用户名: 密码: 验证码:
根际施用生物有机肥防控西瓜土传枯萎病效果及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜土传枯萎病是西瓜连作生物障碍的主要病害之一,严重影响西瓜产业的发展,研究以生物防控为主导的综合防控具有重要意义。本论文以具有自主知识产权的三株能强烈抑制西瓜土传枯萎病病原真菌(尖孢镰刀菌西瓜专化型,Fusarium. oxysporum f.sp. niveum)的拮抗菌株(Paenibacillus polymyxa SQR21; Bacillus subtillus SQR-9; Trichoderma harzianum SQR-T037)为材料,经液体发酵后与合适的有机载体进行二次固体发酵,制成了西瓜专用生物有机肥。采用大田试验、盆栽试验和室内分析相结合的方法,研究了根际施用这些生物有机肥对西瓜连作土传枯萎病的防控效果、拮抗菌P. polymyxa SQR21(SQR21)与病原菌在西瓜根际和根表上的行为特征及与西瓜根系分泌物之间的相互影响机制。获得了如下主要结果:
     1、营养钵施用西瓜专用生物有机肥(BIO)能显著增加西瓜苗的生物量,施用BIO的西瓜地上部鲜重分别为施用有机肥(OF)和施用化肥(CK)的1.2倍和2.1倍,西瓜地上部干重分别是施用OF和CK的1.2倍和1.7倍。施用BIO的西瓜植株根系生长最茂盛,CK次之,OF根系生长最差;各处理间西瓜总根长、根表面积、根体积及根尖差异显著,呈现的趋势顺序均为:BIO>CK>OF;各处理的根系活力也呈现BIO>OF>CK的趋势。施用BIO处理的西瓜根际土壤中的细菌和放线菌的数量均显著高于处理OF和CK,而真菌数量显著低于处理OF和CK。营养钵施用BIO能有效增加西瓜苗的净光合作用,可显著提高西瓜叶片中光合色素的含量,改善西瓜叶片的光合能力。
     2、采用营养钵与移栽土壤双重施用BIO的模式对降低土传枯萎病的发生率效果显著,其防控效果可以达到73%以上。营养钵施用BIO的模式不仅能提高BIO的生防效果,还能促进西瓜植株生长,提高西瓜产量。该施肥模式有效促使BIO肥料中的生防菌在苗期就定殖于西瓜根际和根表,并随西瓜根系的不断生长而延伸,从而有效降低西瓜根际病原菌数量,使西瓜根系免受病原菌侵害。
     3、拮抗菌株SQR21能在西瓜根部较好地定殖,随西瓜根系的生长在根际不断生长繁殖,在西瓜根尖表面形成一层生物膜,从而保护西瓜根部免受病原菌的侵害。揭示了生物有机肥中拮抗菌SQR21在土壤及西瓜根部的定殖及消长规律,为多粘芽孢杆菌SQR21的田间应用及其作用机制研究提供理论依据。
     4、与对照相比,施用BIO肥料能够显著增加SQR21和降低FON在根际的数量;施用BIO处理的根际SQR21数量最大拷贝数为7.14lg拷贝/g土,离西瓜根系越远SQR21的拷贝数越低;对照中FON的数量比BIO处理高2个数量级,随着与根系间距的加大,根系接种SQR21处理的FON数量逐渐增加,而未接种SQR21处理的结果则相反。土体土壤由于被侵染土壤中FON背景值的存在,各处理间FON及SQR21的数量没有显著差异。以上结果表明,施用生物有机肥促进了SQR21在根系的定殖,大幅度地降低了FON的数量,从而有效地抑制了土传西瓜枯萎病的发生。
     5、西瓜根系分泌物中的多种有机酸对多粘类芽孢杆菌SQR21具有趋化作用。在西瓜根系分泌物中检测到大量的三羧酸循环过程的中间产物,如:草酸、苹果酸、柠檬酸,其中苹果酸和柠檬酸对多粘类芽孢杆菌SQR21均有显著的趋化作用。三种有机酸中苹果酸的诱导效果最为显著,趋化性指数为3.9,群游菌圈是对照的1.5倍。另外,体外实验进一步证实了这些有机酸对多粘芽孢杆菌SQR21具有吸引作用。
     6、与对照相比,接种SQR21的西瓜根系分泌物会减少FON分生孢子的萌发,而接种FON的西瓜根系分泌物则促进FON分生孢子的萌发。接种FON30天后,西瓜分泌物对分生孢子萌发率达到最大值,为对照的1.4倍;其根系分泌物中肉桂酸浓度为0-30μg/ml时,肉桂酸对FON分生孢子萌发有显著的刺激效应。不论是接种SQR21还是FON,西瓜根系分泌物的改变均具有局部性和系统性特性。
The bioorganic fertilizer (BIO) containing Paenibacillus polymyxa SQR21, Bacillus subtillus SQR-9and Trichoderma harzianum SQR-T037has been shown to suppress Fusarium wilt disease, a severe soil borne disease, and to promote growth of watermelon and cucumber plants in greenhouse and field experiments. The present study was carried out to develop a mode of application of bioorganic fertilizer for improving the biocontrolling efficacy to Fusarium wilt. The interactions that occur between plant roots and the antagonistic microbe (P. polymyxa SQR21) were in detail studied to provide guidelines of how to use biocontrol agents more effectively in actual field situations. The results were obtained as follows:
     1. Nursery application of BIO could significantly increase the biomass of the watermelon plants compared with the treatments applied with organic fertilizer (OF) or with chemical fertilizer (CK). The fresh shoot weights of watermelon plant in BIO treatment were1.24and2.08times higher than both of OF and CK, and the dry root weights of watermelon plant in BIO treatment were1.22and1.67times higher than OF and CK, respectively; The length, surface area, volume, tips and average diam of roots were significantly increased by the application of BIO; The numbers of bacteria and actinomycetes were significantly increased by the application of BIO compared to the OF and CK, and the number of fungi was significantly decreased by application of BIO; Nursery application of BIO could effectively increase the photosynthetic capacity of watermelon leaves by increasing the content of photosynthetic pigments in watermelon leaves.
