用户名: 密码: 验证码:
植物油基环氧热固单体的合成、固化与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂行业近年发展迅猛,天然可再生资源替代化石资源,同样是环氧树脂行业可持续发展的必然趋势。本研究针对天然植物油脂及其衍生物,如桐油、聚合脂肪酸和腰果酚等农林产品在环氧树脂领域的研究和应用方面的缺点和不足,利用这些天然产物的羧基、双键、酚羟基等活性基团,采用环氧化、Diels-Alder反应、威廉姆逊醚化反应、Mannich反应等经典化学反应来对固化剂或者是环氧树脂进行结构设计、化学改性、引入其他交联方式、或者是采用不同结构的环氧树脂进行复合调配,制备出一些具有浅色化、高模量、高韧性、双重固化和自我交联的环氧树脂或者固化剂单体,并对它们的结构和性能的相互关系进行了详细研究与探讨。本研究为天然植物油脂的高效利用和环氧树脂行业可持续发展提供了理论基础和文献参考,具体研究工作分为以下五个部分:
     1.以腰果酚丁基醚、甲醛和二乙烯三胺为原料合成了一种浅色的腰果酚环氧固化剂(MBCBE)。为了比较,一种具有相似结构的腰果酚酚醛胺固化剂(PKA)也按照相同方法合成。腰果酚醚化可以改善腰果酚环氧固化剂的色泽。GC-MS和FT-IR用来表征产物的结构。差示扫描量热法(DSC)用来研究了双酚A二缩水甘油醚(DGEBA)与这两种固化剂的固化行为。DSC结果表明MBCBE反应活性稍低于腰果酚酚醛胺。扫描电子显微镜(SEM)显示MBCBE/DGEBA固化物的相结构中存在孔洞分布于连续的环氧相中。这些孔洞的出现显著提高了固化物的拉伸剪切强度和冲击强度。傅里叶转换红外光谱(FT-IR)、索氏提取和热重分析(TGA)表明相分离是未反应的CBE在固化过程中析出造成的。与PKA/DGEBA的固化物相比,MBCBE/DGEBA固化物具有明显的双阶段热分解特征,这主要是由于分散相中析出的CBE蒸发造成的。
     2.用桐油脂肪酸分别与丙烯酸、富马酸通过Diels-Alder反应合成了一种21碳的二元酸(C21DA)和22碳的三元酸(C22TA),然后将它们转化为相应的二缩水甘油酯(DGEC21)和三缩水甘油酯(TGEC22)。合成过程中,引入CaO用作吸水剂可以有效避免副反应的发生,提高产物的环氧基含量。产物的化学结构用核磁共振氢谱(1H-NMR)、核磁共振碳谱(13C-NMR)和电喷雾质谱(ESI-MS)进行了表征。这两种缩水甘油酯的固化行为用DSC进行了研究。固化树脂的弯曲强度、冲击强度和动态力学性能分别用万能试验机和动态力学热分析(DMA)进行了测试。一种商品化的双酚A环氧树脂(DER332)和一种环氧大豆油(ESO)在本研究中用于性能比较。结果表明DGEC21和TGEC22的固化物的综合性能都要比ESO固化物的性能优异。值得注意的是,TGEC22表现出与DER332相当的强度、模量和玻璃化温度。
     3.用桐油脂肪酸和环氧氯丙烷合成了一种含有共轭双键的新型生物基环氧单体,桐酸缩水甘油酯(GEEA),并且用1H和13C-NMR进行了表征。DSC和FT-IR用来研究GEEA与亲二烯体和酸酐的固化过程。DSC表明GEEA可以与亲二烯体和酸酐通过Diels-Alder反应和环氧/酸酐开环反应这两种方式交联。而且,固化过程中,Diels-Alder交联方式要比环氧/酸酐开环反应更容易发生。FT-IR也证明了GEEA的确与亲二烯体和酸酐以这两种方式发生了交联。DMA和拉伸性能测试用来研究了GEEA与马来酸酐、甲基纳迪克酸酐和1,1’-(亚甲基-二-4,1-亚苯基)双马来酰亚胺固化物的热力学性能。通过热失重分析(TGA)考察了固化物的热稳定性。性能数据表明,由于亲二烯体和酸酐这两类固化剂可以彼此独立地进行反应,通过调节这两种固化剂的组成,可以得到一系列具有不同性能的热固性聚合物。
     4.在第3部分基础上,以GEEA和马来酸酐通过Diels-Alder反应合成了一种同时含有环氧基和酸酐基团的单体(GEMA)。产物的结构用1H-NMR、13C-NMR和极化转移无畸变增强(DEPT)13C-NMR进行了表征确认。DSC用来评价合成过程的可行性以及GEMA在叔胺催化剂存在下的固化行为。FT-IR研究了GEMA合成过程中的化学变化。DMA和拉伸性能测试分别考察了GEMA固化物的热力学性能、拉伸强度、模量和断裂伸长率。结果表明在GEMA合成过程中,只发生Diels-Alder反应,环氧基和酸酐不发生反应。GEMA的固化反应和普通的缩水甘油酯环氧树脂与酸酐的固化反应基本相同。GEMA固化物的玻璃化温度达到108°C,其拉伸强度、断裂伸长率和弹性模量分别达到42.5MPa,3.2%和1930.3MPa。
     5.用第2部分的合成方法,将二聚脂肪酸和丙烯海松酸分别转化成成二缩水甘油酯型环氧树脂DGEDA和DGEAPA,产物的化学结构用1H-NMR、FT-IR和ESI-MS进行了表征。柔性DGEDA和刚性DGEAPA按照不同质量比配成一系列环氧树脂混合物,以甲基纳迪克酸酐作为固化剂固化。用DSC研究了不同环氧树脂的固化行为。用三点弯曲测试和DMA测试了固化物的弯曲性能和动态力学性能。通过TGA考察了固化物的热稳定性。结果表明刚性的松香环氧树脂和柔性的二聚脂肪酸环氧树脂在弯曲强度和弹性模量两方面具有互补性。当DGEAPA:DGEDA质量比为5:3时,可以得到弯曲强度最高的材料。
The development of epoxy resin industry and business is growing rapidly in recent years,it is also a tendency that the renewable resources replace the fossil resources for the sustainableprogress of epoxy resins. However, there were indeed many disadvantages or drawbacks ofnatural plant oils derivatives such as tung oil, polymerized fatty acids, and cardanols whenthese agriculture and forest products were applied in epoxy resins for research anddevelopment. Therefore, the aim of this work is to develop light color, high modulus, hightoughness, dual crosslinked, and self-crosslinked epoxy resins or curing agents. By using thecarboxyl, double bonds, and phenol hydroxyl of these natural products, a series of classicchemical reactions such as epoxidization, Diels-Alder reaction, Williamson ether synthesis, andMannich reaction were used to design or modify the molecules of epoxy resins and curingagents. Some other curing method was also introduced into the epoxy curing process. Otherepoxy resin with different structures was also blended with oil based epoxy resins to get afomulation with the optimal properties. The relationships between the structures and propertieswere studied and disscussed in detail in this work as well. This work offered theoretical basisand references for the efficient utilization of natural plant oils and the sustainable progress ofepoxy industry. The specific contents are the following five parts:
