2514-22.
    60. Torres PF, Kijlstra A. The role of cytokines in corneal immunopathology. Ocul Immunol Inflamm, 2001; 9(1):9-24.
    61. Gao G, Li Y, Zhang D, et al. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett, 2001; 489(2-3):270-6.
    62. Kimura H, Nakajima T, Kagawa K, et al. Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver, 1998; 18(1):14-9.
    63. Morikawa W, Yamamoto K, Ishikawa S, et al. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem, 2000; 275(49):38912-20.
    64. Gabison E, Chang JH, Hernandez-Quintela E, et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res, 2004; 78(3):579-89.
    65. Lai CC, Wu WC, Chen SL, et al. Recombinant adeno-associated virus vector expressing angiostatin inhibits preretinal neovascularization in adult rats. Ophthalmic Res, 2005; 37(1):50-6.
    66. Meneses PI, Hajjar KA, Berns KI, et al. Recombinant angiostatin preventsretinal neovascularization in a murine proliferative retinopathy model. Gene Ther, 2001; 8(8):646-8.
    67. Drixler TA, Borel Rinkes IH, Ritchie ED, et al. Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest Ophthalmol Vis Sci, 2001; 42(13):3325-30.
    68. Kirmaz C, Ozbilgin K, Yuksel H, et al. Increased expression of angiogenic markers in patients with seasonal allergic rhinitis. Eur Cytokine Netw, 2004; 15(4):317-22.
    69. Chavakis T, Athanasopoulos A, Rhee JS, et al. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood, 2005; 105(3):1036-43.
    70. Nakao S, Hata Y, Miura M, et al. Dexamethasone inhibits interleukin-1beta-induced corneal neovascularization: role of nuclear factor-kappaB-activated stromal cells in inflammatory angiogenesis. Am J Pathol, 2007; 171(3):1058-65.
    71. Chung JH, Kang YG, Kim HJ. Effect of 0.1% dexamethasone on epithelial healing in experimental corneal alkali wounds: morphological changes during the repair process. Graefes Arch Clin Exp Ophthalmol, 1998; 236(7):537-45.
    72. Nakamura K, Kurosaka D, Bissen-Miyajima H, et al. Intact corneal epithelium is essential for the prevention of stromal haze after laser assisted in situ keratomileusis. Br J Ophthalmol, 2001; 85(2):209-13.
    73. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A, 1999; 96(6):2811-6.
    74. Moser TL, Kenan DJ, Ashley TA, et al. Endothelial cell surface F1-F0 ATPsynthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A, 2001; 98(12):6656-61.
    75.范丽君,尹琳,张仲惠.环磷酰胺对大鼠脑缺血再灌注后脑组织中ICAM-1、白细胞影响的研究.中风与神经疾病杂志, 2006; 23(4):462-5.
    76.龙启才.五例老年恶性肿瘤患者环磷酰胺的药代动力学.癌症, 1991; 10(6):457-9.
    77.寿旗扬,应华忠,周卫民.两种方法注射环磷酰胺致小鼠白细胞减少症模型的比较.实验动物与比较医学, 2008; 28(4):266-8.
    78.马蕾,王鸣琴.角膜碱烧伤自由基与抗氧化歧化酶实验研究.眼外伤职业病杂志, 1997; 19(1):1231.
    79. Colleoni M, Rocca A, Sandri MT, et al. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol, 2002; 13(1):73-80.
    80. Emmenegger U, Morton GC, Francia G, et al. Low-dose metronomic daily cyclophosphamide and weekly tirapazamine: a well-tolerated combination regimen with enhanced efficacy that exploits tumor hypoxia. Cancer Res, 2006; 66(3):1664-74.
    81. Yamada J, Dana MR, Sotozono C, et al. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res, 2003; 76(2):161-7.
    82. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 1989; 161(2):851-8.
    83. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003; 9(6):669-76.
    84. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med, 1999; 77(7):527-43.
    85. Terman BI, Dougher-Vermazen M. Biological properties of VEGF/VPF receptors. Cancer Metastasis Rev, 1996; 15(2):159-63.
