用户名: 密码: 验证码:
江苏盐城滨海湿地景观变化及其对丹顶鹤生境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用野外实地调查以及历史数据的整理和分析,解译了1986年、1996年和2006年三期江苏滨海地区的遥感影像,分析了江苏盐城滨海湿地不同时期的景观状况,研究了江苏盐城滨海湿地景观格局变化及其驱动因子,并结合江苏盐城国家级珍禽自然保护区历年丹顶鹤监测记录对滨海湿地景观格局变化下的丹顶鹤适宜生境进行了评价。结果显示:
     (1)在1986~2006年期间盐城滨海湿地景观变化明显。盐城滨海湿地的景观变化特征表现为以芦苇白茅湿地、碱蓬湿地以及河流等自然湿地的大幅减少和农田、水产养殖塘以及建筑用地等人为活动强度较高的土地利用方式的显著增加。1996~2006年自然湿地丧失的面积大于1986~1996年丧失的面积,自然湿地丧失的速率也明显快于1986~1996年。其中,米草湿地面积在1986~2006年期间米草湿地面积增加了近25倍。碱蓬湿地降幅达到79.65 %,芦苇白茅湿地降幅达到83.25 %,河流湿地降幅达到32.19 %,光滩湿地降幅为44.08 %,由于光滩湿地面积受潮位影响巨大,所以光滩湿地面积的实际降幅应小于44.08 %。而水产养殖塘、盐田等人工湿地和农田面积都呈现出逐渐增加的趋势。盐田湿地的面积变化幅度不大,水产养殖塘和农田是本地区人类对滨海湿地利用的主要方式,分别增幅为169.50 %和106.09 %。另外,建筑用地面积增幅达445.75 %。
     (2)从三个时期研究区域的景观格局指数来看,单个斑块面积减小,斑块的复杂性有所增加,斑块类型趋于分散,斑块之间的平均距离减小,斑块类型的邻接度变化不大,香农多样性指数增大,景观多样性增加,而香农均匀度指数变化不明显,景观指数的变化说明人为干扰对研究区域的影响在3个时期持续增长,景观破碎化明显。
     (3)盐城滨海湿地不同区域间景观变化差异显著。沿海5县市自然湿地面积变化的对比结果表明自然湿地呈现出一致的减少趋势,但其变化速率具有差异性。响水和滨海自然湿地面积较小,面积变化也较小。在盐城滨海湿地的主要分布区域射阳、大丰、东台三县市中。由于将辐射沙洲划分在东台县境内,所以东台所占湿地面积最大。大丰自然湿地减少的面积最高,其次是东台和射阳。在江苏盐城国家级珍禽自然保护区的核心区、缓冲区和实验区中,核心区保存最为完好,自然湿地面积减少的最小。核心区湿地景观的自然演替占主导的决定性地位。缓冲区在1986~1996年期间景观变化主要以滨海湿地的自然演替为主,而在1996~2006年期间,对自然湿地的大面积围垦成为了这一时期景观变化的主要影响因素。在1986~1996年期间,实验区的景观变化表现为自然湿地急剧减少,其中第五实验区自然湿地损失最大。在1996~2006年期间,自然湿地的损失进一步加剧,第五实验区的面积损失仍然最大。
     (4)滨海地区景观变化的原因以人类对自然湿地的围垦利用为主,接下来顺次为湿地的自然演替、土地利用方式的改变以及米草的生物入侵,而人工景观的自然化仅占相当小的比重。景观变化以人为因素为主导的驱动机制,人为因素主要包括国家及地方的湿地围垦政策,技术进步,人口变化及经济发展。自然驱动因子除了包括滨海湿地生态系统自身演替外,还包括海岸的侵蚀与淤长,米草的扩张以及海平面的变化,但与人为驱动相比仅处于次要地位。
     (5)根据野外调查,丹顶鹤的生境因子主要包括干扰、食物、水情况和植物覆被条件,其变化主要表现为干扰强度加重、面积扩大,食物丰度下降,植物覆被条件适宜性下降,浅积水区和湿润区面积的减少,深积水区和干燥区大面积增加。无干扰、食物丰富、植物覆被条件适宜的丹顶鹤栖息的生境类型总体上呈现减少的趋势,生境类型斑块数量减少率要小于几个生境类型面积的减少率,栖息地呈现破碎化的趋势。栖息地景观指数变化也同样表明,丹顶鹤的栖息地破碎化明显,栖息地的复杂性增加。1996~2006年的变化速度要明显高于1986~1996年,体现了人类干扰强度呈现加剧的趋势。本论文根据生境因子及人为影响建立了生境适宜性评价模型。从生境质量评价结果、实地调查及历年丹顶鹤同步调查记录显示,20年来丹顶鹤的生境类型及分布发生了较大的变化。主要表现为丹顶鹤适宜生境面积大量降低;适宜生境由连续分布转变为岛屿状分布,栖息地破碎化明显;丹顶鹤的分布有向核心区集中的趋势;人工湿地已经成为丹顶鹤的一种重要的生境类型。
     根据盐城滨海湿地景观变化分析结果和丹顶鹤生境评价结果,论文最后提出了江苏盐城滨海湿地及丹顶鹤栖息地的保护对策。
In this paper, through interpretation, analysis and statistic to the three temporal TM remote sensing images in 1986, 1996 and 2006 with the collation and analysis of the field investigation and historical data, the landscape status of Yancheng costal wetland in Jiangsu Province were analyzed, the landscape pattern changes and their driving factors were researched, and also the habitat quality was assessed, based on the Red-crowned Crane monitoring records in Yancheng Nature Reserve and the changes of Yancheng costal wetland landscape. The results showed that:
     (1) Yancheng Coastal wetland landscape changed significantly in the period from 1986 to 2006. The characteristic of landscape changes in Yancheng coastal wetlands are shown as the natural wetlands declined substantially, such as the reed(Phragmites autralis) beaches, cogongrass (Imperata cylindrical varnajor) beaches and Suaeda glauca beaches, and the area with high intensive human activities increased significantly, such as the farmlands, aquaculture ponds and building sites. The loss area of natural wetlands from 1996 to 2006 was larger than the size of the loss from 1986 to 1996, and the loss of natural wetlands was significantly faster than the rate from 1986 to 1996. Among them, the area of spartina alterniflora beaches increase nearly 25 times from 1986 to 2006. The area of Suaeda glauca beaches dropped by 79.65 percent, the area of reed and cogongrass beaches dropped by 83.25 percent, the area of river wetlands dropped by 32.19 percent, and the bare flat beaches dropped by 44.08 percent. The area of bare flat beaches should decline less than 44.08 percent, for which was influenced by tide level in huge impact. The area of artificial wetlands, such as the aquaculture ponds, and farmlands increased gradually, and the area of salt fields changed little. The aquaculture ponds and farmlands were the main kinds of utilization mode in coastal area, the increasing rate of which were 169.50 percent and 106.09 percent respectively. In addition, the area of building sites increase by 445.75 percent.