     1. a light color cardanol-based epoxy curing agent (MBCBE) was synthesized fromcardanol butyl ether, formaldehyde and diethylenetriamine. In comparison, a phenalkamine(PKA) with a similar structure was also prepared. MBCBE has a much lighter color than thatof PKA. The chemical structures of MBCBE were confirmed by GC-MS and FT-IR. The curebehaviors of diglycidyl ether of bisphenol A (DGEBA) with these two curing agents wasstudied by differential scanning calorimetry (DSC). The morphology, mechanical properties,thermal properties of the cured epoxies were also investigated. The DSC results indicated thatMBCBE is less reactive than the phenalkamine. The morphology of the cured MBCBE/DGEBA consisted of cavities dispersed within a continuous epoxy matrix which wereobserved by scanning electron microscope (SEM). The infrared spectra (FT-IR), soxhletextraction and thermogravimetric analysis (TGA) results confirmed that the phase separationwas arised by the unreacted CBE separated out from the epoxy matrix during the cure. Thecavities markedly improved the lap shear strength and impact strength of the cured resin.Compared with PKA/DGEBA, MBCBE/DGEBA showed an obvious two-stage weight losscurve, the first stage was mainly resulted from the dispersed phase filled with the unreactedCBE separated out from the epoxy matrix.
     2. In this work, a21-carbon dicarboxylic acid (C21DA) and a22-carbon tricarboxylic acid(C22TA) were prepared by the Diels-Alder addition of tung oil fatty acids with acrylic acid andfumaric acid, respectively, and subsequently converted into corresponding di-and triglycidylesters. There were no solvents used in the addition and glycidylation reactions. The excessepichlorohydrin used in the latter reaction was reused. Furthermore, for the first time calciumoxide was introduced as a water scavenger in the gycidylation process to effectively avoid theside reactions. The chemical structures of the products were confirmed using1H nuclearmagnetic resonance (1H-NMR),13C nuclear magnetic resonance (13C-NMR)and electrospray ionization mass spectrometry (ESI-MS) analyses. The curing behaviors ofthe di-and triglycidyl esters were studied using DSC. Flexural, impact and dynamicmechanical properties of the cured resins were also determined. A commercial bisphenol Aepoxy DER332and an epoxidized soybean oil (ESO) were used as performance comparison inthe study. Results indicated that the diglycidyl and triglycidyl esters had overall superiorperformance to ESO for epoxy applications. Particularly, the triglycidyl ester of the C22TAdisplayed comparable strength, modulus and glass transition temperature to that of DER332.
     3. A novel bio-based epoxy monomer with conjugated double bonds, glycidyl ester ofeleostearic acid (GEEA) was synthesized from tung oil fatty acids and epichlorohydrin, andthen characterized by1H-NMR and13C-NMR. DSC and FT-IR were utilized to investigate thecuring process of GEEA with dienophiles and anhydrides. DSC indicated that GEEA could crosslink with both dienophiles and anhydrides through these two synergetic ways: Diels-Alderreaction and epoxy/anhydride ring-opening reaction. Furthermore, Diels-Alder reaction wasmuch more active than the ring-opening of epoxy and anhydride in the curing process. FT-IRalso revealed that GEEA successively reacted with dienophiles and anhydrides in bothcrosslinking methods. DMA and mechanical tensile testing were used to study the thermal andmechanical properties of GEEA cured by maleic anhydride, nadic methyl anhydride (NMA)and1,1'-(methylenedi-4,1-phenylene)bismaleimide. Due to the independence between thecuring agents, dienophile and anhydride, a series of thermosetting polymers with variousproperties could be obtained by adjusting the composition of these two curing agents.
     4. Based on part3, a self-crosslinking monomer with both epoxy and anhydride groups(GEMA) was synthesized from GEEA and maleic anhydride. The structure of GEMA wasconfirmed by1H-NMR,13C-NMR, and distortionless enhancement by polarization transfer(DEPT)13C-NMR. The feasibility of the synthesis and the chemical reaction during thesynthesis were investigated by DSC and FT-IR, respectively. The curing behavior of GEMA inthe presence of tertiary amine was also studied by DSC. The dynamic mechanical propertiesand tensile properties were measured by DMA and tensile test. The results showed that therewas no epoxy/annydride reaction but only Diels-Alder raction during the synthesis of GEMA.The cure mechanism of GEMA was similar to that of conventional glycidyl ester epoxy resinand anhydride. The glass transition temperature of cured GEMA is108°C. The tensile strength,strain, and the elastic modulus of cured GEMA are42.5MPa,3.2%, and1930.3MPa,respectively.
