用户名: 密码: 验证码:
中国颅骨锁骨发育不良综合征患者的基因突变及相关功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颅骨锁骨发育不良(cleidocranial dysplasia,CCD)是一种少见的遗传性疾病,多为常染色体显性遗传,其致病基因定位于染色体6p21,并表明成骨细胞特异性转录因子(RUNX2/CBFA1/PEBP2)的杂合突变、基因插入、缺失等是造成CCD的重要原因。国内有关CCD患者的致病基因突变报道较少,尚未涉及到基因突变对蛋白功能的影响以及相关的细胞学研究。本研究收集5个中国CCD家系,进行基因突变检测及相关功能研究,填补国内有关研究的空白;并利用收集到的标本进行牙齿组织学结构分析以及牙髓细胞培养,探究CCD牙髓细胞的生物学特性及基因表达差异,从一个全新的角度对CCD患者的发病机理进行探讨。本文内容共分为三部分,小结如下:
     一、颅骨锁骨发育不良综合征患者的临床检查与分析
     本部分主要是CCD相关病例的筛选、诊断,首先是对具有相关临床症状的先证者详细采集病史,明确单发或家族聚集倾向;利用X线检查全面了解患者及其父母的全身骨骼发育情况;详细进行口腔检查,记录恒牙萌出及乳牙迟萌以及埋藏牙、多生牙等典型临床症状;综合上述临床资料,明确诊断。本研究中,五病例均具有明显的临床特征,比较典型的CCD特殊面容,口腔内表现为乳牙滞留,多数恒牙及多生牙埋伏于颌骨中不能萌出(除第4例没有明显多生牙外);均伴有锁骨发育不全,囟门闭合迟缓,身材矮小等症状。并发现一些新的临床畸形表现,如家系3先证者的尺、桡骨向桡侧偏斜致肱尺关节、肱桡关节畸形,肘外侧呈三角变形;家系2先证者的多生牙发生在磨牙区。
     利用收集的家系5先证者姐姐(CCD患者)的牙齿标本进行组织学分析,光镜及扫描电镜下观察牙齿磨片,发现恒牙牙冠釉质结构不清晰以及牙本质小管部分闭塞、管周牙本质矿化低,釉牙本质界缺乏典型的连续扇形结构;CCD乳前牙釉质厚度无明显变薄,釉板(或裂隙样)及釉丛结构较多,牙本质小管分布及大小不均,部分闭塞,并可见裂隙;观察CCD恒牙牙根上2/3纵磨片,发现牙骨质较薄,未见明确牙骨质细胞;对滞留乳牙进行观察,亦未发现细胞牙骨质。对CCD患牙以及正常牙的牙釉质以及牙本质分别进行能谱分析,数据用SPSS13.0版本进行处理,两样本均数t检验进行统计分析,结果表明CCD恒牙的牙釉质及牙本质的Ca、P含量均较正常降低,并具有统计学差异(t值分别为29.519、26.998以及9.676、88.982;p值分别为0.001、0.004以及0.011、0.003),CCD乳牙牙釉质的Ca、P含量均降低,并具有统计学差异(t值分别为33.754、23.412;p值分别为0.011、0.019),牙本质各元素的含量有降低,但无统计学差异,可能是样本量较少的原因。组织学分析与能谱分析均表明CCD患牙矿化较差,牙本质亦同样受累。本研究在组织学水平检测了RUNX2基因突变对CCD患者牙齿结构的影响,再次证明RUNX2基因对于牙齿正常发育的重要性。
     二、致病基因RUNX2的突变检测及对蛋白亚细胞定位的影响
     对五个CCD家系进行RUNX2基因突变分析发现:在五个CCD家系患者中均检测到不同的突变位点,家系中健康成员同一位点均为野生型序列,进一步证明RUNX2基因是CCD患者的致病基因,此基因的单倍体不足是CCD的致病原因。其中家系4的c.475 G>C错义突变以及家系5的c.1096 G>T无义突变是本研究检测到的新突变位点;家系2的c.673 C>T以及家系3的c.1171C>G突变位点在中国CCD患者中首次检出;家系1的c.674G>A,R225Q是国外文献报道突变率最高的位点。本研究结果拓展了国内CCD基因层次的研究领域,为国内外CCD致病基因的突变位点数据库增添了新的资料。
     为了研究基因突变对蛋白突变体亚细胞定位的影响,通过构建真核表达载体,引入突变位点,转染细胞,观察pEGFP-C1-RUNX2载体转染组细胞的荧光蛋白表达情况,未引入突变位点的野生型RUNX2组仅在胞核内见到绿色荧光表达;引入突变位点c.674G>A及c.673 C>T的两组转染细胞,在胞浆及胞核内均可见绿色荧光。pCMV-HA-RUNX2载体转染组细胞,利用荧光免疫组化,引入c.475 G>C(p G159R)突变组在胞浆胞核内均可见绿色荧光,而野生型仅在胞核内有绿色荧光表达,将转染细胞分离胞浆胞核蛋白进行Western blot检测,可见引入突变组的胞浆胞核成分均具有特异条带,而野生型仅胞核成分检测到特异条带。我们提出G159R对于RUNX2蛋白的核定位具有重要作用,推测G159可能是RUNX2基因新的核定位元件之一,为进一步蛋白结构方面的研究提供一定的实验依据。
     三、CCD患者牙髓细胞的生物学特性分析及基因差异研究