    86. Stapleton WM, Chaurasia SS, Medeiros FW, et al. Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea. Exp Eye Res, 2008; 86(5):753-7.
    87. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood, 1996; 87(6):2095-147.
    88. Lu Y, Fukuda K, Liu Y, et al. Dexamethasone inhibition of IL-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture. Invest Ophthalmol Vis Sci, 2004; 45(9):2998-3004.
    89. Keadle TL, Usui N, Laycock KA, et al. IL-1 and TNF-alpha are important factors in the pathogenesis of murine recurrent herpetic stromal keratitis. Invest Ophthalmol Vis Sci, 2000; 41(1):96-102.
    90. Rudner XL, Kernacki KA, Barrett RP, et al. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. J Immunol, 2000; 164(12):6576-82.
    91. Hong JW, Liu JJ, Lee JS, et al. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmol Vis Sci, 2001; 42(12):2795-803.
    92. Nagano T, Nakamura M, Nishida T. Differential regulation of collagen degradation by rabbit keratocytes and polymorphonuclear leukocytes. Curr Eye Res, 2002; 24(3):240-3.
    93. Heur M, Chaurasia SS, Wilson SE. Expression of interleukin-1 receptor antagonist in human cornea. Exp Eye Res, 2008.
    94. Bar D, Apte RN, Voronov E, et al. A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB J, 2004; 18(1):161-3.
    95. Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol, 2002; 22(6):887-93.
    96. Redlitz A, Daum G, Sage EH. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res, 1999; 36(1):28-34.
    97. Kumar CC. Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets, 2003; 4(2):123-31.
    98. Kim ES, Herbst RS. Angiogenesis inhibitors in lung cancer. Curr Oncol Rep, 2002; 4(4):325-33.
    1.陈家棋,刘祖国.加强对角膜病的基础和临床研究.中华眼科杂志, 2000; 36(1):10-2.
    2. Azar DT. Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc, 2006; 104:264-302.
    3.刘祖国.眼表疾病学.北京:人民卫生出版社, 2003.
    4. Edelman JL, Castro MR, Wen Y. Correlation of VEGF expression by leukocytes with the growth and regression of blood vessels in the rat cornea. Invest Ophthalmol Vis Sci, 1999; 40(6):1112-23.
    5.贺玖成,郑小红,外园千惠.基质金属蛋白酶抑制剂治疗角膜新生血管的实验研究.眼科研究, 2001; 19(2):128-30.
    6. Jackson JR, Seed MP, Kircher CH, et al. The codependence of angiogenesis and chronic inflammation. Faseb J, 1997; 11(6):457-65.
    7. Riazi-Esfahani M, Peyman GA, Aydin E, et al. Prevention of corneal neovascularization: evaluation of various commercially available compounds in an experimental rat model. Cornea, 2006; 25(7):801-5.
    8. Benelli R, Morini M, Carrozzino F, et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. Faseb J, 2002; 16(2):267-9.
    9. Shaw JP, Chuang N, Yee H, et al. Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. J Surg Res, 2003; 109(1):37-42.
    10. Warejcka DJ, Vaughan KA, Bernstein AM, et al. Differential conversion of plasminogen to angiostatin by human corneal cell populations. Mol Vis, 2005; 11:859-68.
    11. Gao G, Li Y, Zhang D, et al. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett, 2001; 489(2-3):270-6.
    12. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci, 2000; 41(9):2514-22.
    13. Murphy EA, Majeti BK, Barnes LA, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A, 2008; 105(27):9343-8.
    14. Torres PF, Kijlstra A. The role of cytokines in corneal immunopathology. Ocul Immunol Inflamm, 2001; 9(1):9-24.
    15. Tseng SC. Amniotic membrane transplantation for ocular surface reconstruction. Biosci Rep, 2001; 21(4):481-9.
    16. Cao R, Brakenhielm E, Wahlestedt C, et al. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci U S A, 2001; 98(11):6390-5.