     5. In this work, a rosin-derived diacid and a dimerized fatty acid were converted todiglycidyl ester type epoxies through the synthesis method offered in part2, respectively, andthe chemical structures of the products were confirmed by1H-NMR, FT-IR and ESI-MS. NMAwas used as curing agent to cure these two biobased epoxies and their mixtures in differentweight ratios. The cure behavior of these two epoxies with NMA was studied using DSC.Flexural and dynamic mechanical properties of the cured resins were determined using three point bending test and DMA. Thermal degradation of the cured resins was examined usingthermogravimetric analysis (TGA). Results suggest that the rigid rosin-derived epoxy and theflexible dimer acid-derived are complementary between flexural strength and flexural modulus.The combination of DGEAPA:DGEDA (5:3) by weight could result in resins with the bestflexural strength.
引文
[1] Raquez J M, Nabar Y, Narayan R, et al. New Developments in Biodegradable Starch-basedNanocomposites. International Polymer Processing,2007,22(5):463~470.
    [2] Kummerer K. Sustainable from the very beginning: rational design of molecules by life cycleengineering as an important approach for green pharmacy and green chemistry. Green Chemistry,2007,9(8):899~907.
    [3] Raston C. Renewables and Green Chemistry. Green Chemistry,2005,7(2):57.
    [4] Jenck J F, Agterberg F, Droescher M J. Products and processes for a sustainable chemical industry: areview of achievements and prospects. Green Chemistry,2004,6(11):544~556.
    [5] Mohanty A K, Misra M, Drzal L T. Sustainable Bio-Composites from Renewable Resources:Opportunities and Challenges in the Green Materials World. Journal of Polymers and the Environment,2002,10(1-2):19~26.
    [6] Stewart R. Going green-Eco-friendly materials and recycling on growth paths. Plastics Engineering,2008,64(1):16~23.
    [7] Dusek K, Dusek K. Network formation in curing of epoxy resins//DUSEK K. Epoxy Resins andComposites III. Springer Berlin Heidelberg,1986:1~59.
    [8] Garg A C, Mai Y. Failure mechanisms in toughened epoxy resins—A review. Composites Science andTechnology,1988,31(3):179~223.
    [9] Carfagna C, Amendola E, Giamberini M. Liquid-crystalline epoxy resins: curing of blends ofmesogenic and non-mesogenic epoxy monomers. Journal of Materials Science Letters,1994,13(2):126~128.
    [10] Halbrook N J, Lawrence R V. Preparation of Acrylic Modified Rosin. Product R&D,1972,11(2):200~202.
    [11] Gonis G, Slezak F B, Lawson N E. Preparation of Maleopimaric Acid. Product R&D,1973,12(4):326~327.
    [12] Liu X, Xin W, Zhang J. Rosin-based acid anhydrides as alternatives to petrochemical curing agents.Green Chemistry,2009,11(7):1018~1025.
    [13] Wang H, Liu B, Liu X, et al. Synthesis of biobased epoxy and curing agents using rosin and the study ofcure reactions. Green Chemistry,2008,10(11):1190~1196.
    [14] Bicu I, Mustata F. Ketone derivatives of diels-alder adducts of levopimaric acid with acrylic acid andmaleic anhydride: Synthesis, characterization, and polymerization. Journal of Applied Polymer Science,2004,92(4):2240~2252.
    [15] Atta A M, Mansour R, Abdou M I, et al. Epoxy resins from rosin acids: synthesis and characterization.Polymers for Advanced Technologies,2004,15(9):514~522.
    [16] Atta A M, Mansour R, Abdou M I, et al. Synthesis and Characterization of Tetra-Functional EpoxyResins from Rosin. Journal of Polymer Research,2005,12(2):127~138.
    [17] Mustata F R, Tudorachi N. Epoxy Resins Cross-Linked with Rosin Adduct Derivatives. Cross-Linkingand Thermal Behaviors. Industrial&Engineering Chemistry Research,2010,49(24):12414~12422.
    [18] Liu X, Zhang J. High-performance biobased epoxy derived from rosin. Polymer International,2010,59(5):607~609.
    [19] Wang H, Liu X, Liu B, et al. Synthesis of rosin-based flexible anhydride-type curing agents andproperties of the cured epoxy. Polymer International,2009,58(12):1435~1441.
    [20]吴国民,孔振武,储富祥.氢化萜烯马来酸酐合成环氧树脂的研究.林产化学与工业,2007,(03):57~62.
    [21] Wu G, Kong Z, Huang H, et al. Synthesis, characterization, and properties of polyols fromhydrogenated terpinene–maleic ester type epoxy resin. Journal of Applied Polymer Science,2009,113(5):2894~2901.
    [22] Meier M A R, Metzger J O, Schubert U S. Plant oil renewable resources as green alternatives inpolymer science. Chemical Society Reviews,2007,36(11):1788~1802.
    [23] Seniha Güner F, Ya c Y, Tuncer Erciyes A. Polymers from triglyceride oils. Progress in PolymerScience,2006,31(7):633~670.
    [24] Raquez J M, Deléglise M, Lacrampe M F, et al. Thermosetting (bio)materials derived from renewableresources: A critical review. Progress in Polymer Science,2010,35(4):487~509.
    [25] Crivello J V, Narayan R, Sternstein S S. Fabrication and mechanical characterization of glass fiberreinforced UV-cured composites from epoxidized vegetable oils. Journal of Applied Polymer Science,1997,64(11):2073~2087.
    [26] Biermann U, Friedt W, Lang S, et al. New Syntheses with Oils and Fats as Renewable Raw Materialsfor the Chemical Industry. Angewandte Chemie International Edition,2000,39(13):2206~2224.
    [27] Goud V V, Pradhan N C, Patwardhan A V. Epoxidation of karanja (Pongamia glabra) oil by H2O2.Journal of the American Oil Chemists' Society,2006,83(7):635~640.
    [28] Ek T V, Petrovi Z S. Optimization of the chemoenzymatic epoxidation of soybean oil. Journal of theAmerican Oil Chemists' Society,2006,83(3):247~252.
    [29] Goud V V, Patwardhan A V, Dinda S, et al. Epoxidation of karanja (Pongamia glabra) oil catalysed byacidic ion exchange resin. European Journal of Lipid Science and Technology,2007,109(6):575~584.
    [30] Sperling L H, Manson J A, Qureshi S, et al. Tough plastics and reinforced elastomers from renewableresource industrial oils. A short review. Industrial&Engineering Chemistry Product Research andDevelopment,1981,20(1):163~166.