     (2) According to the landscape pattern index in studying area during the three periods, the area of the single patch decreased, the complexity of it increased a little bit, the mean distance between the patches is reduced, the Interspersion and Juxtaposition Index changed little, the landscape diversity increased, and the evenness changed unnoticeable, which indicated that the disturbances in this area increased continued in the period, and the landscape fragmentation was increased with time.
     (3) The landscape of Yancheng Coastal wetlands in different regions changed significantly. The area of natural wetlands of the five coastal counties in Yancheng reduced continuously with different changed rate. There are less area of natural Wetlands in Xiangshui County and Binhai County and the area changes smaller also. The coastal wetland is widely distributed in Sheyang County, Dafeng County and Dongtai County. The wetland distributed in Dongtai County is the largest in this area, for the radial sand ridges area in the South Yellow Sea were put under Dongtai County in this study. The natural wetlands in Dafeng County reduced most and next to Dongtai County and Sheyang County. In the core, buffer and experimental zones of Yancheng Nature Reserve, the natural wetlands in core zones are still well preserved with the area of them reduced least, and the nature succession occupy the dominant position in the twenty years. During 1986-1996, the landscape change of buffer zone in Yancheng Nature Reserve relied mainly on the natural succession, and the natural wetlands reclamation of a large area became the main influence factor of landscape change during 1996-2006. The landscape change of experimental zone was shown as the natural wetlands were reduced sharply in the period from 1986 to 1996, and the losses of the natural wetlands were further aggravated during the period from 1996 to 2006. Among them the natural wetlands lost mostly in the 5th experimental zone during the twenty years, and the natural wetlands reclamation was the main influence factor of landscape change in the experimental zone.
     (4) The main factor of landscape change of Yancheng coastal wetlands was the natural wetlands reclamation, followed in descending order by natural succession of wetlands, land use changes and Spartina alterniflora invasion, and the artificial landscape naturalization only took quite small proportion. The reclamation intensity of natural wetlands in the period from 1996 to 2006 increased a little bit beyond the period from 1986 to 1996. The driving mechanism of landscape changes took human activity as the leading factor, which included reclamation policy of natural wetlands, technological progress, demographic changes and economic development. The landscape changes of natural driving factors included the costal wetland ecosystem succession, also included coastal erosion and siltation, spartina alterniflora invasion, and sea level changes, which held a subordinate position compared with the human activities.
     (5) Four major habitat factors for Red-Crowned Crane were identified by fieldwork, including disturbance, food, water regime and shelter in the study area,and these four habitat factors have indirect relationship with vegetation types, disturbance degree, food richness, water depth and shelter condition can reflect indirectly by vegetation types. The habitat factor changes were mainly reflected in the following: the increase of disturbance intensity and area, the abundance decline of foods, the appropriation decline of vegetation condition, the shrink of shallow water area and moist area, and the increase of deep water area and drying area. The habitat types with less disturbance, abundant foods and suitable vegetation cover decreased continuously, and the reduction rate of the patch numbers of different habitat types was smaller than it of the area of different habitat types, which showed that the habitat fragmentation degree strengthened gradually. The changes of landscape index showed that the habitat complexity increased and the landscape index change from 1996 to 2006 is faster than it from 1986 to 1996, which indicated that the disturbance is more serious. A habitat suitability index (HSI) model reflecting habitat factors and human impacts in landscape scale were built and five units were considered in the model, which were human disturbance, food richness, water regime in wetlands, vegetation shelter types and distance from road and residential area. According to the result of the habitat assessment, the field investigation and the historical records of the Red-Crown Crane investigation, the habitat types and distribution of the Red-Crowned Crane had changed greatly in the past twenty years: the area of suitable habitat reduced on a large area, the suitable habitat distributed continuously had changed into island-like distribution with significant habitat fragmentation, the distribution of the Red-Crowned Crane concentrated on the core zone of Yancheng Nature Reserve gradually, and the artificial wetlands has become a major habitat types of the Red-Crowned Crane.
     At last, according to the analysis of the landscape change of coastal wetlands in Yancheng and the result of habitat assessment of the Red-Crowned Crane, the protecting countermeasures of coastal wetlands and the habitats of the Red-Crowned Cranes in Yancheng were put forward.
引文
[1]国家林业局.中国湿地保护行动计划[M].北京:中国林业出版社, 2000. 1-3.
    [2]国家林业局《湿地公约》履约办公室.湿地公约履约指南[M].北京:中国林业出版社, 2001. 1-3.
    [3]崔丽娟.湿地价值评价研究[M].北京:科学出版社, 2000.
    [4]崔丽娟,艾思龙.《湿地恢复手册:原则、技术与案例分析》[M].北京:中国建筑工业出版社, 2006. 186-213.
    [5]崔丽娟,张曼胤,王义飞.湿地功能研究进展[J].世界林业研究, 2006, 19(3): 18-21.
    [6] Mitsch W J, Gosselink J G. Wetlands[M]. New York: John Wiley, 2000. 1-20.
    [7]陆健健.我国滨海湿地的功能[J].环境导报, 1996, (1): 41-42.
    [8]陈增奇,陈飞星,李占玲,等.滨海湿地生态经济的综合评价模型[J].海洋学研究, 2005, 23(3): 47-55.
    [9]钦佩.海滨湿地生态系统的热点研究[J].湿地科学与管理, 2006, 2(1): 7-11.
    [10]陆健健.中国滨海湿地的分类[J].环境导报, 1996, (1): 1-2.
    [11]国家林业局.全国湿地保护工程实施规划沿海地区部分(2005-2010)[R]. 2005.
    [12]赵学敏.湿地:人与自然和谐共存的家园[M]. 44-53.北京:中国林业出版社, 2005.
    [13]崔丽娟,张曼胤,何春光.中国湿地分类编码系统研究[J].北京林业大学学报, 2007, 29(3): 87-92.
    [14]赵焕庭,王丽荣.中国海岸湿地的类型[J].海洋通报, 2000, 19(6): 72-82.
    [15] Ramsar. Ramsar Convention on Wetlands[EB/OL]. http://www.ramsar.org, 2007-12-24.
    [16] International W. Ramsar Sites Information Service[EB/OL]. http://www.wetlands.org/RSDB/Default.htm, 2007-12-24.
    [17] Santos I R, F D I, Schaefer C E, et al. Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): Evidence from rare earths and other elements[J]. Marine Chemistry, 2007, 107(4): 464-474.
    [18] Ohta A, Imai N, Terashima S, et al. Elemental distribution of coastal sea and stream sediments in the island-arc region of Japan and mass transfer processes from terrestrial to marine environments[J]. Applied Geochemistry, 2007, 22(12): 2872-2891.
    [19] Mercier C, Delhez E J. Diagnosis of the sediment transport in the Belgian Coastal Zone Timescale[J]. Estuarine, Coastal and Shelf Science, 2007, 74(4): 670-683.