     2. Pot and field experiments were carried out to evaluate the efficacy of the BIO application on control of watermelon Fusarium wilt.1) The new mode of nursery application of BIO could significantly decrease the Fusarium wilt incidence, and the best biocontrol efficacy could be achieved by applying BIO in the nursery stage plus application in the transplanted soil.2) The way of BIO application could not only suppress the Fusarium disease, but also increase the biomass of watermelon and thus increase the yields. This could be attributed to the fact that nursery application of BIO could ensure the efficient colonization of the antagonist at the seedling stage and decrease the number of the pathogen in the rhizosphere after transplanting.
     3. The methods of color reaction in watermelon rhizosphere, GFP-labeling, petriplate cuture count were used to investigate the colonization-ability of SQR21in watermelon rhizosphere or on rhizoplane. SQR21could effectively colonize on the watermelon roots, propagate in rhizosphere as the growth of roots, and form biofilm on the surface of root tips of watermelon plants. These results indicated that SQR21could protect the watermelon roots from invasion by pathogenetic fungi, and could also support some basic theory for the research of mechanisms on biocontrol of Fusarium wilt by SQR21.
     4. A rhizobox experiment was carried out to investigate the distribution of F. oxysporum f.sp. niveum (FON) and its antagonistic bacterium (SQR21), in the soil at different distances away from the watermelon rhizoplane by real-time PCR. The results confirmed that BIO application significantly suppressed Fusarium wilt and promoted the growth of the watermelon plants. Application of BIO significantly enhanced the abundance of SQR21and reduced the population of FON in the soil near the rhizoplane as compared to the control. A maximal quantity (7.14lgcopies/g soil) of P. polymyxa SQR21was obtained in the rhizosphere under the BIO treatment, and this number was decreased with increasing distance away from the rhizoplane. The population of FON in the rhizosphere of the control was2orders of magnitude higher than under the BIO treatment, and with increasing distance away from the rhizoplane, the FON abundance increased in the SQR21inoculated treatments and decreased in the treatments without SQR21. In the soil far away from the rhizoplane (bulk soil), both FON and SQR21reached a level that was not statistically different between the treatments, which might be attributed to the background level of the infested soil. These results revealed that the BIO application with the developed method suppressed Fusarium wilt by the promotion of SQR21colonization in the rhizosphere, which largely reduced the population of the pathogen.