    [31] Liang G, Chandrashekhara K. Cure kinetics and rheology characterization of soy-based epoxy resinsystem. Journal of Applied Polymer Science,2006,102(4):3168~3180.
    [32] Uyama H, Kuwabara M, Tsujimoto T, et al. Enzymatic Synthesis and Curing of BiodegradableEpoxide-Containing Polyesters from Renewable Resources. Biomacromolecules,2003,4(2):211~215.
    [33] Shogren R L, Petrovic Z, Liu Z, et al. Biodegradation Behavior of Some Vegetable Oil-Based Polymers.Journal of Polymers and the Environment,2004,12(3):173~178.
    [34] Lligadas G, Ronda J C, Galià M, et al. Synthesis and properties of thermosetting polymers from aphosphorous-containing fatty acid derivative. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(19):5630~5644.
    [35] Derksen J T P, Petrus Cuperus F, Kolster P. Renewable resources in coatings technology: a review.Progress in Organic Coatings,1996,27(1–4):45~53.
    [36] Earls J D, White J E, Dettloff M L, et al. Development and evaluation of terminally epoxidizedtriglycerides for coatings applications. JCT Research,2004,1(3):243~245.
    [37] Teng G, Soucek M D. Epoxidized soybean oil-based ceramer coatings. Journal of the American OilChemists' Society,2000,77(4):381~387.
    [38] Zhu J, Chandrashekhara K, Flanigan V, et al. Curing and mechanical characterization of a soy-basedepoxy resin system. Journal of Applied Polymer Science,2004,91(6):3513~3518.
    [39] Trumbo D L, Otto J T. Epoxidized fatty acid-derived oxazoline in thermoset coatings. Journal ofCoatings Technology and Research,2008,5(1):107~111.
    [40] Jin F, Park S. Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer.Materials Science and Engineering: A,2008,478(1–2):402~405.
    [41] Park S, Jin F, Lee J. Effect of Biodegradable Epoxidized Castor Oil on Physicochemical andMechanical Properties of Epoxy Resins. Macromolecular Chemistry and Physics,2004,205(15):2048~2054.
    [42] Liu Z S, Erhan S Z, Calvert P D. Solid freeform fabrication of epoxidized soybean oil/epoxycomposites with di-, tri-, and polyethylene amine curing agents. Journal of Applied Polymer Science,2004,93(1):356~363.
    [43] Miyagawa H, Mohanty A, Drzal L T, et al. Effect of Clay and Alumina-Nanowhisker Reinforcementson the Mechanical Properties of Nanocomposites from Biobased Epoxy: A Comparative Study.Industrial&Engineering Chemistry Research,2004,43(22):7001~7009.
    [44] Miyagawa H, Misra M, Drzal L T, et al. Biobased Epoxy/Layered Silicate Nanocomposites:Thermophysical Properties and Fracture Behavior Evaluation. Journal of Polymers and theEnvironment,2005,13(2):87~96.
    [45] Jaillet F, Desroches M, Auvergne R, et al. New biobased carboxylic acid hardeners for epoxy resins.European Journal of Lipid Science and Technology,2013,115(6):698~708.
    [46]胡应模,郭明高.腰果壳液的组成、化学性质及其应用.中国生漆,1990,(01):33~42.
    [47]赵科明,王飞镝,邱清华,等.改性异佛尔酮二胺环氧固化剂的合成与性能研究.新型建筑材料,2011,(06):54~58.
    [48]胡家朋,赵升云,刘俊劭,等.腰果酚缩醛胺固化剂的性能研究.热固性树脂,2010,(01):19~22.
    [49]刘守贵.桐油合成环氧树脂固化剂.四川化工与腐蚀控制,2000,(05):21~24.
    [50]何守俭,谢军,陆迎堂.桐油酸酐增韧环氧树脂的研究及应用.玻璃钢/复合材料,1991,(02):4~6.
    [51]夏建陵,黄焕,魏斌,等.桐酸甲酯改性酚醛胺的合成与性能研究.粘接,2001,(04):1~3.
    [52]聂小安.桐油基可挠性环氧树脂的中试及其性能研究.林产化工通讯,2001,(01):14~16.
    [53]郭庆宇.复合型MTOA固化环氧树脂F级绝缘材料.中南民族大学学报(自然科学版),2002,(03):22~25.
    [54]刘守贵.桐油改性曼尼期碱固化剂的合成及性能研究.热固性树脂,2000,(01):3~8.
    [55]张鹏,黄图平.桐油改性脂肪胺环氧树脂固化剂的合成与性能.四川轻化工学院学报,1997,(03):30~33.
    [56]夏建陵,黄焕,李健,等.桐酸甲酯酚类加成物的合成及表征.粘接,2000,(06):1~3.
    [57]尹文华,陈瑶,吴璧耀.桐油改性酚醛环氧树脂合成及室温固化物性能.石油化工高等学校学报,2007,(02):40~42.
    [58] Gan S, Hamid Z A. Partial conversion of epoxide groups to diols in epoxidized natural rubber. Polymer,1997,38(8):1953~1956.
    [59] Cizravi J C, Subramaniam K. Thermal and mechanical properties of epoxidized natural rubber modifiedepoxy matrices. Polymer International,1999,48(9):889~895.
    [60] Hong S, Chan C. The curing behaviors of the epoxy/dicyanamide system modified with epoxidizednatural rubber. Thermochimica Acta,2004,417(1):99~106.
    [61] Nikos K, Kalfoglou, Skafidas D S, et al. Blends of poly(ethylene terephthalate) with unmodified andmaleic anhydride grafted acrylonitrile-butadiene-styrene terpolymer. Polymer,1996,37(15):3387~3395.
    [62] Mohanty S, Nando G B. Characterization of ionomers formed in situ from miscible blends of poly(ethylene-co-acrylic acid)(PEA) and epoxidized natural rubber (ENR). Polymer,1997,38(6):1395~1402.
    [63] Ratnam C T, Zaman K. Stabilization of poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR)blends. Polymer Degradation and Stability,1999,65(1):99~105.