    [20] Friend P L, Amos C L. Natural coastal mechanisms -- flume and field experiments on links between biology, sediments, and flow[J]. Continental Shelf Research, 2007, 27(8): 1017-1019.
    [21] Beldowski J, Pempkowiak J. Mercury transformations in marine coastal sediments as derived from mercury concentration and speciation changes along source/sink transport pathway (Southern Baltic)[J]. Estuarine, Coastal and Shelf Science, 2007, 72(1-2): 370-378.
    [22] Van M D. Water and sediment dynamics in the Red River mouth and adjacent coastal zone[J]. Journal of Asian Earth Sciences, 2007, 29(4): 508-522.
    [23] Sunderland E M, Gobas F A, Branfireun B A, et al. Environmental controls on the speciation and distribution of mercury in coastal sediments[J]. Marine Chemistry, 2006, 102(1-2): 111-123.
    [24] Lecce S A, Pease P P, Gares P A, et al. Seasonal controls on sediment delivery in a small coastal plain watershed, North Carolina, USA[J]. Geomorphology, 2006, 73(3-4): 246-260.
    [25] Hanson C E, Waite A M, Thompson P A, et al. Phytoplankton community structure and nitrogennutrition in Leeuwin Current and coastal waters off the Gascoyne region of Western Australia[J]. Deep Sea Research, 2007, 54(8-10): 902-924.
    [26] Adams A B, Harrison R B, Harrison R S, et al. Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest[J]. Forest Ecology and Management, 2005, 220(1-3): 313-325.
    [27] Lapointe B E, Barile P J, Littler M M, et al. Macroalgal blooms on southeast Florida coral reefs: I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment[J]. Harmful Algae, 2005, 4(6): 1092-1105.
    [28] Connolly R M. Differences in trophodynamics of commercially important fish between artificial waterways and natural coastal wetlands[J]. Estuarine, Coastal and Shelf Science, 2003, 58(4): 929-936.
    [29] Far L, Cornejo M. Effect of seasonal changes in bottom water oxygenation on sediment N oxides and N2O cycling in the coastal upwelling regime off central Chile[J]. Progress In Oceanography, 2007, 75(3): 561-575.
    [30] Mayer L M, Schick L L, Allison M A, et al. Marine vs. terrigenous organic matter in Louisiana coastal sediments: The uses of bromine:organic carbon ratios[J]. Marine Chemistry, 2007, 107(2): 244-254.
    [31] Banaru D, Harmelin-vivien M, Gomoiu M T, et al. Influence of the Danube River inputs on C and N stable isotope ratios of the Romanian coastal waters and sediment (Black Sea)[J]. Marine Pollution Bulletin, 2007, 54(9): 1385-1394.
    [32] Niggemann J, Ferdelman T G, Lomstein B A, et al. How depositional conditions control input, composition, and degradation of organic matter in sediments from the Chilean coastal upwelling region[J]. Geochimica et Cosmochimica Acta, 2007, 71(6): 1513-1527.
    [33] Liu Z, Lee C. Drying effects on sorption capacity of coastal sediment: The importance of architecture and polarity of organic matter[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3313-3324.
    [34] Canavan R W, Slomp C P, Jourabchi P, et al. Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2836-2855.
    [35] Niemel M, Huuskonen A, Jaakola S, et al. Coastal meadows as pastures for beef cattle[J]. Agriculture, Ecosystems & Environment, 2008, 124(3-4): 179-186.
    [36] Smith S D, Rule M J, Harrison M, et al. Monitoring the sea change: Preliminary assessment of the conservation value of nearshore reefs, and existing impacts, in a high-growth, coastal region of subtropical eastern Australia[J]. Marine Pollution Bulletin, 2008, 56(3): 525-534.
    [37] Wilson J G, Komakhidze A, Osadchaya T, et al. Evaluating ecological quality in the north-eastern Black Sea coastal zone[J]. Marine Pollution Bulletin, 2008, 57(1-5): 202-207.
    [38] Edwards D L. Biogeography and speciation of a direct developing frog from the coastal arid zone of Western Australia[J]. Molecular Phylogenetics and Evolution, 2007, 45(2): 494-505.
    [39] Franco A, Torricelli P, Elliott M. Preface: Biodiversity and ecosystem functioning in coastal and transitional waters. Edited by Anita Franco, Michael Elliott and Patrizia Torricelli[J]. Estuarine, Coastal and Shelf Science, 2007, 75(1-2): 1-3.
    [40] Johnson D E, Bartlett J, Nash L A. Coastal lagoon habitat re-creation potential in Hampshire, England[J]. Marine Policy, 2007, 31(5): 599-606.
    [41] Van T C, Foppen R P, Leuven R S, et al. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period[J]. Biological Conservation, 2007, 134(4):505-516.
    [42] Mouillot D, Dumay O, Tomasini J A. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities[J]. Estuarine, Coastal and Shelf Science, 2007, 71(3-4): 443-456.
    [43] Melis R, Violanti D. Foraminiferal biodiversity and Holocene evolution of the Phetchaburi coastal area (Thailand Gulf)[J]. Marine Micropaleontology, 2006, 61(1-3): 94-115.
    [44] Thrush S, Dayton P, Cattaneo-vietti R, et al. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea[J]. Deep Sea Research, 2006, 53(8-10): 959-971.
    [45] de La L, Rodr A, Garc R J. Seasonal variation and structure of a decapod (Crustacea) assemblage living in a Caulerpa prolifera meadow in Cádiz Bay (SW Spain)[J]. Estuarine, Coastal and Shelf Science, 2006, 66(3-4): 624-633.
    [46] Brown I. Modelling future landscape change on coastal floodplains using a rule-based GIS[J]. Environmental Modelling & Software, 2006, 21(10): 1479-1490.
    [47] Bradley M P, Stolt M H. Landscape-level seagrass-sediment relations in a coastal lagoon[J]. Aquatic Botany, 2006, 84(2): 121-128.
    [48] Gibson L A, Wilson B A, Aberton J G. Landscape characteristics associated with species richness and occurrence of small native mammals inhabiting a coastal heathland: a spatial modelling approach[J]. Biological Conservation, 2004, 120(1): 75-89.
    [49]彭本荣,洪华生.海岸带生态系统服务价值评估——理论与应用研究[M].北京:海洋出版社, 2006.
    [50] Li Q S, Wu Z F, Chu B, et al. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China[J]. Environmental Pollution, 2007, 149(2): 158-164.
    [51] Wang J, Qin P, Sun S. The flux of chloroform and tetrachloromethane along an elevational gradient of a coastal salt marsh, East China[J]. Environmental Pollution, 2007, 148(1): 10-20.
    [52] Chen K, Jiao J J, Huang J, et al. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China[J]. Environmental Pollution, 2007, 147(3): 771-780.
    [53] Gao Z G, Zhang L Q. Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai, China[J]. Estuarine, Coastal and Shelf Science, 2006, 69(1-2): 217-224.
    [54] Liu M, Yang Y, Xu S, et al. HCHs and DDTs in salt marsh plants (Scirpus) from the Yangtze estuary and nearby coastal areas, China[J]. Chemosphere, 2006, 62(3): 440-448.