     5. Some organic acids were significantly detected in the root exudates of watermelon. Chemotaxis and swarming assays were performed to investigate the ability of these organic acids to induce the motility of P. polymyxa SQR21. The results showed that oxalic acid, malic acid and citric acid were present in the root exudates but only malic acid and citric acid could significantly induce motility in P. polymyxa SQR21. The maximal inducing ability was obtained from malic acid. Values for malic acid were3.9and1.5times higher than the control in the chemotaxis assay and the swarming assay, respectively. An in vitro experiment further confirmed that these organic acids could promote recruitment to P. polymyxa SQR21, thereby increasing the population in the rhizosphere.
     6. Conidial germination of FON decreased in the presence of root exudates from SQR21inoculated plants, while it was enhanced in the present of root exudates from FON inoculated plants as compared with control. Maximum germination was found in the root exudates from FON inoculated plant after30days, which was1.35times more than control. A split-root system was designed to verify the fact that the alterations of the exudation pattern in SQR21or FON inoculated watermelon roots were not only local, but also systemic. Eleven kinds of phenolic acids were detected in the root exudates by HPLC. The changes of cinnamic acid concentrations were positively related to the conidial germination. Assay of cinnamic acid on conidial germination of FON revealed that relatively high concentration of this acid stimulated the conidial germination, and vice versa. All of these results will help in the better understanding of the plant-microbe communication and will guide to improve the biocontrol strategies against Fusarium wilt of watermelon plants.
引文
Alvarez V.M., von der Weid I., Seldin L., Santos A.L.S. (2006). Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2 [J]. Letters of Applied Microbiology 43:625-630
    Badri D.V, Vivanco J.M. (2009) Regulation and function of root exudates [J]. Plant, Cell & Environment,32(6):666-681
    Badri D.V., Weir T.L., Lelie D.V., Vivanco L.M. (2009) Rhizosphere chemical dialogues:plant-microbe interactions [J]. Current Opinion in Biotechnology 20:642-650
    Bais H.P., Park S.W., Weir T.L., Callaway R.M., Vivanco J.M. (2004) How plants communicate using the underground information super highway[J]. Trends in Plant Science 9 (1):26-32
    Bais H.P., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Reviews of Plant Biology,57:233-266
    Banwart W.L., Porter P.M., Granato T.C., Hassett J.J. (1985) HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids [J]. Journal of Chemical Ecology,11: 383-395
    Barber D. A., Martin. (1976) The release of organic substance by cereal roots into soil [J]. New Phytologist,76:69-80
    Beckman C.H., Verdier P.A., Mueller W.C. (1989) A system of defence in depth provided by vascular parenchyma cells of tomato in response to vascular infection with Fusarium oxysporum f. sp. lycopersici, race 1[J]. Physiological and Molecular Plant Pathology 34,227-239
    Beckman C.H. (2000) Phenolic-storing cells:keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants [J]? Physiol. Mol. Plant Pathol,57: 101-110
    Ben J.D., Ghislaine R.. (1999) Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Psedomonas putida WCS358[J], Phytopathology,89,1073-1079
    Bertin C., Yang X., Waston L. (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil,256:67-83
    Boiler T. (1991) Ethylene in pathogenesis and disease resistance [MJ. In:Matoo AK, Suttle JC, eds. The Plant Hormone Ethylene. Boca Raton:CRC Press,293-314
    Bonkowski M., Cheng W., Griffiths B.S., Alphei J., Scheu S. (2000) Microbial-faunal interactions in the rhizosphere and effects on plant growth [J]. Eur. J. Soil Biol.36:135-147
    Booth C. (1971) The Genus Fusarium [M], The Eastern Press Limited, London and Reading, ppl 4-191
    Borrero C., Ordovas J., Trillas M.I., Aviles, M. (2006) Tomato fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biology (R) [J]. Soil Biol. Biochem.38:1631-1637