    17. Stapleton WM, Chaurasia SS, Medeiros FW, et al. Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea. Exp Eye Res, 2008; 86(5):753-7.
    18. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood, 1996; 87(6):2095-147.
    19. Lu Y, Fukuda K, Liu Y, et al. Dexamethasone inhibition of IL-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture. Invest Ophthalmol Vis Sci, 2004; 45(9):2998-3004.
    20. Keadle TL, Usui N, Laycock KA, et al. IL-1 and TNF-alpha are important factors in the pathogenesis of murine recurrent herpetic stromal keratitis.Invest Ophthalmol Vis Sci, 2000; 41(1):96-102.
    21. Rudner XL, Kernacki KA, Barrett RP, et al. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. J Immunol, 2000; 164(12):6576-82.
    22. Hong JW, Liu JJ, Lee JS, et al. Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmol Vis Sci, 2001; 42(12):2795-803.
    23. Wu HM, Yuan Y, McCarthy M, et al. Acidic and basic FGFs dilate arterioles of skeletal muscle through a NO-dependent mechanism. Am J Physiol, 1996; 271(3 Pt 2):H1087-93.
    24. Yang CF, Yasukawa T, Kimura H, et al. Experimental corneal neovascularization by basic fibroblast growth factor incorporated into gelatin hydrogel. Ophthalmic Res, 2000; 32(1):19-24.
    25. Fett JW, Strydom DJ, Lobb RR, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 1985; 24(20):5480-6.
    26. Strieter RM, Belperio JA, Phillips RJ, et al. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol, 2004; 14(3):195-200.
    27. Murata M, Nakagawa M, Takahashi S. Inhibitory effects of plasminogen fragment on experimentally induced neovascularization of rat corneas. Graefes Arch Clin Exp Ophthalmol, 1997; 235(9):584-6.
    28. Tandle A, Blazer DG, 3rd, Libutti SK. Antiangiogenic gene therapy of cancer: recent developments. J Transl Med, 2004; 2(1):22.
    29.冯怡,冯玉梅,朱旭东.重组人内皮抑素滴眼液抑制小鼠角膜新生血管形成的研究.眼科研究, 2005; 23(1):12-5.
    30. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 2002; 21(14):2245-52.
    31. Mori K, Gehlbach P, Ando A, et al. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci, 2002; 43(7):2428-34.
    32. Lindner DJ, Hofmann ER, Karra S, et al. The interferon-beta and tamoxifen combination induces apoptosis using thioredoxin reductase. Biochim Biophys Acta, 2000; 1496(2-3):196-206.
    33. Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res, 2004; 63(2):226-35.
    34.刘亚男,张志红,陈逖.角膜新生血管的治疗进展.中国实用眼科杂志, 2004; 22(8):582-4.
    35. Bock F, Onderka J, Rummelt C, et al. Safety profile of topical VEGF-neutralization at the cornea. Invest Ophthalmol Vis Sci, 2009.
    36. Hos D, Bock F, Dietrich T, et al. Inflammatory corneal (lymph)angiogenesis is blocked by VEGFR-tyrosine kinase inhibitor ZK 261991, resulting in improved graft survival after corneal transplantation. Invest Ophthalmol Vis Sci, 2008; 49(5):1836-42.
    37. Klauber N, Browne F, Anand-Apte B, et al. New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo. Circulation, 1996; 94(10):2566-71.
    38. Arbiser JL, Klauber N, Rohan R, et al. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 1998; 4(6):376-83.
    39.武海军,陆晓和,钟彦彦.姜黄素对兔角膜新生血管中多形核白细胞计数和VEGF表达的影响.眼科新进展, 2008; 28(10):734-6.
    40. Demir T, Celiker UO, Kukner A, et al. Effect of Octreotide on experimental corneal neovascularization. Acta Ophthalmol Scand, 1999; 77(4):386-90.
    41. Duenas Z, Torner L, Corbacho AM, et al. Inhibition of rat corneal angiogenesis by 16-kDa prolactin and by endogenous prolactin-like molecules. Invest Ophthalmol Vis Sci, 1999; 40(11):2498-505.