    [55] Fung C N, Zheng G J, Connell D W, et al. Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China[J]. Marine Pollution Bulletin, 2005, 50(10): 1036-1049.
    [56] Wang S, Hong H, Wang X. Bioenergetic responses in green lipped mussels (Perna viridis) as indicators of pollution stress in Xiamen coastal waters, China[J]. Marine Pollution Bulletin, 2005, 51(8-12): 738-743.
    [57] Chen S, Chen L, Liu Q, et al. Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay, Pearl River Estuary, South China[J]. Ocean & Coastal Management, 2005, 48(1): 65-83.
    [58] Yuan J, Chen M Y, Shao P, et al. Genetic diversity of small eukaryotes from the coastal waters of Nansha Islands in China[J]. FEMS Microbiology Letters, 2004, 240(2): 163-170.
    [59] Jilan S. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1745-1760.
    [60] Xu F L, Lam K C, Zhao Z Y, et al. Marine coastal ecosystem health assessment: a case study of the Tolo Harbour, Hong Kong, China[J]. Ecological Modelling, 2004, 173(4): 355-370.
    [61] Zhao D, Zhao L, Zhang F, et al. Temporal occurrence and spatial distribution of redtide events in China's coastal waters[J]. Human and Ecological Risk Assessment, 2004, 10(5): 945-957.
    [62]王宪礼,胡远满,布仁仓.辽河三角洲湿地的景观变化分析[J].地理科学, 1996, 16(3): 260-265.
    [63]刘红玉.湿地景观变化与环境效应[M].北京:科学出版社, 2005.
    [64]傅伯杰,陈利顶,马克明,等.景观生态学的原理与应用[M].北京:科学出版社, 2001. 1-73.
    [65] Turner M G, G R H. Quantitative method in landscape ecology[M]. New York: Springer-Verlag, 1991.
    [66]肖笃宁,李秀珍.当代景观生态学的进展和展望[J].地理科学, 1997, 17(4): 357-359.
    [67] Jean M, Bouchard A. Temporal changes in wetland landscapes of a section of the Stlawrence River, Canada[J]. Environmental Management, 1991, 15(2): 241-250.
    [68] Miller M W, Nudds T D. Prairie Landscape Change and Flooding in the Mississippi River Valley[J]. Conservation Biology, 1996, 10(3): 847-853.
    [69] Niggebrugge K, Durance I, Watson A M, et al. Applying landscape ecology to conservation biology: Spatially explicit analysis reveals dispersal limits on threatened wetland gastropods[J]. Biological Conservation, 2007, 139(3-4): 286-296.
    [70] Fromard F, C Vega C P. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana: a case study based on remote sensing data analyses and field surveys[J]. Marine Geology, 2004, (208): 265-280.
    [71] Kelly N M. Changes to the landscape pattern of coastal North Carolina wetlands under the Clean Water Act, 1984–1992[J]. 2001, 16(1): 3-16.
    [72] Ruiz-luna A, CésarABerlanga-robles. Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico[J]. Landscape Ecology, 2003, 18(2): 159-171.
    [73] Horssen P W, Schot P P, Barendregt A. A GIS-based plant prediction model for wetland ecosystems[J]. Landscape Ecology, 1999, 14(3): 253-265.
    [74]李颖,张养贞,张树文.三江平原沼泽湿地景观格局变化及其生态效应[J].地理科学, 2002, 22(6): 677-682.
    [75]汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化[J].生态学报, 2003, 23(2): 237-243.
    [76] Vinliam B,卞建民,林年丰. 3S技术在霍林河流域下游湿地景观演变中的应用[J].吉林大学学报(地球科学版), 2005, 35(2): 221-225.
    [77]刘红玉,吕宪国,张世奎,等.三江平原流域湿地景观破碎化过程研究[J].应用生态学报, 2005, 16(2): 289-295.
    [78]刘红玉,张世奎,吕宪国.三江平原湿地景观结构的时空变化[J].地理学报, 2004, 59(3): 391-400.
    [79]黄方,刘湘南,王平.嫩江中下游沼泽湿地景观空间格局变化[J].资源科学, 2005, 27(4): 140-146.
    [80]严登华,王浩,何岩,等.中国东北区沼泽湿地景观的动态变化[J].生态学杂志, 2006, 25(3): 249-254.
    [81]郭跃东,何岩,张明祥,等.洮儿河中下游流域湿地景观演变及驱动力分析[J].水土保持学报, 2004, 18(2): 118-121.
    [82]白军红,邓伟,严登华.霍林河流域湿地土地利用/土地覆被变化的转化过程[J].水土保持学报, 2003, 17(3): 112-114.
    [83]李晓文,肖笃宁,胡远满.辽东湾滨海湿地景观规划预案分析与评价[J].生态学报, 2002, 22(2): 224-232.
    [84]李秀珍,肖笃宁,胡远满,等.辽河三角洲湿地景观格局对养分去除功能影响的模拟[J].地理学报, 2001, 56(1): 32-43.
    [85]肖笃宁,裴铁凡,赵界.辽河三角洲湿地景观的水文调节与防洪功能[J].湿地科学, 2003, 1(1): 21-25.
    [86]王宪礼,布仁仓,胡远满,等.辽河三角洲湿地的景观破碎化分析[J].应用生态学报, 1997, 7(3): 299-304.
    [87]王宪礼,肖笃宁,布仁仓,等.辽河三角洲湿地的景观格局分析[J].生态学报, 1997, 17(3): 318-323.
    [88]杨帆.基于RS和GIS的辽东湾滨海湿地景观动态变化研究[D].大连海事大学, 1-57.
    [89]李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划各预案对指示物种生态承载力的影响[J].生态学报, 2001, 21(5): 709-715.
    [90]李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划预案设计及其实施措施的确定[J].生态学报, 2001, 21(3): 353-364.
    [91]郭笃发.黄河三角洲滨海湿地土地覆被和景观格局的变化[J].生态学杂志, 2005, 24(8): 907-912.
    [92]陈利顶,傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析——以山东省东营市为例[J].生态学报, 1996, 16(8): 337-344.
    [93] Xiang Y T, Yuan L J, Erik J S, et al. Landscape change detection of the newly created wetland in Yellow River Delta[J]. Ecological Modelling, 2003, 164(1): 21-31.
    [94]李加林,张忍顺,王艳红,等.江苏淤泥质海岸湿地景观格局与景观生态建设[J].地理与地理信息科学, 2003, 19(5): 86-90.
    [95]李杨帆,朱晓东,邹欣庆,等.江苏盐城海岸湿地景观生态系统研究[J].海洋通报, 2005, 24(4): 46-51.
    [96]郑彩红,曾从盛,陈志强,等.闽江河口区湿地景观格局演变研究[J].湿地科学, 2006, 4(1): 29-35.
    [97]张志锋,王丽华,石爱军,等.湿地景观结构遥感动态变化分析[J].地球信息科学, 2006, 8(2): 17-23.