    [64] Hong S, Chan C. The curing behaviors of the epoxy/dicyanamide system modified with epoxidizednatural rubber. Thermochimica Acta,2004,417(1):99~106.
    [65] Hirose S, Hatakeyama T, Hatakeyama H. Synthesis and thermal properties of epoxy resins fromester-carboxylic acid derivative of alcoholysis lignin. Macromolecular Symposia,2003,197(1):157~170.
    [66] Kasaai M R. A review of several reported procedures to determine the degree of N-acetylation for chitinand chitosan using infrared spectroscopy. Carbohydrate Polymers,2008,71(4):497~508.
    [67] Kolhe P, Kannan R M. Improvement in Ductility of Chitosan through Blending and Copolymerizationwith PEG: FTIR Investigation of Molecular Interactions. Biomacromolecules,2002,4(1):173~180.
    [68] Chen M, Tsai H, Chang Y, et al. Rapidly Self-Expandable Polymeric Stents with a Shape-MemoryProperty. Biomacromolecules,2007,8(9):2774~2780.
    [69] Devi A, Srivastava D. Studies on the blends of cardanol-based epoxidized novolac type phenolic resinand carboxyl-terminated polybutadiene (CTPB), I. Materials Science and Engineering: A,2007,458(1–2):336~347.
    [70] Aggarwal L K, Thapliyal P C, Karade S R. Anticorrosive properties of the epoxy–cardanol resin basedpaints. Progress in Organic Coatings,2007,59(1):76~80.
    [71] Sultania M, Rai J S P, Srivastava D. Process modeling, optimization and analysis of esterificationreaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology.Journal of Hazardous Materials,2011,185(2–3):1198~1204.
    [72] Ikeda R, Tanaka H, Uyama H, et al. Synthesis and curing behaviors of a crosslinkable polymer fromcashew nut shell liquid. Polymer,2002,43(12):3475~3481.
    [73] Pathak S K, Rao B S. Structural effect of phenalkamines on adhesive viscoelastic and thermalproperties of epoxy networks. Journal of Applied Polymer Science,2006,102(5):4741~4748.
    [74] Rao B S, Pathak S K. Thermal and viscoelastic properties of sequentially polymerized networkscomposed of benzoxazine, epoxy, and phenalkamine curing agents. Journal of Applied Polymer Science,2006,100(5):3956~3965.
    [75] Huang K, Xia J, Yang X, et al. Properties and curing kinetics of C21-based reactive polyamides asepoxy-curing agents derived from tung oil. Polymer Journal,2010,42(1):51~57.
    [76] Fu T, Zhang G, Zhong S, et al. Reaction kinetics, thermal properties of tetramethyl biphenyl epoxy resincured with aromatic diamine. Journal of Applied Polymer Science,2007,105(5):2611~2620.
    [77] Ratna D. Phase separation in liquid rubber modified epoxy mixture. Relationship between curingconditions, morphology and ultimate behavior. Polymer,2001,42(9):4209~4218.
    [78] Fujiyama M, Kawasaki Y. Rheological properties of polypropylene/high-density polyethylene blendmelts. I. Capillary flow properties. Journal of Applied Polymer Science,1991,42(2):467~480.
    [79] Moschiar S M, Riccardi C C, Williams R J J, et al. Rubber-modified epoxies. III. Analysis ofexperimental trends through a phase separation model. Journal of Applied Polymer Science,1991,42(3):717~735.
    [80] Romano A M, Garbassi F, Braglia R. Rubber-and thermoplastic-toughened epoxy adhesive films.Journal of Applied Polymer Science,1994,52(12):1775~1783.
    [81] Zhang X, Yi X, Xu Y. Cure-induced phase separation of epoxy/DDS/PEK-C composites and itstemperature dependency. Journal of Applied Polymer Science,2008,109(4):2195~2206.
    [82] Bonnet A, Pascault J P, Sautereau H, et al. Epoxy Diamine Thermoset/Thermoplastic Blends.1. Ratesof Reactions before and after Phase Separation. Macromolecules,1999,32(25):8517~8523.
    [83] Yee A F, Pearson R A. Toughening mechanisms in elastomer-modified epoxies. Journal of MaterialsScience,1986,21(7):2462~2474.
    [84] Pearson R A, Yee A F. Influence of particle size and particle size distribution on tougheningmechanisms in rubber-modified epoxies. Journal of Materials Science,1991,26(14):3828~3844.
    [85] Luo X, Zheng S, Zhang N, et al. Miscibility of epoxy resins/poly(ethylene oxide) blends cured withphthalic anhydride. Polymer,1994,35(12):2619~2623.
    [86] Yamanaka K, Inoue T. Phase separation mechanism of rubber-modified epoxy. Journal of MaterialsScience,1990,25(1):241~245.
    [87] Klug J H, Seferis J C. Phase separation influence on the performance of CTBN-toughened epoxyadhesives. Polymer Engineering&Science,1999,39(10):1837~1848.
    [88] Ritzenthaler S, Court F, Girard-Reydet E, et al. ABC Triblock Copolymers/Epoxy Diamine Blends.2.Parameters Controlling the Morphologies and Properties. Macromolecules,2002,36(1):118~126.
    [89] Xu Z, Zheng S. Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Poly(ε-caprolactone)-block-poly(n-butyl acrylate) Diblock Copolymer. Macromolecules,2007,40(7):2548~2558.
    [90] Kinloch A J, Shaw S J, Hunston D L. Deformation and fracture behaviour of a rubber-toughened epoxy:2. Failure criteria. Polymer,1983,24(10):1355~1363.
    [91] Feldman M. D. D. Editorial: Estrogens from Plastic—Are We Being Exposed? Endocrinology,1997,138(5):1777~1779.
    [92] Sonnenschein C, Soto A M. An updated review of environmental estrogen and androgen mimics andantagonists. The Journal of Steroid Biochemistry and Molecular Biology,1998,65(1–6):143~150.
    [93] Liu X, Xin W, Zhang J. Rosin-derived imide-diacids as epoxy curing agents for enhanced performance.Bioresource Technology,2010,101(7):2520~2524.