    42. Andrieu-Soler C, Berdugo M, Doat M, et al. Downregulation of IRS-1 expression causes inhibition of corneal angiogenesis. Invest Ophthalmol Vis Sci, 2005; 46(11):4072-8.
    43. Biswas PS, Banerjee K, Kim B, et al. Role of inflammatory cytokine-induced cyclooxygenase 2 in the ocular immunopathologic disease herpetic stromal keratitis. J Virol, 2005; 79(16):10589-600.
    44. Suzuki T, Sano Y, Kinoshita S. Effects of 1alpha,25-dihydroxyvitamin D3 on Langerhans cell migration and corneal neovascularization in mice. Invest Ophthalmol Vis Sci, 2000; 41(1):154-8.
    45. Vogler WR, Liu J, Volpert O, et al. The anticancer drug edelfosine is a potent inhibitor of neovascularization in vivo. Cancer Invest, 1998; 16(8):549-53.
    46. Joussen AM, Kruse FE, Volcker HE, et al. Topical application of methotrexate for inhibition of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol, 1999; 237(11):920-7.
    47. Dana MR, Zhu SN, Yamada J. Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea, 1998; 17(4):403-9.
    48. Zhu SN, Dana MR. Expression of cell adhesion molecules on limbal and neovascular endothelium in corneal inflammatory neovascularization. Invest Ophthalmol Vis Sci, 1999; 40(7):1427-34.
    49. Joussen AM, Germann T, Kirchhof B. Effect of thalidomide and structurallyrelated compounds on corneal angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol, 1999; 237(12):952-61.
    50. Kruse FE, Joussen AM, Rohrschneider K, et al. Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol, 1998; 236(6):461-6.
    51. Kenyon BM, Browne F, D'Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res, 1997; 64(6):971-8.
    52. Volpert OV, Tolsma SS, Pellerin S, et al. Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun, 1995; 217(1):326-32.
    53. Samolov B, Steen B, Seregard S, et al. Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. Exp Eye Res, 2005; 80(2):159-66.
    54. Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci, 2002; 43(4):955-62.
    55. Klotz O, Park JK, Pleyer U, et al. Inhibition of corneal neovascularization by alpha(v)-integrin antagonists in the rat. Graefes Arch Clin Exp Ophthalmol, 2000; 238(1):88-93.
    56. Kim B, Tang Q, Biswas PS, et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol, 2004; 165(6):2177-85.
    57. Yu WZ, Li XX, She HC, et al. Gene transfer of kringle 5 of plasminogen by electroporation inhibits corneal neovascularization. Ophthalmic Res, 2003;35(5):239-46.
    58. Fibbi G, Caldini R, Chevanne M, et al. Urokinase-dependent angiogenesis in vitro and diacylglycerol production are blocked by antisense oligonucleotides against the urokinase receptor. Lab Invest, 1998; 78(9):1109-19.
    59. Murata M, Shimizu S, Horiuchi S, et al. Inhibitory effect of triamcinolone acetonide on corneal neovascularization. Graefes Arch Clin Exp Ophthalmol, 2006; 244(2):205-9.
    60. Kwon YS, Hong HS, Kim JC, et al. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo. Invest Ophthalmol Vis Sci, 2005; 46(2):454-60.
    61. Lam VM, Nguyen NX, Martus P, et al. Surgery-related factors influencing corneal neovascularization after low-risk keratoplasty. Am J Ophthalmol, 2006; 141(2):260-6.
    62. Kawakita T, Kawashima M, Satake Y, et al. Achievements and future problems with component surgery of the cornea. Cornea, 2007; 26(9 Suppl 1):S59-64.
    63. Luengo Gimeno F, Lavigne V, Gatto S, et al. Advances in corneal stem-cell transplantation in rabbits with severe ocular alkali burns. J Cataract Refract Surg, 2007; 33(11):1958-65.