     本部分从家系5先证者姐姐的下恒牙中分离培养牙髓细胞,与正常牙髓细胞相比,CCD牙髓细胞比正常细胞略显丰满、扁平;描绘生长曲线来评价细胞的生长状态,正常牙髓细胞生长趋势高于CCD细胞,流式数据应用SPSS13.0版本进行处理,用了两样本均数t检验,t值分别为10.14、12.05,两组细胞的G1期及S期具有统计学显著差异,P值分别为0.001以及0.000,提示CCD细胞滞留在G1期的比例显著增多,CCD牙髓细胞从G1期到S期的过渡明显受阻。透射电镜观察发现CCD细胞粗面内质网扩张,胞质内可见大小不等的层板状小体,这是正常牙髓细胞所不具有的特殊表现,粗面内质网扩张并可见部分核糖体颗粒脱落,可能提示细胞蛋白合成能力的改变,较多层板状小体的出现可能与脂类的合成分泌相关。
     对CCD牙髓细胞进行矿化液诱导,虽然部分细胞出现细长单极胞浆突起,并呈复层生长,但直至培养7周仍无矿化结节形成,而正常牙髓细胞培养4周后开始有结节形成,表明CCD牙髓细胞的矿化能力减弱,可能提示此细胞向成牙本质样细胞分化能力的减弱,以及CCD患者牙髓组织损伤修复能力减弱。
     采用第二代功能分类基因芯片从细胞水平分析基因突变对TGF-β/BMP信号传导通路相关基因表达的影响,发现有18条基因上调,14条基因下调。通过对异常表达基因的分析,提示E 366X RUNX2突变体影响了TGF-β/BMP信号传导通路上的一些相关基因的调控,如Cdc25A、TGFβ2、Smad3、EVI1的表达下调,COL3A1、BMP2、4、7均表达上调,细胞的增殖和分化是由多基因多通路共同调控的,协同作用较强的某些基因将决定细胞最终的趋势和命运,推测TGFβ2、Smad3、EVI1的表达减弱与COL3A1上调表达的协同作用可能阻碍了CCD牙髓细胞向成牙本质细胞的分化趋势;根据R391X突变体的功能研究报道,推测E366X突变极可能影响RUNX2突变体和Smads的相互作用,阻抑BMP对细胞分化的作用,BMP2、4、7的上调表达可能是由于正常的信号通路受到影响,通过其它负反馈机制调控细胞的分化和增殖。
Cleidocranial dysplasia(CCD;MIM # 119600) is a skeletal disorder with autosomal-dominant inheritance.The clinical hallmarks of CCD are clavicle rudiment or absence,delayed closure of cranial fontanels and sutures,Wormian bones,frontal bossing,supernumerary and late erupting teeth,wide pubic symphysis,and other skeletal anomalies.The locus for CCD has been mapped to chromosome 6p21 where the responsible runt-related gene 2(RUNX2) has been located,RUNX2 also refers to as polyomavirus enhancer binding protein 2(PEBP2) or murine leukemia virus enhancer core-binding factor(CBF).So far,there is few investigations about Chinese cases with CCD.The prevalence and range of RUNX2 mutations in Chinese eases with CCD were rarely reported.Here,5 different types of heterozygous mutations in the RUNX2 gene in 5 unrelated CCD cases from China who clearly display variable clinical manifestations were reported,the molecular basis of their dysfunction were studied.The lower permanent teeth from one CCD case were collected and the dental pulp cells were cultured,and characterization and gene expression of the cells were analysed in comparison with corresponding cells from normal control.The study was divided into three parts described as followings.