    [98]宁龙梅,王学雷,吴后建.武汉市湿地景观格局变化研究[J].长江流域资源与环境, 2005, 14(1).
    [99]宁龙梅,王学雷,吴后建.武汉市湿地景观格局的变化与城市景观建设[J].兰州大学学报(自然科学版), 2005, 41(3): 6-9.
    [100]宁龙梅,王学雷,胡望斌.利用马尔科夫过程模拟和预测武汉市湿地景观的动态演变[J].华中师范大学学报(自然科学版), 2004, 38(2): 255-258.
    [101]程乾,吴秀菊.杭州西溪国家湿地公园1993年以来景观演变及其驱动力分析[J].应用生态学报, 2006, 17(9): 1677-1682.
    [102]张世瑕,王紫雯,张继明.流域湿地的景观生态特性分析与景观特征指数的运用——以杭州沿山河流域和西溪湿地为对象[J].浙江大学学报(工学版), 2007, 41(6): 1053-1060.
    [103]章仲楚,张秀英,邓劲松,等.基于RS和GIS的西溪湿地景观格局变化研究[J].浙江林业科技, 2007, 27(4): 38-41.
    [104]戴文远.基于3S的福州市湿地景观空间格局研究[C].武汉: 2006.
    [105]陈鹏.厦门滨海湿地景观格局变化研究[J].生态科学, 2005, 24(4): 359-363.
    [106]刘亚林.近20年来若尔盖高原湿地景观格局演化[C].长春: 2006. 310-314.
    [107]刘士余,肖青亮,蔡海生.鄱阳湖湿地景观结构与可持续利用研究[J].水土保持研究, 2007, 14(5): 342-344.
    [108]王红娟,姜加虎,黄群.东洞庭湖湿地景观变化研究[J].长江流域资源与环境, 2007, 16(6): 732-737.
    [109]白军红,欧阳华,杨志锋,等.湿地景观格局变化研究进展[J].地理科学进展, 2005, 24(4): 36-45.
    [110]刘玉红,吕宪国,张世奎.湿地景观变化过程与累积环境效应研究进展[J].地理科学进展, 2003, 22(1): 60-70.
    [111] Dahl T E. Wetland losses in the United States 1780s to 1980s[R]. United States Department of Interior, Fish and Wildlife Service, 1990.
    [112] Baumann R H, Turner R E. Direct impacts of outer continental shelf activities on wetland loss in the central Gulf of Mexico[J]. Environmental Geology and Water Resources, 1990, 15: 189-198.
    [113] Kingsford R T, Thomas R F. Use of satellite image analysis to track wetland loss on the Murrumbidgee River floodplain in arid Australia, 1975-1998[J]. Water Science and Technology, 2002, 45(11): 45-53.
    [114] Kingsford R T, Thomas R F. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia.[J]. Environ Manage, 2004, 34(3): 383-396.
    [115]王志强,张柏,徐振华,等.近50年来富锦湿地景观遥感与GIS的时空动态分析[J].地球信息科学, 2006, 8(1): 21-2529.
    [116]白云芳,李苏东,刘红玉.洪河保护区周边土地利用变化对湿地景观多样性的影响[J].南京师大学报(自然科学版), 2007, 30(3): 117-121.
    [117]周德民,宫辉力,胡金明,等.三江平原淡水湿地生态系统景观格局特征研究——以洪河湿地自然保护区为例[J].自然资源学报, 2007, 22(1): 86-96.
    [118]张华,苗苗,孙才志,等.辽宁省滨海湿地资源类型及景观格局分析[J].资源科学, 2007, 29(3): 139-146.
    [119] Guofu L,Shengyan D. Impacts of human activity and natural change on the wetland landscape pattern along the Yellow River in Henan Province[J]. Journal of Geographical Sciences, 2004, 14(3): 339-348.
    [120]丁圣彦,梁国付.近20年来河南沿黄湿地景观格局演化[J].地理学报, 2004, 59(5): 653-661.
    [121]周连义,江南,吕恒,等.长江南京段湿地景观格局变化特征[J].资源科学, 2006, 28(5): 24-29.
    [122]李加林,赵寒冰,曹云刚,等.辽河三角洲湿地景观空间格局变化分析[J].城市环境与城市生态, 2006, 19(2): 5-7.
    [123]白军红,欧阳华,邓伟,等.霍林河流域湿地土地利用/土地覆被类型的渐变过程[J].水土保持学报, 2004, 18(1): 172-174.
    [124] Lyon J G. Wetland Landscape Characterization: GIS, Remote Sensing and Image Analysis[M]. Farmington Hills, MI: CRC Press, 2001.
    [125] Ramsey E W, Jensen J R. Remote sensing of mangrove wetlands: relating canopy spectra to site-specific data[J]. Photogrammetric Engineering and Remote Sensing, 1995, 62(8): 939-948.
    [126] Lee C T, Marsh S E. The use of archival Landsat MSS and ancillary data in a GIS environment to map historical change in an urban riparian habitat[J]. Photogrammetric engineering and remote sensing, 1995, 61(8).
    [127] Ake S, Lorin E R, Reinhold C. A GIS method to aid in non-point source critical area analysis[J]. International Journal of Geographical Information Science, 1988, 2(4): 365-378.
    [128]郭程轩,徐颂军.基于3S与模型方法的湿地景观动态变化研究述评[J].地理与地理信息科学, 2007, 23(5): 86-90.
    [129]胡巍巍,王根绪.湿地景观格局与生态过程研究进展[J].地球科学进展, 2007, 22(9): 969-975.
    [130] Li H, Reynolds J F. On definition and quantification of heterogeneity[J]. Oikos, 1995, 73: 280-284.
    [131] Sader S A, Ahl D, Wen-shu L. Accuracy of landsat-TM and GIS rule-based methods for forest wetlands classification in Maine[J]. Remote Sensing Environment, 1995, 53(3).
    [132] Wickland D E. Mission to planet earth: the ecological perspective[J]. Ecology, 1991, 72(6): 1923-1933.
    [133] Cohen W B, Goward S N. Landsat's Role in Ecological Applications of Remote Sensing[J]. Bio Science, 2004, 54(6): 535-545.
    [134]谢志茹,罗德利,张景春,等.基于RS与GIS技术的北京城市公园湿地景观格局研究[J].国土资源遥感, 2004, 61(3): 61-64.
    [135]邬建国.景观生态学——概念与理论[J].生态学杂志, 2000, 19(1): 42-52.
    [136] Levin S A. The problem of pattern and scale in ecology[J]. Ecology, 1992, 73: 1943-1967.
    [137] Luck M, Wu J G. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA[J]. Landscape Ecology, 2002, 17.
    [138]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社, 2007.
    [139] Turner M G, Gardner R H. Quantitative Methods in Landscape Ecology: The Analysis and Interpretation of Landscape heterogeneity[M]. New York: Springer, 1991. 1-50.