    Broeckling C.D., Broz A.K., Bergelson J., Manter D.K., Vivanco J.M. (2008) Root exudates regulate soil fungal community composition and diversity [J]. Appl Environ Microbiol,74(3):738-744
    Browning M., Wallace D.B., Dawson C., Alm S.R., Amador J.A. (2006) Potential of butyric acid for control of soil-borne fungal pathogen sand nematodes affecting strawberries [J]. Soil Biol. Biochem. 38:401-404
    Buee M., De Boer W., Martin F., van Overbeek L., Jurkevitch E. (2009) The rhizosphere zoo:An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors[J]. Plant Soil 321:189-212
    Cao Y., Zhang Z., Ling N., Yuan Y., Zheng X., Shen B., Shen Q. (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biol. Fert. Soils 47:495-506
    Chalfie M., Tn Y, Euskirchen W., Ward W., Prasher D.C. (1994) Green fluorescent protein [J]. Biochemistry,32:1212-1218
    Chalfie M., Euskirchen Y.T.G., Ward W.W., Prasher D.C. (1994) Green fluorescent protein as a marker for gene expression [J]. Science 264:802-805
    Chen Z., Jin X., Wang Q., Lin Y., Gan L., Tang C. (2007) Confirmation and determination of carboxylic acids in root exudates using LC-ESI-MS [J]. J Sep Sci,30(15):2440-2446
    Chen L., Yang X., Raza W., Li J., Liu Y, Qiu M., Zhang F., Shen Q. (2010) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J]. Appl. Microbiol. Biotechnol.89:1653-1663
    Claire S-w., Houot S. et al., (1996) Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost [J]. Soil Biology and Biochemistry 28:1207-1214
    Cook R.J. (1993) Making greater use of introduced microorganisms for biological control of plant pathogens [J]. Annual Review of Phytopathology 31:53-80
    Cotxarrera L., Trillas-Gay M.I., Steinberg C., Alabouvette C. (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato [J]. Soil Biol Biochem 34: 467-476
    Dangl J.L, Jones D.GJ. (2001) Plant pathogens and integrated defence responses to infection [J]. Nature 411:826-833
    Darrah PR (1991) Model of the rhizosphere [J]. Plant and Soil 138:147-158
    de Weert S., Kuiper I., Lagendijk E.L., Lamers GE., Lugtenberg B.J. (2004) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365[J]. Mol Plant Microbe Interact 17:1185-1191
    de Weert S., Vermeiren H., Mulders I.H., Kuiper I., Hendrickx N., Bloemberg GV., Vanderleyden J., De Mot R., Lugtenberg B.J. (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens [J]. Mol Plant Microbe Interact 15(11):1173-1180
    De-la-Pena C., Lei Z., Watson B.S., Sumner L.W., Vivanco J.M. (2008) Root-microbe communication through protein secretion [J]. Journal of Biological Chemistry 283:25247-25255
    Dessureault-Rompre J., Nowack B., Schulin R., Luster J. (2006) Modified micro suction cup/rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution [J]. Plant Soil 286: 99-107
    Dijksterhuis J., Sanders M., Gorris L.G., et al. (1999) Antibiosis play a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum [J]. Journal of Applied Microbiology,86:13-21
    Duijff B., Recorbet G, Bakker P., Loper J., Lemanceau P. (1999) Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Psedomonas putida WCS358 [J]. Phytopathology 89:1073-1079
    Dutta S., Mishra A.K., Dileep Kumar B.S. (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia [J]. Soil Biology and Biochemistry 40(2):452-461
    Endo A., Kakiki K., Misato T. (1970) Mechanism of action of the antifungal agent polyoxin D [J]. Journal of Bacteriology 104:189-196
    Fulton H.R. (1927) Organic fertilizers and cotton wilt control [J]. Science 66:193-194
    Gamalero E., Lingua G., Capr F.G., Fusconi A., Berta G, Lemanceau P. (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy [J]. FEMS Microbiol. Ecol.48: 79-87
    Gapillout I., Milat M.L., Blein J.R. (1995) Effects of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici. European Journal of Plant Pathology 102: 127-132
    Gordillo F., Chavez F.P., Jerez C.A. (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiology Ecology 60(2):322-328