     1.Clinical examination and analysis of patients with cleidocranial dysplasia
     5 unrelated families with the clinical diagnosis of CCD were investigated in the present study,and the unaffected parents and siblings were included.There was no parental consanguinity.Radiological examination regarding osseous malformations was carried out over the entire body.A CCD phenotype was defined by the presence of hypoplastic clavicles and delayed closure of the anterior fontanelle in addition to the observation of classic craniofacial features.The skeletal anomalies as well as the oral manifestations of the syndrome were variable within the affected patients,the case 2 had extra teeth in the molar region(at least four molars),which was rarely reported in the literatures.Moreover,both impacted molars and extra molars had abnormal roots with delayed development,and the erupted first molars had relatively normal roots.It is possible that the abnormal root development may be one of the causes of eruption failure of permanent teeth in CCD cases.Interestingly,in case 3, both the ulna and radius leaned to the radialis so that the humeroulnar joints and humeroradial joints were abnormal,and the elbow looked like a triangle,which was rarely reported in the literatures.All the cases in the present study showed malformation of tarsometatarsal joints to a certain extent.Thus we may infer that RUNX2 may have a role in joint formation by affecting some of chondrocyte and osteoblast differentiation pathways.
     We have analyzed histologically the structure of teeth obtained from CCD patients.Enamel structure was illegible,dentin tubules appeared obturated, Peritubular dentin had insufficiency mineralization,and typical continuous arc structures were virtually lacking on the enamel-dentinal junction.In deciduous teeth, more enamel lamella and enamel tuft were found,and dentin appeared irregular,size and distribution appeared ununiformed;cellular cementum was virtually lacking in deciduous and permanent teeth.Spectrum analysis of enamel and dentin of teeth from CCD patients and normal subjects showed that the proportion of Ca and P in permanent teeth from CCD was significantly lower than that from normals,so did the enamel of deciduous teeth from CCD patients,however,this did not appear to be the case for dentin of the deciduous teeth.
     2.Mutation analysis of RUNX2 and its effect on subcelluar localization of mutants
     To identify mutations in the RUNX2 gene in CCD cases,genomic DNA.from 5 CCD cases and their families were analysed,totally different mutations for each CCD case were detected.Novel c.475 G>C(p G159R) missense and c.1096 G>T nonsense mutations were included,and their healthy parents didn't carry the same mutation.Although the other three mutations were reported in the literatures,R225W and R391X mutations were reported in Chinese cases with CCD for the first time.
     To detect the effect of mutations on nuclear localization of RUNX2 protein, fusion proteins were constructed between green fluorescent protein and RUNX2.The constructs were transiently transfected into mouse fibroblast NIH 3T3 cells.The wild-type RUNX2 protein was detected exclusively in the nucleus.However,R225Q and R225W mutants showed dual localization to both the cytoplasm and the nucleus. Immunofluorescent staining and western blotting showed that wild-type RUNX2 protein was localized exclusively in the nucleus,however;the mutant protein was found in both the nucleus and the cytoplasm,which demonstrated that transport of the RUNX2 mutant into the nucleus was disturbed by the G159R mutation.These results indicate that G159 is very important to promote RUNX2 nuclear-localization, therefore,G159 may be one of new elements of RUNX2 gene nuclear localization signals.