    [140] Ricotta C, Coronab P, Marchetti M. Beware of contagion![J]. Landscape and Urban Planning, 2002, 62(3): 173-177.
    [141] Li H, Reynolds J F. A simulation experiment to auantify spatial heterogeneity in categorical maps[J]. Ecology, 1994, 75.
    [142] Riitters K H, Wickhan R V O J D. A note on contagion indices for landscape analysis[J]. Landscape Ecology, 1996, 11: 197-202.
    [143] Hargis C D, Bissonette J A, David J L. The behavior of landscape metrics commonly used in the study of havitat fragmentation[J]. Landscape Ecology, 1998, 13: 167-186.
    [144] Schumaker N H. Using landscape indices to predict habitat connectivity[J]. Ecology, 1996, 77: 1210-1225.
    [145] He H S, Dezonia B, Mladenoff D J. An aggregation index (AI) to quantify spatial patterns of landscapes[J]. landscape Ecology, 2000, 15: 591-601.
    [146]崔丽娟,安娜芭登博格,张曼胤. 3S技术在中国湿地研究、调查与管理中的应用[J].林业研究(英文版), 2005, 16(4): 317-322.
    [147]刘红玉,李兆富,李晓民.湿地景观破碎化对东方白鹳栖息地的影响——以三江平原东北部区域为例[J].自然资源学报, 2007, 22(5): 817-823.
    [148]刘红玉,李兆富.流域土地利用/覆被变化对洪河保护区湿地景观的影响[J].地理学报, 2007, 62(11): 1215-1222.
    [149]刘晓辉,刘惠清.向海湿地景观格局变化及其原因分析[J].湿地科学, 2005, 3(3): 216-221.
    [150]贾宁,筒建勋,尹占娥,等.长江口湿地景观镶嵌结构演变的数量特征与分形分析[J].资源调查与环境, 2005, 26(1).
    [151]周亮进,由文辉.闽江河口湿地景观格局动态及其驱动力[J].华东师范大学学报(自然科学版), 2007, (6): 77-87.
    [152] Constanza R, Voinov A. Landscape simulation modeling: A spatially explicit, dynamic approach.[M]. New York: Springer, 2004.
    [153] Shugart H H. Terrestrial ecosystems in changing environments[M]. Cambridge: Cambridge University Press, 1998.
    [154] Burrough P A, Mcdonnell R A. Principles of geographical information systems[M]. Oxford: Oxford University Press, 1998.
    [155] Buyantuyev A, Wu J G. Effects of thematic resolution on landscape pattern analysis[J]. Landscape Ecology, 2007, 22: 7-13.
    [156] Baker W L. A review of models of landscape change[J]. Landscape Ecology, 1989, 2(2): 111-133.
    [157] Cnapman H P, Cheetham J L. Monitoring and modeling saturation as a Proxy Indicator for in situ preservation in wetland: A GIS based approach[J]. Journal of Archaeological Science, 2002, 29(3): 277-289.
    [158] Browder J A. A probabilistic model of the relationship between marshland-water interface and marsh disintergration[J]. Ecology Modeling, 1985, 29: 245-260.
    [159] Sklar F H. Dynamic spatial simulation modeling of coastal wetland habitat succession[J]. Ecology Modeling, 1985, 29: 261-281.
    [160] Kirkby M J, Kneale P E, Lewis S L, et al. Modelling the form and distribution of peat mires[C]. Wiley, New York: 1995. 83-93.
    [161]王学雷,吴宜进.马尔柯夫模型在四湖地区湿地景观变化研究中的应用[J].华中农业大学学报, 2002, 21(03): 288-291.
    [162] Wolfram S. Cellular automata as models of complexity[J]. Nature, 1984, 311: 419-424.
    [163] Petrov A N, Sugumaran R. Monitoring and Modeling Cropland Loss in Rapidly Growing Urban and Depopulating Rural Counties Using Remotely Sensed Data and GIS[J]. Geocarto International, 20(4): 45-52.
    [164] Sarkar C, Abbasi S A. Cellular automata-based forecasting of the impact of accidental fire and toxic dispersion in process industries[J]. Journal of Hazardous Materials, 2006, 137(1): 8-30.
    [165] Weber T. Landscape Ecological Assessment of the Chesapeake Bay Watershed[J]. Environmental Monitoring and Assessment, 2004, 94: 39-53.
    [166] Esnard A M, Yang Y. Descriptive and Comparative Studies of 1990 Urban Extent Data for the New York Metropolitan Region[J]. URISA journal, 2002, 14(1).
    [167] Weber T, Sloan A, Wolf J. Maryland's Green Infrastructure Assessment: Development of a comprehensive approach to land conservation[J]. Landscape and Urban Planning, 2006, 77: 94-110.
    [168]李晓文,肖笃宁,胡远满.辽河三角洲滨海湿地景观规划各预案对指示物种生境适宜性的影响[J].生态学报, 2001, 21(4): 550-560.
    [169] Pearsell G, Mulamoottil G. Wetland boundary and land-use planning in southern Ontatio, Canada[J]. Environmental Management, 1994, 18(6): 865-870.
    [170] Penland S, Mendelssohn I, Wayne L, et al. Natural and Human Causes of Coastal Land Loss in Louisiana: The Mississippi River Delta Plain[R]. Baton Rouge, Louisiana: Coastal Studies Institute and Wetland Biogeochemistry Institute, Louisiana State University, 1996.
    [171] Day J W, Shaffer G P, Britsch L D. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change[J]. Estuaries, 2000, 23(4): 425-438.
    [172]刘红玉,李兆富.流域湿地景观空间梯度格局及其影响因素分析[J].生态学报, 2006, 26(1): 213-220.
    [173]肖笃宁.景观生态学研究进展[M].湖南:湖南科学技术出版社, 1999.
    [174]谷东起,赵晓涛,夏东兴,等.基于3S技术的朝阳港泻湖湿地景观格局演变研究[J].海洋学报, 2005, 27(2): 91-97.
    [175]王树功,黎夏,刘凯,等.近20年来淇澳岛红树林湿地景观格局分析[J].地理与地理信息科学, 2005, 21(2).
    [176] Gary W B, John D P. Optimizing habitat fragmentation: an afrolandsacpe perspective[J]. Landscape and Urban Planning, 1994, 28(1).
    [177] Verhoeven J T A, Arheimer B, Yin C, et al. Regional and global concerns over wetlands and water quality[J]. Trends in Ecology & Evolution, 2006, 21(2): 96-103.
    [178] Castelle A J, Johnson A W, Conolly C. Wetland and stream buffer size requirements: A review[J]. Environ Qual, 1994, 23: 878-882.
    [179] Mitchell D S, Raisin G W, Croome R L. The effectiveness of a small constructed wetland in ameliorating diffuse nutrient loadings from an Australian rural catchment[J]. Ecol. Eng., 1997, 9: 19-35.
    [180]陈刚起,牛焕光,吕宪国,等.三江平原沼泽湿地与农业开发[C].北京:科学出版社, 1996.