    Gunner H. B., Zuckerman B. M., Walker R. W., et al. (1966) The distribution and persistence of diazinon app lied to plant and soil andits influence on rhizosphere and soil microflora [J]. Plant Soil 25: 249-264
    Haggag W.M., Timmusk S. (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease [J]. Journal of Applied Microbiology 104(4): 961-969
    Halfie M., Tu Y., Euskrichen G. (1994) Green fluorescent protein as a marker for gene expression [J]. Science 263:802-805
    Hammond-Kosack K.E., Parker J.E. (2003) Deciphering plant-pathogen communication:fresh perspectives for molecular resistance breeding [J]. Cur Opp Biotech 14:177-193
    Hao W-y, Ren L-x, Ran W., Shen Q-r. (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum [J]. Plant and Soil 336(1-2):485-497
    Hao Z., Wang Q., Christie P. and Li X. (2007) Allelopathic potential of watermelon tissues and root exudates [J]. Scientia Horticulturae 112,315-320
    Harald K., Wolfgang J., Frauke P. (1985) Chitosan-Elicited Callose Synthesis in Soybean Cells as a Ca2+-Dependent Process [J]. Plant Physiol 77,544-551
    Hervas A., Landa B., Datnoff L.E. (1998) Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea [J]. Biol. Control 13,166-176
    Hutsch B.W., Augustin J., Merbach W. (2000) Plant rhizodeposition an important source for carbon turnover in soils [J]. Journal of Plant Nutrition and Soil Science 165:397-407
    Innerebner G., Knapp B., Vasara T., Romantschuk M., Insam H. (2006) Traceability of ammonia-oxidizing bacteria in compost-treated soils [J]. Soil Biol. Biochem.38:1092-1100
    Jansson J.K. (2003) Marker reporter genes illuminating tools environmental microbiologists [J]. Curr Opin. Microbiol.6:310-316
    Joffe A.Z. (1986) Fusarium species:Their biology and toxicology [M]. New York, John Wiley & sons, pp173
    J(?)rgensen C., Leser T.D. (2007) Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed [J]. J. Microbiol. Methods 68,588-595
    Kajimura Y, Kaneda M. (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8:isolation, structure elucidation and biological activity [J]. J Antibiot (Tokyo),50(3):220-228
    Kajimura Y, Kaneda M. (1996) Fusaricidins A, A new depsipeptide antibiotic produced by bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity [J]. J Antibiot (Tokyo),49(2):129-135
    Khalifa O. (1965) Biological control of Fusarium wilt of peas by organic soil amendments[J]. Annual applied biology,56:129-137
    Khan Z., Kim S.G, Jeon Y.H., et al. (2008) A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematodc [J]. Bioresource Technology,99: 3016-3023
    Kloepper J., Beauchamp C. (1992) A review of issues related to measuring colonization of plant roots by bacteria [J]. Can J Microbiol.38(6):667-672
    Kuchenbuch R., Jungk A. (1982) A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil [J]. Plant Soil 68:391-394
    Lambers H., Mougel C., Jaillard B., Hinsinger P. (2009) Plant-microbe-soil interactions in the rhizosphere:an evolutionary perspective [J]. Plant and Soil,321(1-2):83-115
    Leeman M., Den Ouden E., Van Pelt J., Cornelissen C, Matamala-Garros A., Bakker P.B.S. (1996) Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi [J]. Eur J Plant Pathol,102:21-31
    Leonardo D.L.F., Blanca B.L., and David M.W. (2006) Host crop affects rhizosphere colonization and competitiveness of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens [J]. Phytopathology 96:751-762
    Li X.-L., George E., Marschner H. (1991a) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover [J], Plant Soil 136:49-57
    Li X.-L., George E., Marschner H. (1991b) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil [J]. Plant Soil 136:41-48
    Ling N., Xue C., Huang Q.W., Yang X.M., Xu Y.C., Shen Q.R. (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt [J]. BioControl 55:673-683
    Ling N., Huang Q., Guo S., Shen Q. (2011a) Paenibacillus polymyxa SQR21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum [J]. Plant Soil 341:485-493