     3.Characterization and gene expression analysis of dental pulp cells of CCD patient
     To identify morphological and molecular alteration associated with CCD dental tissues,human permanent dental pulp cell cultures were established from age-and sex-matched CCD patient and normal subject.Dental pulp cells were compared for general morphology,proliferation rate,and gene expression profiles microarray technology.CCD pulp cells were in some sort flatter than the normal ones,however, the normal pulp proliferation rates were greater at time points tested than the cells from CCD patient.The flow cytometric analysis showed that the progression from the G1 to S phase in the CCD pulp cell cycle was impeded.The ultrastructure of CCD pulp cells showed that the rough endoplasmic reticulum was expended,and more lamellar body was found in cytoplasma.Partial ribosomes fell off the rough endoplasmic reticulum,and this change might impede the ability to synthesize protein. The CCD pulp cells were induced with mineralization inducer,and no mineralized nodule was found until seven weeks passed,although partial cells showed single pole process of cytoplasma and overlapping growth.The weakening of mineralization ability showed that its potential ability of differentiation might weaken.
     The 96 genes of Human TGF-β/BMP signaling pathway were analysed by PCR array,and 18 genes displayed significant up-regulated at least two-fold in expression levels,and 14 genes down-regulated.Cdc25A,TGFβ2,Smad3 and EVI1 were down-regulated,and COL3A1,BMP2,4,7 were up-regulated.The proliferation and differentiation were modulated by multi-gene,some genes cooperated with each other and determine the final fate of cells.It was inferred that the potential differentiation of CCD pulp cells into odontoblasts was impeded to some extent by the cooperation between down-regulation of TGFβ2,Smad3 and EVI1 and up-regulation of COL3A1. According to the disfunction of R391X reported in the literatures,E366X mutation may have an effect on the interaction of RUNX2 mutant and Smads,and impede the function of BMP to cell differentiation.The up-regulation expression of BMP2,4,7 might be caused by other negative feedback because of breakoff of the normal signaling pathways.
引文
[1] Mundlos S, Otto F, Mundlos C et al. Mutation involving the transcription factor CBFA1 gene cause cleidocranial dysplasia. Cell, 1997.89, 773-779.
    [2] Mundlos S. Cleidocranial dysplasia : clinical and molecular genetics. J Med Genet 1999: 36: 177-182.
    [3] Scheuthauer G. Kombination rudimentarer Schlusselbeine mit Anomalien des Schadels beim erwachsenen Menschen. Allg Wien Med Ztg 1871: 16: 293-295.
    [4] Rimoin DL. International nomenclature of constitutional diseases of bones. J Pediatr 1978,93:614-18
    [5] Jackson WPU. Osteo-dental dysplasia (cleido-cranial dysostosis). The "Arnold Head". Acta Med Scand 1951: 139: 292-307.
    [6] Jarvis JL, Keats TE (1974) Cleidocranial dysostosis: a review of new cases.Am J Roentgenol Radium Ther Nucl Med 121:5-16
    [7] Chitayat D, Hodgkinson KA, Azouz EM. Intrafamilial variability in cleidocranial dysplasia: a three generation family. Am J Med Genet 1992: 42:298-303.
    [8] Quack I, Vonderstrass B, Stock M et al. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am J Hum Genet 1999: 65:1268-1278.