    [181]张芸,吕宪国,倪健.三江平原典型湿地冷湿效应的初步研究[J].生态环境, 2004, 13(1): 37-39.
    [182]张文菊,童成立,吴金水,等.典型湿地生态系统碳循环模拟与预测[J].环境科学, 2007, 28(9).
    [183] Poudevigne I, Baudry J. The implication of past and present landscape patterns for biodiversity research: introduction and overview[J]. Landscpae Ecology, 2003, 18(3): 223-225.
    [184] M K, C S A. Comparative evaluation of experimental approaches to the study of habitat fragmentation effects[J]. Ecological Applications, 2002, 12(2): 335-345.
    [185]刘景双.湿地生物地球化学研究[J].湿地科学, 2005, 3(4): 302-309.
    [186] Houlahan J E, Findlay C S. Estimating the‘critical’distance at which adjacent land-use degrades wetland water and sediment quality[J]. Landscape Ecology, 2004, 19(6): 677-690.
    [187] Chen R, Twilley R R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark river estuary, Florida[J]. Estuaries, 1999, 22(4): 955-970.
    [188] Z N. Interactions of landscape and cultures[J]. Landscape and Urban Planning, 1995, 32: 43-54.
    [189] Keddy P A. Wetland Ecology-Principles and Conservation[M]. Cambridge: Cambridge University Press, 2000. 1-100.
    [190]王克林.洞庭湖湿地景观结构与生态工程模式[J].生态学杂志, 1998, 17(6): 28-32.
    [191] K M G, S J R, O D A, et al. Effects of Landscape Composition and Wetland Fragmentation on Frog and Toad Abundance and Species Richness in Iowa and Wisconsin, U.S.A.[J]. 1999, 13(6): 1437-1446.
    [192] J L A, Mark M, H M L. Landscape Ecology Approaches to Wetland Species Conservation: a Case Study of Two Turtle Species in Southern Maine[J]. Conservation Biology, 2001, 15(6): 1755-1762.
    [193] Price S J, Marks D R, Howe R W, et al. The Importance of Spatial Scale for Conservation and Assessment of Anuran Populations in Coastal Wetlands of the Western Great Lakes, USA[J]. Landscape Ecology, 2005, 20(4): 441-454.
    [194] C S A. Effects of habitat loss and fragmentation on amphibians: a review and prospectus[J]. Biological Conservation, 2006, 128(2): 231-240.
    [195] Eigenbrod F, Hecnar S J, Fahrig L. Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations[J]. Landscape Ecology, 2008, 23(2): 159-168.
    [196] Garza C. Relating spatial scale to patterns of polychaete species diversity in coastal estuaries of the western United States[J]. 2008, 23(1): 107-121.
    [197] Singkran N, Meixler M S. Influences of habitat and land cover on fish distributions along a tributary to Lake Ontario, New York[J]. Landscape Ecology, 2008, .
    [198] Cozzi G, ChristineBMüller, Krauss J. How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands?[J]. LandscapeEcology, 2007, 23(3): 269-283.
    [199]刘红玉,杨青,李兆富,等.湿地景观变化对水禽生境影响研究进展[J].湿地科学, 2003, 1(2): 115-121.
    [200]盛连喜,何春光,万忠娟.中国水禽的保护生物学研究进展[J].湿地科学, 2003, 1(1): 26-32.
    [201] B R G H, M M J, J R H G, et al. A standardized procedure for surveillance and monitoring European habitats and provision of spatial data[J]. Landscape Ecology, 2008, 23(1): 11-25.
    [202] Uygar O, M W J. A spatial habitat model for the marsh-breeding red-winged blackbird (Agelaius phoeniceus L.) in coastal Lake Erie welands[J]. Ecological Modelling, 1997, 101: 139-152.
    [203] Adrian H F, Alfred H P. Effects of the Landscape on Shorebird Movements at Spring Migration Stopovers[J]. The Condor, 1997, 99(3): 698-707.
    [204] Naugle D E, Higgins K F, Nusser S M, et al. Scale-dependent habitat use in three species of prairie wetland birds[J]. Landscape Ecology, 2004, 14(3): 267-276.
    [205] Oriane W T, Susan M H. Importance of Wetland Landscape Structure to Shorebirds Wintering in an Agricultural Valley[J]. Landscape Ecology, 2006, 2(21): 169-184.
    [206] Sullivan S M P, Watzin M C, Keeton W S. A riverscape perspective on habitat associations among riverine bird assemblages in the Lake Champlain Basin, USA[J]. Landscape Ecology, 2007, 22(8): 1169-1186.
    [207]胡远满.人类活动对水禽生境破碎化的影响[C].昆明: 1997.
    [208] Yuanman H,Duning X. Behavioral fragmentation of waterfowl habitat and its landscape ecological design in Shuangtai-hekou Reserve[J]. Journal of Environmental Sciences, 1999, 11(2): 231-235.
    [209] Ling W, Xiu-zhen L, Yuan-man H, et al. Analysis of habitat pattern change of red-crowned cranes in the liaohe delta using spatial diversity index[J]. Chinese Geographical Science, 2003, 13(2): 164-170.
    [210] Coops N C, Catling P C. Prediction of historical forest habitat patterns using binomial distributions and simple Boolean logic from high spatial resolution remote sensing[J]. Computers and Geosciences, 2001, 27(7): 795-805.
    [211]肖笃宁,李晓文,王连平.辽东湾滨海湿地资源景观演变与可持续利用[J].资源科学, 2001, 23(2): 31-36.
    [212]邬建国.景观生态学中的十大研究论题[J].生态学报, 2004, 24(9): 2074-2076.
    [213] Collar N J,Crosby M J,Stattersfield A J. Birds to Watch 2.[M]. Cambridge, UK.: 1994.
    [214]王会,侯韵秋,杜进进,等.江苏盐城沿海地区繁殖季节几种水鸟的数量及分布研究(Ⅱ)[J].林业科学, 2000, 36(4): 112-114.
    [215]马志军.盐城生物圈保护区丹顶鹤(Grus japonensis)越冬生境演变及生境选择[D].中国科学院生态环境研究中心, 1998. 141页.
    [216]王岐山,杨兆芬.中国鹤类研究发展的回顾[C].云南:云南教育出版社, 2005. 3-18.
    [217]陈华豪,高中信.用综合评分法与判别排序法对丹顶鹤繁殖生境进行评价分析[C].北京:中国林业出版社, 1987.
    [218]李文军,王子健.丹顶鹤越冬栖息地数学模型的建立[J].应用生态学报, 2000, 11(6): 839-842.
    [219]舒莹,胡远满,郭笃发,等.黄河三角洲丹顶鹤适宜生境变化分析[J].动物学杂志, 2004, 39(3): 33-41.
    [220]舒莹,胡远满,冷文芳,等.黄河三角洲丹顶鹤秋冬季生境选择机制[J].生态学杂志, 2006, 25(8): 954-958.