    64. Kheirkhah A, Johnson DA, Paranjpe DR, et al. Temporary sutureless amniotic membrane patch for acute alkaline burns. Arch Ophthalmol, 2008; 126(8):1059-66.
    65. Gerten G. Bevacizumab (avastin) and argon laser to treat neovascularization in corneal transplant surgery. Cornea, 2008; 27(10):1195-9.
    66. Sheppard JD, Jr., Epstein RJ, Lattanzio FA, Jr., et al. Argon laserphotodynamic therapy of human corneal neovascularization after intravenous administration of dihematoporphyrin ether. Am J Ophthalmol, 2006; 141(3):524-9.
    67. Ciulla TA, Criswell MH, Snyder WJ, et al. Photodynamic therapy with PhotoPoint photosensitiser MV6401, indium chloride methyl pyropheophorbide, achieves selective closure of rat corneal neovascularisation and rabbit choriocapillaris. Br J Ophthalmol, 2005; 89(1):113-9.
    68. Gohto Y, Obana A, Kanai M, et al. Treatment parameters for selective occlusion of experimental corneal neovascularization by photodynamic therapy using a water soluble photosensitizer, ATX-S10(Na). Exp Eye Res, 2001; 72(1):13-22.
    69. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994; 79(2):315-28.
    70. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997; 88(2):277-85.
    71. Morikawa W, Yamamoto K, Ishikawa S, et al. Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem, 2000; 275(49):38912-20.
    72. Gabison E, Chang JH, Hernandez-Quintela E, et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res, 2004; 78(3):579-89.
    73. Jung SP, Siegrist B, Wang YZ, et al. Effect of human Angiostatin protein on human angiogenesis in vitro. Angiogenesis, 2003; 6(3):233-40.
    74. Kirsch M, Strasser J, Allende R, et al. Angiostatin suppresses malignantglioma growth in vivo. Cancer Res, 1998; 58(20):4654-9.
    75. Matsumoto G, Ohmi Y, Shindo J. Angiostatin gene therapy inhibits the growth of murine squamous cell carcinoma in vivo. Oral Oncol, 2001; 37(4):369-78.
    76. Lai CC, Wu WC, Chen SL, et al. Recombinant adeno-associated virus vector expressing angiostatin inhibits preretinal neovascularization in adult rats. Ophthalmic Res, 2005; 37(1):50-6.
    77. Meneses PI, Hajjar KA, Berns KI, et al. Recombinant angiostatin prevents retinal neovascularization in a murine proliferative retinopathy model. Gene Ther, 2001; 8(8):646-8.
    78. Drixler TA, Borel Rinkes IH, Ritchie ED, et al. Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest Ophthalmol Vis Sci, 2001; 42(13):3325-30.
    79. Chavakis E, Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol, 2002; 22(6):887-93.
    80. Soff GA. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev, 2000; 19(1-2):97-107.
    81. Moser TL, Kenan DJ, Ashley TA, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A, 2001; 98(12):6656-61.
    82. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A, 1999; 96(6):2811-6.
    83. Tarui T, Majumdar M, Miles LA, et al. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action ofangiostatin. J Biol Chem, 2002; 277(37):33564-70.
    84. Troyanovsky B, Levchenko T, Mansson G, et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol, 2001; 152(6):1247-54.
    85. Luo J, Lin J, Paranya G, et al. Angiostatin upregulates E-selectin in proliferating endothelial cells. Biochem Biophys Res Commun, 1998; 245(3):906-11.
    86. Redlitz A, Daum G, Sage EH. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J Vasc Res, 1999; 36(1):28-34.
    87. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999; 85(3):221-8.
    88. Ito H, Rovira, II, Bloom ML, et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res, 1999; 59(23):5875-7.
    89. Hari D, Beckett MA, Sukhatme VP, et al. Angiostatin induces mitotic cell death of proliferating endothelial cells. Mol Cell Biol Res Commun, 2000; 3(5):277-82.
    90. Chen YH, Wu HL, Chen CK, et al. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun, 2003; 310(3):804-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700