    [9] Chen S, Santos I, Wu Y, et al Altered gene expression in human cleidocranial dysplasia dental pulp cells [J]. Arch Oral Biol 2005, 50(2):227-36
    [10] Cooper SC, Flaitz CM, Johnston DA et al. A natural history of cleidocranial dysplasia[J]. Am J Med Genet 2001, 104(1):1-67
    [11] Mcnamara CM, Riordan BCO, Blake M et al. Cleidocranial dysplasia:radiological appearances on dental panoramic radiography. Dentomaxillofacial Radiology, 1999, 28:89-97
    [12] Golan I, Baumert U, Hrala BP, Mubig D. Dentomaxillofacial variability of cleidocranial dysplasia: clinicalradiological presentation and systematic review.Dentomaxillofac Radiol. 2003, 32, 347-354
    [13] Shaikh R, Shusterman S. Delayed dental maturation in cleidocranial dysplasia.ASDC J Dent Child. 1998; 65(5):325-9
    [14] Seow WK, Hertzberg J. Dental development and molar root length in children with cleidocranial dysplasia. Pediatr Dent. 1995 Mar-Apr;17(2):101-5
    [15] Lukinmaa PL, Jensen BL, Thesleff I et al. Histological observations of teeth and peridental tissues in cleidocranial dysplasia imply increased activity of odontogenic epithelium and abnormal bone remodeling.J Craniofac Genet Dev Biol. 1995,15(4):212-21.
    [16] Smith NH, Sydney NS. A histologic study of cementum in a case of cleidocranial dysostosis. Oral Surg. 1968; 25:470-478.
    [17] Hitchin AD. Cementum and other root abnormalities of permanent teeth in cleidocranial dysostosis. Br Dent J. 1975; 139:313-8
    [18] Rushton MA. An anomaly of cementum in cleido-cranial dysostosis. Br Dent J.1956; 100:81-83.
    [19] Counts AL, Rohrer MD, Prasad H, Bolen P. An assessment of root cementum in cleidocranial dysplasia. Angle Orthod. 2001 Aug;71(4):293-8
    [20] Gelb BD, Cooper E, Shevell M, Desnick RJ Genetic mapping of the cleidocranial dysplasia locus on chromosome band 6p21 to include a microdeletion. Am J Med Genet. 1995,58: 200-205
    [21] Feldman GJ, Robin NH, Brueton LA, et al A gene for cleidocranial dysplasia maps to the short arm of chromosome 6. Am J Hum Genet. 1995, 56:938-943
    [22] Kania MA, Bonner AS, Duffy JB et al. The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev 1990: 4: 1701-1713.
    [23] D'Souza RN, Aberg T, Gaikwad J, et al. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice.Development. 1999 Jul; 126(13):2911-20.
    [24] Otto F, Thornell AP, Crompton T, et al Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997, 89:765-771
    [25] Choi J-Y, Pratap J, Javed A, et al. Subnuclear targeting of Runx/CBFa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci USA. 2001. 98: 8650-8655
    [26] Geoffroy V, Corral DA, Zhou L, et al. Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function. Mamm Genome. 1998,9:54-5
    [27] Zhang YW, Bae SC, Takahashi E et al. The cDNA cloning of the thanscripts of human PEBP2alphaA/CBFA1 mapped to 6pl2.3-p21.1, the locus for cleidocranial dysplasia. Oncogene 1997: 15: 367-371
    [28] Kagoshima H, Shigesada K, Satake M, et al. The Runt domain identifies a new family of heteromeric transcriptional regulators. Trend Genet. 1993. 9:338-341
    [29] Lian JB, Javed A, Zaidi SK, et al. Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr.2004.14:1-42
    [30] Zaidi SK, Young DW, Choi JY, et al. The dynamic organization of generegulatory machinery in nuclear microenvironments. EMBO. 2005.6:128-133
    [31] Yoshida T, Kanegane H, Osato M et al. Functional analysis of RUNX mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Am J Hum Genet 2002: 71: 724-738
    [32] Zhou G, Chen Y, Zhou L, et al. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum Mol Genet 1999, 8:2311-2316