    [221]吴庆明.基于“3S”技术的扎龙湿地恢复初期丹顶鹤繁殖期生境选择研究[D].东北林业大学, 2005. 1-58.
    [222]马逸清.我国丹顶鹤资源的现状[J].国土与自然资源研究, 1990, (1): 62-64.
    [223]邹红菲,吴庆明,史蓉红.扎龙湿地恢复初期丹顶鹤孵化期觅食生境选择[J].东北林业大学学报, 2007, 35(7): 55-5658.
    [224]何春光,盛连喜,郎惠卿,等.向海湿地丹顶鹤迁徙动态及其栖息地保护研究[J].应用生态学报, 2004, 15(9): 1523-1526.
    [225]何春光,盛连喜,邹丽芳,等.向海自然保护区芦苇湿地资源开发与丹顶鹤栖息地保护[J].国土与自然资源研究, 2004, (4): 64-65.
    [226]何春光.向海自然保护区丹顶鹤栖息地特征的研究[D].东北师范大学, 1999. 31页.
    [227]万冬梅,高玮,王秋雨,等.生境破碎化对丹顶鹤巢位选择的影响[J].应用生态学报, 2002, 13(5): 581-584.
    [228]李秀珍,布仁仓,常禹,等.景观格局指标对不同景观格局的反应[J].生态学报, 2004, 24(1): 123-134.
    [229] Whittingham M J,Wilson J D,Donald P F. Do habitat association models have any generality? Predicting skylark Alauda arvensis abundace in different regions of southern England[J]. Ecography, 2003, 26: 521-531.
    [230] Warwick J J,Cale W G. Estimating model reliability using data with uncertainty[J]. Ecological Modelling, 1988, 41: 169-181.
    [231] Shifley S R, Thompson F R I, Dijak W D, et al. Simulated effects of forest management alternatives on landscape structure and habitat suitability in the Midwestern United States[J]. Forest Ecology and Management, 2006, 229: 361-377.
    [232] Shang B Z, He H S, Crow T R, et al. Fuel load reductions and fire risk in central hardwood forests of the United States:A spatial simulation study[J]. Ecological Modelling, 2004, 180: 89-102.
    [233] Dnssault C,Courtois R,Ouellet J. A habitat suitability index model to assess moose habitat selection at multiple spatial scales[J]. Cnandian Journal of Forest Research, 2006, 36: 1097-1107.
    [234] Gilhnwater D,Granata T,Zika U. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River,Ohio,and implications for dam removal and river restoration[J]. Ecological Engineering, 2006, 28: 331-323.
    [235] Johnson C J,Giuingham M P. Mapping uncertainty:Sen-sitivity of wildlife habitat ratings to expert opinion[J]. Journal of Applied Ecology, 2004, 41.
    [236] Lauver C L,Busby W H,Whistler J L. Testing a GIS model of habitat suitability for a declining grassland bird[J]. Environmental Management, 2002, 30: 88-97.
    [237] Lehmkuhl J F,Kie J G,Bender L C. Evaluating the effects of ecosystem management alternatives on elk,mule deer and white-tailed deer in interior Columbian River basin,USA[J]. Forest Ecology and Management, 2001, 153: 89-104.
    [238] Ottaviani D,Lasinio G L,Boitani L. Two statistical meth-eds to validate habitat suitability models using presence-only data[J]. Ecological Modelling, 2004, 179: 417-443.
    [239] Winfle B A,Bekessy S A,Venier L A. Utility of dynamic-landscape metapopulation models for sustainable forest management[J]. Conservation Biology, 2005, 19: 1930-1943.
    [240] Store R,Jokimaki J. A GIS-based muhi-seale approach to habitat suitability modeling[J]. Ecological Modelling, 2003, 169: 1-15.
    [241] van der Lee G, van der Molen D, van den Boogaard H. Uncertainty analysis of a spatial habitat suita-bility model and implications for ecological management of water bodies[J]. Landscape Ecology, 2006, 21: 1019-1032.
    [242] Ray N, Burgman M A. Subjective uncertainties in habitat suitability maps[J]. Ecological Modelling,2006, 195: 172-186.
    [243]金龙如,孙克萍,贺红士,等.生境适宜度指数模型研究进展[J].生态学杂志, 2008, 27(5): 841-846.
    [244]任美侮,许廷官,朱季文.江苏省海岸带和海涂资源综台调查(报告)[M].北京:海洋出版社, 1985. 25-120.
    [245]赵可夫,李法曾,樊守金.中国的盐生植物[J].植物学通报, 1999, 16(3): 201-207.
    [246]刘青松,李杨帆,朱晓东.江苏盐城自然保护区滨海湿地生态系统的特征与健康设计[J].海洋学报, 2003, 25(3): 143-148.
    [247]沈永明刘咏梅,陈垒站.江苏沿海互花米草盐沼扩展过程的遥感分析[J].植物资源与环境学报, 2002, 11(2): 33-38.
    [248]李加林,王艳红,张忍顺,等.海平面上升的灾害效应研究--以江苏沿海低地为例[J].地理科学, 2006, 26(1): 87-93.
    [249]吕士成.丹顶鹤在盐城地区的分布[J].野生动物, 1989, (1): 19-216.
    [250]吕士成,赵永祥.越冬地丹顶鹤春季迁徙观察[J].南京师大学报(自然科学版), 1995, 18(z1): 88-90.
    [251]吕士成.丹顶鹤越冬期在人工湿地的夜栖数量分布[J].野生动物, 2007, 28(2): 11-13.
    [252]吕士成.人工湿地对丹顶鹤越冬分布的影响[J].江苏农业科学, 2007, (4): 242-245.
    [253]王会,王岐山,楚国忠,等.盐城自然保护区丹顶鹤越冬种群数量与分布[C].昆明:云南教育出版社, 2005. 49-57.
    [254]吕士成.丹顶鹤越冬期在人工湿地的夜栖分布[J].湿地科学与管理, 2007, 3(3): 46-49.
    [255] Burger J, Shisier J, Lesser F H. Avian utilization on six salt marshes in New Jersey[J]. Biological Conservation, 1982, 23: 187-212.
    [256]孙明,吕士成,邓锦东.盐城国家级自然保护区环境执法实践[J].现代农业科技, 2007, (9): 192-193.
    [257]吕士成.丹顶鹤越冬期在人工湿地的夜栖分布[J].湿地科学与管理, 2007, 3(3): 46-49.
    [258]吕士成,陈卫华.环境因素对丹顶鹤越冬行为的影响[J].野生动物, 2006, 27(6): 18-20.
    [259]董科,吕士成.江苏盐城国家级珍禽自然保护区丹顶鹤的承载力[J].生态学报, 2005, 25(10): 2608-2615.
    [260] Elphick C S, Oring L W. Winter management of Californian rice fields for waterbirds[J]. Journal of Applied Ecology, 2002, 35(1): 95-108.
    [261]李文军,王子健.盐城自然保护区的缓冲带设计——以丹顶鹤为目标种分析[J].应用生态学报, 2000, 11(6): 843-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700