    [94] Samper M D, Fombuena V, Boronat T, et al. Thermal and Mechanical Characterization of Epoxy Resins(ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists' Society,2012,89(8):1521~1528.
    [95] Sch J R, Mülhaupt R. Polymers from renewable resoureces: polyester resins and blends based uponanhydride-cured epoxidized soybean oil. Polymer Bulletin,1993,31(6):679~685.
    [96] Gerbase A E, Petzhold C L, Costa A P O. Dynamic mechanical and thermal behavior of epoxy resinsbased on soybean oil. Journal of the American Oil Chemists' Society,2002,79(8):797~802.
    [97] Pan X, Sengupta P, Webster D C. Novel biobased epoxy compounds: epoxidized sucrose esters of fattyacids. Green Chemistry,2011,13(4):965~975.
    [98] Pan X, Sengupta P, Webster D C. High Biobased Content Epoxy–Anhydride Thermosets fromEpoxidized Sucrose Esters of Fatty Acids. Biomacromolecules,2011,12(6):2416~2428.
    [99] Altuna F I, Espósito L H, Ruseckaite R A, et al. Thermal and mechanical properties of anhydride-curedepoxy resins with different contents of biobased epoxidized soybean oil. Journal of Applied PolymerScience,2011,120(2):789~798.
    [100] Boquillon N, Fringant C. Polymer networks derived from curing of epoxidised linseed oil:influence of different catalysts and anhydride hardeners. Polymer,2000,41(24):8603~8613.
    [101] Lligadas G, Ronda J C, Galià M, et al. Development of novel phosphorus-containing epoxy resinsfrom renewable resources. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(23):6717~6727.
    [102] Ereaux L P, Craig G E. The oral administration of undecylenic acid in the treatment of psoriasis.Can Med Assoc J,1949,61(4):361~364.
    [103] Ward B F, Force C G, Bills A M, et al. Industrial utilization of C21dicarboxylic acid. Journal of theAmerican Oil Chemists Society,1975,52(7):219~224.
    [104] Vijayalakshmi P, Rao T C, Kale V, et al. Reactive polyamides from cycloaliphatic C21dicarboxylic acid and their evaluation as epoxy curing agents. Polymer,1992,33(15):3252~3256.
    [105] Vijayalakshmi P, Subbarao R, Lakshminarayana G. Preparation and surface-active properties of thesodium soaps, mono-and diethanolamides and diol and triol sulfates of cycloaliphatic C21Di-and C22Tricarboxylic acids. Journal of the American Oil Chemists Society,1991,68(2):133~137.
    [106] Hilditch T P, Mendelowitz A. The component fatty acids and glycerides of tung oil. Journal of theScience of Food and Agriculture,1951,2(12):548~556.
    [107] Ozawa T. Kinetic analysis of derivative curves in thermal analysis. Journal of thermal analysis,1970,2(3):301~324.
    [108] Hoffmann J S, O'Connor R T, Heinzelman D C, et al. A simplified method for the preparation ofα-and β-eleostearic acids and a revised spectrophotometric procedure for their determination.Journal of the American Oil Chemists Society,1957,34(7):338~342.
    [109] Bickford W G, DuPré E F, Mack C H, et al. The infrared spectra and the structural relationshipsbetween alpha-and beta-eleostearic acids and their maleic anhydride adducts. Journal of the AmericanOil Chemists Society,1953,30(9):376~381.
    [110] Kester E B, Gaiser C J, Lazar M E. Glycidyl Esters of Aliphatic Acids. The Journal of OrganicChemistry,1943,08(6):550~556.
    [111] Aserin A, Garti N, Sasson Y. Preparation of monoglycerides of fatty acids from epichlorohydrin byphase-transfer catalysis. Glycidyl esters. Industrial&Engineering Chemistry Product Research andDevelopment,1984,23(3):452~454.
    [112]魏晓惠,曹德榕,陈就记,等.丙烯海松酸二缩水甘油酯的合成、结构与性能.林产化学与工业,2004,(S1):47~51.
    [113] Serra A, Cádiz V, Martínez P, et al. Preparation and reactivity of new3,3′,4,4′-tetracarboxybenzophenone dianhydride glycidyl ester derivatives. Die Angewandte MakromolekulareChemie,1986,140(1):113~125.
    [114] Vyazovkin S, Wight C A. Kinetics in solids. Annu Rev Phys Chem,1997,48:125~149.
    [115] Zvetkov V L. Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines.: I.Non-isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine. Polymer,2001,42(16):6687~6697.
    [116] Sourour S, Kamal M R. Differential scanning calorimetry of epoxy cure: isothermal cure kinetics.Thermochimica Acta,1976,14(1–2):41~59.
    [117] Asif A, Shi W, Shen X, et al. Physical and thermal properties of UV curable waterbornepolyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number.Polymer,2005,46(24):11066~11078.
    [118] Deng Y, Martin G C. Diffusion and Diffusion-Controlled Kinetics during Epoxy-Amine Cure.Macromolecules,1994,27(18):5147~5153.
    [119] Levchik S V, Weil E D. Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polymer International,2004,53(12):1901~1929.
    [120] Carlsson A S. Plant oils as feedstock alternatives to petroleum–A short survey of potential oilcrop platforms. Biochimie,2009,91(6):665~670.
    [121] Metzger J O, Bornscheuer U. Lipids as renewable resources: current state of chemical andbiotechnological conversion and diversification. Applied Microbiology and Biotechnology,2006,71(1):13~22.
    [122] Czub P. Application of Modified Natural Oils as Reactive Diluents for Epoxy Resins.Macromolecular Symposia,2006,242(1):60~64.
    [123] Tan S G, Chow W S. Curing Characteristics and Thermal Properties of Epoxidized Soybean OilBased Thermosetting Resin. Journal of the American Oil Chemists' Society,2011,88(7):915~923.
    [124] Laza J M, Julian C A, Larrauri E, et al. Thermal scanning rheometer analysis of curing kinetic ofan epoxy resin:2. An amine as curing agent. Polymer,1999,40(1):35~45.