    [33] Zhang YW, Yasui N, Kakazu N et al. PEBP2alpha A/CBFA1 mutations in Japanese cleidocranial dysplasia patients. Gene 2000: 244: 21-28
    [34] Heldin, C.H., Miyazono, K. & ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature (London) 1997,390,465-471
    [35] Massague, J. TGF-beta signal transduction. Annu. Rev. Biochem. 1998, 67,753-791
    [36]Hogan,B.L.Bone morphogenetic proteins:multifunctional regulators of vertebrate development.Genes Dev.1996,10,1580-1594
    [37]Hanai,J.-I.,Chen,L.F.,Kanno,T.,et al.Interaction and funcational cooperation of PEBP2/CBF with smads in transforming growth factor-b superfamily signaling.J.Biol.Chem.1999,274,31577-31582
    [38]Zhang YW,Yasui N,Ito K,et al.A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia.Proc Natl Acad Sci USA 2000.97:10549-10554
    [39]王莹,吴华,张晓霞等.颅骨锁骨发育不全的基因突变检测.中华口腔医学杂志,2005,40(6):459-462
    [40]曹来宾,和毓天,柳祥庭等.颅骨锁骨发育不全.中华放射学杂志,1991,25:25-27
    [41]张万林 吴运堂.颅骨锁骨发育不全综合征在曲面体层片上的影像特点.现代口腔医学杂志,2002,16(3):236-237
    [42]Tang S,Xu Q,Xu X et al.A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails.BMC Med Genet.2007;8:82
    [43]Jiang H,Sodek J,Karsenty Get al.Expression of core binding factor Osf2/Cbfa-1 and bone sialoprotein in tooth development.Mech Dev 1999;81:169-173
    [44]Ohazama A,Courtney JM,Sharpe PT.Opg,Rank,and Rankl in tooth evelopment:co-ordination of odontogenesis and osteogenesis.J Dent Res 2004;83:241-244.
    [45]Aberg T,Wang XP,Kim JH,et al.Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis.Dev Biol 2004;270:76-93.
    [46]Aberg T,Cavender A,Gaikwad JS,et al.Phenotypic changes in dentition of Runx2 homozygote-null mutant mice.J Histochem Cytochem 2004;52:131-140.
    [47] Thomas BL, Tucker AS, Qui M, et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 1997; 124: 4811-4818.
    [48] Ferguson CA, Tucker AS, Christensen L, et al. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev 1998; 12: 2636-2649.
    [49] Wang XP, Aberg T, James MJ, et al. Runx2 (Cbfal) inhibits Shh signaling in the lower but not upper molars of mouse embryos and prevents the budding of putative successional teeth. J Dent Res 2005; 84: 138-143.
    [50] Bronckers AL, Engelse MA, Cavender A, et al. Cell-specific patterns of Cbfal mRNA and protein expression in postnatal murine dental tissues. Mech Dev 2001; 101: 255-258.
    [51] Dhamija S, Krebsbach PH. Role of Cbfal in ameloblastin gene transcription. J Biol Chem 2001; 276: 35159-35164.
    [52] Fukuta Y, Totsuka M, Fukuta Y, et al. Histological and analytical studies of a tooth in a patient with cleidocranial dysostosis. J Oral Sci 2001; 43: 85-89.
    [53] Yamamoto H, Sakae T, Davies JE. Cleidocranial dysplasia: a light microscope,electron microscope, and crystallographic study. Oral Surg Oral Med Oral Pathol 1989; 68: 195-200.
    [54] Qin C, Brunn JC, Cadena E, et al. The expression of dentin sialophosphoprotein gene in bone. J Dent Res 2002; 81: 392-394.
    [55] Chen S, Gu TT, Sreenath T, et al. Spatial expression of Cbfa1/Runx2 isoforms in teeth and characterization of binding sites in the DSPP gene. Connect Tissue Res 2002; 43: 338-344.
    
    [56] Chen S, Rani S, Wu Y, et al. Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentia- tion. J Biol Chem 2005; 280: 29717-29727.
    [57] Narayanan K, Srinivas R, Ramachandran A, et al. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA 2001; 98: 4516-4521.
    [58] Fen JQ, Zhang J, Dallas SL, et al. Dentin matrix protein 1, a target molecule for Cbfa1 in bone, is a unique bone marker gene. J Bone Miner Res 2002; 17:1822-1831.
    [59] Liu H, Li W, Shi S,et al. MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol 2005; 50: 923-928.
    [60] Yamashiro T, Aberg T, Levanon D, et al. Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development. Mech Dev 2002; 119:S107-S110.
    [61] Gaikwad JS, Hoffmann M, Cavender A, et al. Molecular insights into the lineage-specific determination of odontoblasts: the role of Cbfa1. Adv Dent Res 2001; 15: 19-24.
    [62] Dard M. Histology of alveolar bone and primary tooth roots in a case of cleidocranial dysplasia. Bull Group Int Rech Sci Stomatol Odontol 1993; 36:101-107.
    [63] Zou SJ, D'Souza RN, Ahlberg T, Bronckers AL. Tooth eruption and cementum formation in the Runx2/Cbfal heterozygous mouse. Arch Oral Biol 2003; 48:673-677.
    [64] Chung CR, Tsuji K, Nifuji A, et al. Micro-CT evaluation of tooth, calvaria and mechanical stress induced tooth movement in adult Runx2/Cbfa1 heterozygous knock-out mice. J Med Dent Sci 2004; 51: 105-113.
    [65] Saito M, Iwase M, Maslan S, et al. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 2001;29: 242-248.
    [66] Ziros PG, Gil AP, Georgakopoulos T, et al. The bone-specific transcriptional regulator Cbfal is a target of mechanical signals in osteoblastic cells. J Biol Chem 2002; 277: 23934-23941.
    [67] Jensen BL, Kreiborg S. Development of the dentition in cleidocranial dysplasia.J Oral Pathol Med 1990; 19: 89-93.
    [68] Yoda S, Suda N, Kitahara Y,et al. Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfal knockout mice. Arch Oral Biol. 2004,49(6):435-442.
    [69] Richardson A, Deussen FF. Facial and dental anomalies in cleidocranial dysplasia: a study of 17 cases. Int J Paediatr Dent 1994; 4: 225-231.
    [70] Jensen BL, Kreiborg S. Dental treatment strategies in cleidocranial dysplasia.Br Dent J 1992; 172: 243-247.
    [71] Suzuki T, Suda N, Ohyama K. Osteoclastogenesis during mouse tooth germ development is mediated by receptor activator of NFKappa-B ligand (RANKL).J Bone Miner Metab 2004; 22:185-191.
    [72] Heinrich J, Bsoul S, Barnes J, et al. CSF-1, RANKL and OPG regulate osteoclastogenesis during murine tooth eruption. Arch Oral Biol 2005; 50:897-908.
    [73] Gao Y, Kobayashi H, Ganss B. The human KROX-26/ZNF22 gene is expressed at sites of tooth formation and maps to the locus for permanent tooth agenesis (He-Zhao deficiency). J Dent Res 2003; 82: 1002-1007.
    [74] Dann JJ III, Crump P, Ringenberg QM. Vertical maxillary deficiency with cleidocranial dysplasia. Diagnostic findings and surgical-orthodontic correction.Am J Orthod 1980; 78: 564-574.
    [75] Petropoulos VC, Balshi TJ, Balshi SF, Wolfinger GJ. Treatment of a patient with cleidocranial dysplasia using osseointegrated implants: a patient report.Int J Oral Maxillofac Implants 2004; 19: 282-287.
    [76] Becker A, Lustmann J, Shteyer A. Cleidocranial dysplasia: Part 1 - General principles of the orthodontic and surgical treatment modality. Am J Orthod Dentofacial Orthop 1997; 111: 28-33.
    [77] Hardt N. Osteo-dental dysplasia with poly- and hypodontia in cleidocranial dysostosis. Quintessenz 1973; 24: 105-111.
    [78] Baumert U, Golan I, Redlich M, et al. Cleidocranial dysplasia: molecular genetic analysis and phenotypic-based description of a Middle European patient group.Am J Med Genet 2005; 139: 78-85.
    [79] Yoshida T, Kanegane H, Osato M, et al. Functional analysis of RUNX2 mutations in cleidocranial dysplasia: novel insights into genotype-phenotype correlations. Blood Cells Mol Dis 2003; 30: 184-193.