    [125] Chrysanthos M, Galy J, Pascault J. Preparation and properties of bio-based epoxy networksderived from isosorbide diglycidyl ether. Polymer,2011,52(16):3611~3620.
    [126] Aouf C, Nouailhas H, Fache M, et al. Multi-functionalization of gallic acid. Synthesis of a novelbio-based epoxy resin. European Polymer Journal,2013,49(6):1185~1195.
    [127] Nouailhas H, Aouf C, Le Guerneve C, et al. Synthesis and properties of biobased epoxy resins.part1. Glycidylation of flavonoids by epichlorohydrin. Journal of Polymer Science Part A: PolymerChemistry,2011,49(10):2261~2270.
    [128] Hofmann K, Glasser W. Engineering plastics from lignin,23. Network formation of lignin-basedepoxy resins. Macromolecular Chemistry and Physics,1994,195(1):65~80.
    [129] Hofmann K, Glasser W G. Engineering Plastics from Lignin.22. Cure of Lignin Based EpoxyResins. The Journal of Adhesion,1993,40(2-4):229~241.
    [130] El Mansouri N E, Yuan Q L, Huang F R. Synthesis and Characterization of Kraft Lignin-BasedEpoxy Resins. Bioresources,2011,6(3):2492~2503.
    [131] El Mansouri N, Yuan Q, Huang F. Study of Chemical Modification of Alkaline Lignin by theGlyoxalation Reaction. Bioresources,2011,6(4):4523~4536.
    [132] Huang K, Zhang J, Li M, et al. Exploration of the complementary properties of biobased epoxiesderived from rosin diacid and dimer fatty acid for balanced performance. Industrial Crops and Products,2013,49(0):497~506.
    [133] Liu X Q, Huang W, Jiang Y H, et al. Preparation of a bio-based epoxy with comparable propertiesto those of petroleum-based counterparts. EXPRESS POLYMER LETTERS,2012,6(4):293~298.
    [134] Ma S, Liu X, Jiang Y, et al. Bio-based epoxy resin from itaconic acid and its thermosets cured withanhydride and comonomers. Green Chemistry,2013,15(1):245~254.
    [135] Goldblatt L, Hopper L, Wood D. Epoxy Resin Esters Containing Tung Oil Fatty Acids. Industrial&Engineering Chemistry,1957,49(7):1099~1102.
    [136] Bickford W G, Hoffmann J S, Heinzelman D C, et al. Kinetics of Diels-Alder Reactions ofEleostearic Acids with Maleic Anhydride and Substituted Maleic Anhydrides. The Journal of OrganicChemistry,1957,22(9):1080~1083.
    [137] Ritter H, Sperber R. Diels-Alder Reactions in Polymer Chemistry: Synthesis of Pyridoxine on aPolymeric Backbone. Macromolecules,1994,27(20):5919~5920.
    [138] Meador M A B, Meador M A, Ahn M K, et al. Evidence for thermal dehydration occurring inDiels-Alder addition polymers. Macromolecules,1989,22(11):4385~4387.
    [139] Alhakimi G, G rls H, Klemm E. Polyimides by Diels-Alder polyaddition of α-pyrones.Macromolecular Chemistry and Physics,1994,195(5):1569~1576.
    [140] Tasdelen M A. Diels-Alder "click" reactions: recent applications in polymer and material science.Polymer Chemistry,2011,2(10):2133~2145.
    [141] Toncelli C, De Reus D C, Picchioni F, et al. Properties of Reversible Diels–AlderFuran/Maleimide Polymer Networks as Function of Crosslink Density. Macromolecular Chemistry andPhysics,2012,213(2):157~165.
    [142] Shibata M, Teramoto N, Nakamura Y. High performance bio-based thermosetting resins composedof tung oil and bismaleimide. Journal of Applied Polymer Science,2011,119(2):896~901.
    [143] Tao Z, Yang S, Chen J, et al. Synthesis and characterization of imide ring and siloxane-containingcycloaliphatic epoxy resins. European Polymer Journal,2007,43(4):1470~1479.
    [144] Paschke R F, Tolberg W, Wheeler D H. Cis, trans isomerism of the eleostearate isomers. Journal ofthe American Oil Chemists Society,1953,30(3):97~99.
    [145] Urbaczewski-Espuche E, Galy J, Gerard J, et al. Influence of chain flexibility and crosslink densityon mechanical properties of epoxy/amine networks. Polymer Engineering&Science,1991,31(22):1572~1580.
    [146] Glatz-Reichenbach J K W, Sorriero L, Fitzgerald J J. Influence of Crosslinking on the MolecularRelaxation of an Amorphous Copolymer Near Its Glass-Transition Temperature. Macromolecules,1994,27(6):1338~1343.
    [147] Ngai K L, Roland C M. Chemical structure and intermolecular cooperativity: dielectric relaxationresults. Macromolecules,1993,26(25):6824~6830.
    [148] Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid (ATBN) rubber.European Polymer Journal,2002,38(2):251~264.
    [149] Yang G, Fu S, Yang J. Preparation and mechanical properties of modified epoxy resins withflexible diamines. Polymer,2007,48(1):302~310.
    [150] Yang J, Chen Z, Yang G, et al. Simultaneous improvements in the cryogenic tensile strength,ductility and?impact strength of epoxy resins by a hyperbranched polymer. Polymer,2008,49(13–14):3168~3175.
    [151] Jakab E, Till F, Székely T, et al. Thermal decomposition of aryl—alicyclic polyimides studied bythermogravimetry/mass spectrometry and pyrolysis—gas chromatography/mass spectrometry. Journalof Analytical and Applied Pyrolysis,1992,23(3):229~243.
    [152] Kim S L, Skibo M D, Manson J A, et al. Tensile, impact and fatigue behavior of an amine-curedepoxy resin. Polymer Engineering&Science,1978,18(14):1093~1100.
    [153] Paul Schweinsberg D, George G A, Nanayakkara A K, et al. The protective action of epoxy resinsand curing agents—inhibitive effects on the aqueous acid corrosion of iron and steel. Corrosion Science,1988,28(1):33~42.
    [154] Shau M, Wang T. Syntheses, structure, reactivity, and thermal properties of new cyclic phosphineoxide epoxy resins cured by diamines. Journal of Polymer Science Part A: Polymer Chemistry,1996,34(3):387~396.
    [155] Wan J, Bu Z, Xu C, et al. Preparation, curing kinetics, and properties of a novel low-volatilestarlike aliphatic-polyamine curing agent for epoxy resins. Chemical Engineering Journal,2011,171(1):357~367.
    [156] Farkas A, Strohm P F. Imidazole catalysis in the curing of epoxy resins. Journal of AppliedPolymer Science,1968,12(1):159~168.
    [157] Jang E S, Khan S B, Seo J, et al. Preparation of cationic latent initiators containing imidazolegroup and their effects on the properties of DGEBA epoxy resin. Macromolecular Research,2011,19(10):989~997.
    [158] Kimura H, Matsumoto A, Ohtsuka K. Studies on new type of phenolic resin—Curing reaction ofbisphenol-A-based benzoxazine with epoxy resin using latent curing agent and the properties of thecured resin. Journal of Applied Polymer Science,2008,109(2):1248~1256.
    [159] Chiu Y, Liu Y, Wei W, et al. Using diethylphosphites as thermally latent curing agents for epoxycompounds. Journal of Polymer Science Part A: Polymer Chemistry,2003,41(3):432~440.
    [160] Mikroyannidis J A. Self-curing epoxy compounds. Journal of Applied Polymer Science,1990,41(11-12):2613~2624.
    [161] Tanaka Y, Kakiuchi H. Study of epoxy compounds. Part I. Curing reactions of epoxy resin and acidanhydride with amine and alcohol as catalyst. Journal of Applied Polymer Science,1963,7(3):1063~1081.
    [162] Woo E M, Seferis J C. Cure kinetics of epoxy/anhydride thermosetting matrix systems. Journal ofApplied Polymer Science,1990,40(7-8):1237~1256.
    [163] Huang K, Zhang P, Zhang J, et al. Preparation of biobased epoxies using tung oil fatty acid-derivedC21diacid and C22triacid and study of epoxy properties. Green Chemistry,2013,15(9):2466~2475.
    [164] Torre L, Frulloni E, Kenny J M, et al. Processing and characterization of epoxy–anhydride-basedintercalated nanocomposites. Journal of Applied Polymer Science,2003,90(9):2532~2539.
    [165] Ma J, Guo C, Tang Y, et al. Microenvironmental and conformational structure of triblockcopolymers in aqueous solution by1H and13C NMR spectroscopy. Journal of Colloid and InterfaceScience,2006,299(2):953~961.
    [166] Meeks A C. Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins.Polymer,1974,15(10):675~681.
    [167] Besset C, Pascault J, Fleury E, et al. Structure Properties Relationship of BiosourcedStereocontrolled Polytriazoles from Click Chemistry Step Growth Polymerization of Diazide andDialkyne Dianhydrohexitols. Biomacromolecules,2010,11(10):2797~2803.
    [168] Zheng Y, Yao K, Lee J, et al. Well-Defined Renewable Polymers Derived from Gum Rosin.Macromolecules,2010,43(14):5922~5924.
    [169] Yao K, Wang J, Zhang W, et al. Degradable Rosin-Ester–Caprolactone Graft Copolymers.Biomacromolecules,2011,12(6):2171~2177.
    [170] Liu F, Wang Z, Wang Y, et al. Copolymer networks from carboxyl-containing polyaryletherketoneand diglycidyl ether of bisphenol-A: Preparation and properties. Journal of Polymer Science Part B:Polymer Physics,2010,48(23):2424~2431.
    [171] Stemmelen M, Pessel F, Lapinte V, et al. A fully biobased epoxy resin from vegetable oils: Fromthe synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal ofPolymer Science Part A: Polymer Chemistry,2011,49(11):2434~2444.
    [172] Shabeer A, Garg A, Sundararaman S, et al. Dynamic mechanical characterization of a soy basedepoxy resin system. Journal of Applied Polymer Science,2005,98(4):1772~1780.
    [173] Leonard E C. Polymerization-dimer acids. Journal of the American Oil Chemists’ Society,1979,56(11):782A~785A.
    [174] Paschke R F, Peterson L E, Harrison S A, et al. Dimer acid structures. The dehydro-dimer frommethyl oleate and Di-t-butyl peroxide. Journal of the American Oil Chemists Society,1964,41(1):56~60.
    [175] Wheeler D H, Milun A, Linn F. Dimer acid structures: Cyclic structures of clay catalyzed dimersof normal linoleic acid,9-cis,12-cis-Octadecadienoic acid. Journal of the American Oil ChemistsSociety,1970,47(7):242~244.
    [176] Halbrook N J, Lawrence R V. Preparation of Acrylic Modified Rosin. Product R&D,1972,11(2):200~202.
    [177] Maerker G, Saggese E J, Port W S. Glycidyl esters. II. Synthesis of esters of commercial and purefatty acids. Journal of the American Oil Chemists Society,1961,38(4):194~197.
    [178] Pchelka B K, Loupy A, Petit A. Improvement and simplification of synthesis of3-aryloxy-1,2-epoxypropanes using solvent-free conditions and microwave irradiations. Relation withmedium effects and reaction mechanism. Tetrahedron,2006,62(47):10968~10979.
    [179] McMahon D H, Crowell E P. Characterization of products from clay catalyzed polymerization oftall oil fatty acids. Journal of the American Oil Chemists Society,1974,51(12):522~527.
    [180] Zhao J, Olesik S V. Separation of dimer acids using enhanced-fluidity liquid chromatography.Analytica Chimica Acta,2001,449(1–2):221~236.
    [181] Boey F Y C, Qiang W. Experimental modeling of the cure kinetics of anepoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer,2000,41(6):2081~2094.
    [182] Chiou B, Schoen P E. Effects of crosslinking on thermal and mechanical properties ofpolyurethanes. Journal of Applied Polymer Science,2002,83(1):212~223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700