    [80] Tessa A, Salvi S, Casali C, et al. Six novel mutations of the RUNX2 gene in Italian patients with cleidocranial dysplasia. Hum Mutat 2003; 22:104.
    [81] Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res 2001;80: 1974-1979.
    [82] Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development. Development 2004; 131: 2875-2885.
    [83] Pratap J, Galindo M, Zaidi SK, et al. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 2003; 63:5357-5362.
    [84] Jensen BL. Somatic development in cleidocranial dysplasia. Am J Med Genet 1990; 35: 69-74.
    [85] Levin EJ, Sonnenschein H. Cleidocranial dysostosis. N Y State J Med 1963; 63:1562-1566.
    [86] Ishii K, Nielsen IL, Vargervik K. Characteristics of jaw growth in cleidocranial dysplasia. Cleft Palate Craniofac J 1998; 35: 161-166.
    [87] Marie P, Sainton P. Sur La dysostose cleidocranial hereditaire. Rev Neurol.1898,6:835-8
    
    [88] 曹来宾主编.骨与关节X线诊断学.济南:山东科技出版社,1980,172.
    [89] Neville BW. Oral & Maxillofacial pathology. WB Sauders, Philadelphia 1995:445-446.
    [90] Nishimura, E. K., Jordan, S. A., Oshima, H., et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 2002; 416: 854 -860
    [91] Ducy P, Starbuck M, Priemel M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999; 13:1025-1036
    [92] Young MF, Kerr JM, Ibaraki K, et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res 1992;281:275-294
    [93] Robey PG, Fedarko NS, Hefferan TE, et al. Structure and molecular regulation of bone matrix proteins. J Bone Miner Res 1993; 8: S483-S487
    [94] Otto F, Kanegane H, and Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Human Mutation. 2002,19,209-216.
    [95] Kim HJ, Nam SH, Kim HJ, et al. Four novel RUNX2 mutations including a splice donor site result in the cleidocranial dysplasia phenotype. Journal of Cell Physiology .2006,207,114-122.
    [96] Pal T, Napierala D, Becker TA et al.The presence of germ line mosaicism in cleidocranial dysplasia. Clin Genet.2007,71:589-591
    [97] Thirunavukkarasu K, Magajaan M, Mclarren KW, et al. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfal contribute to its transactivation function and its inability to heterodimerize with Cbfβ.Molecular Cell Biology1998, 18,4197-4208
    [98] Lu J; Maruyama M; Satake M, et al. Subcellular local-ization of the a and bsubunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF.Mol Cell Biol, 1995,15: 1651-1661
    [99] Kanno T; Kanno Y; Chen LF, et al. intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/ core binding factor a subunit revealed in the presence of b subunit. Mol Cell Biol 1998;18:2444-2454
    [100] 金岩主编.组织工程学原理与技术.137-147
    
    [101]Palmqvist P, Persson E, Conaway HH, Lerner UH. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J Immunol 2002; 169:3353-62
    
    [102]Rother K, Kirschner R, Sanger K et al.p53 downregulates expression of the G1/S cell cycle phosphatase Cdc25A. Oncogene.2007.26,1949-195
    
    [103] Vaillant F, Blyth K, Terry A, et al. A full-length Cbfal gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc.Oncogene 1999; 18: 7124-34.
    
    [104] Lee KS, KimHJ, Li QL, et al. Runx2 is a common target of transforming growth factor betal and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 2000; 20:8783-92
    [105] Zaidi SK, Sullivan AJ, van Wijnen AJ, et al. Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci USA 2002; 99: 8048-53.
    [106]Nakashima M, Akamine A.The application of tissue engineering to regeneration of pulp abd dentin in endodontics. J Endod, 2005,31:711-8
    [107]Durand SH, Romeas A, Couble ML et al. Expression of the TGFp/BMP inhibitor EVIlin human dental pulp cells. Arch Oral Biol. 2007, 52: 712-719.
    [108] Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med.2004, 15: 13-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700