    Ling N., Raza W., Ma J., Huang Q., Shen Q. (2011b) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR21 in the rhizosphere [J]. Eur. J. Soil Biol.47:374-379
    Luo J., Ran W., Hu J., Yang X., Xu Y., Shen Q. (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils [J]. Soil Sci. Soc. Am. J.74:2039-2048
    Lynch J.M., Whipps J.M. (1990) Substrate flow in the rhizosphere [J]. Plant and Soil 129:1-10
    Mandeel Q.A. (2006) Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum [J]. Mycopathologia 161(3):173-182
    Mavingui P., Heulin T. (1994) In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa [J]. Soil Biology and Biochemistry 26:801-803
    McElderry C.F., Browning M., Amador J.A. (2005) Effect of Short-Chain Fatty Acids and Soil Atmosphere on Tylenchorhynchus spp [J]. J Nematol 37:71-77
    Merritt P.M., Danhorn T., Fuqua C. (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation [J]. J Bacteriol 189(22):8005-8014
    Minuto A., Spadaro D., Garibaldi A., Gullino L. (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization [J]. Crop Prot 25:468-475
    Morales P., Madarro A., Perez-Gonzalez J.A., Sendra J.M., Pinaga F., Flors A. (1993) Purification and characterization of alkaline xylanases from Bacillus polymyxa [J]. Applied and Environmental Microbiology 59:1376-1382
    Muslim A., Horinouchi H., Hyakumachi M. (2003) Biological control of fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions [J]. Mycoscience 44:77-84
    Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G., Valori F. (2008) Effects of root exudates in microbial diversity and activity in rhizosphere soils [M]. In:Nautiyal CS, Dion P (eds.) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology 15, DOI: 10.1007/978-3-540-75575-3
    Narasimhan K., Basheer C., Bajic V.B., Swarup S. (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132(1):146-153
    Nemec S., Datnofft L., Strandberg J. (1996) Efficacy of biocontrol agents in planting mixes to colonize plant roots and control root diseases of vegetables and citrus [J]. Crop Prot 15:735-742
    Neumann G, Roemheld V.. (2005) The rhizosphere —A historyical perspective from a plant scientist's viewpoint [A]. Hartmann A, Schmid M, Wenzel W, Hinsinger Ph (eds). Rhizosphere:Perspectives and challenges, a tribute to lorenz hiltner [C]. Germany:GSF2Report, Munich, Neuherberg,35-37
    Nguyen C. (2003) Rhizodeposition of organic C by plants:mechanisms and controls [J]. Agronomoie 23: 375-396
    Pandey G, Jain R.K. (2002) Bacterial chemotaxis toward environmental pollutants:role in bioremediation [J]. Appl Environ Microbiol 68:5789-5795
    Park C.S., et al. (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Psedomonas putida and non-pathogenic isolates of Fusarium oxysporum [J], Phytopathology 78: 190-194
    Park S.Y., Kim R., Ryu CM., Choi S.K., Lee C.H., Kim J.G, Park S.H. (2008) Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa [J]. FEMS Microbiol Ecol 65(2):229-237
    Petersen D.J., Shishido M., Holl F.B., Chanway C.P. (1995) Use of species-and strain-specific PCR primers for identification of conifer root-associated Bacillus spp [J]. FEMS Microbiol. Lett.133: 71-76
    Pueppke S.G, Bolanos-Vasquez M.C., Werner D., Bec-ferte M.P., Prome J.C., Krishnan H.B. (1998) Release of flavonoids by the soybean cultivars McCall and Peking and their perception as signals by the nitrogen-fixing symbiont Sinorhizobium fredii [J]. Plant Physiology 117:599-606
    Quirino B.F., Noh Y.S., Himelblau E., et al. (2000) Molecular aspects of leaf senescence [J]. Tren Plant Sci5:278-282
    Ramey B.E., Koutsoudis M., von Bodman S.B., Fuqua C. (2004) Biofilm formation in plant-microbe associations [J]. Curr. Opin. Microbiol.7:602-609
    Raza W., Yang W., Shen Q-R. (2008) Paenibacillus polymyxa:antibiotics hydrolytic enzymes and hazard assessment [J]. Journal of Plant Pathology 90:419-430
    Raza W., Yang X.M., Wu H.S., Wang Y., Xu Y.C., Shen Q.R. (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR21 active against Fusarium oxysporum f. sp nevium [J]. European Journal of Plant Pathology 125:471-483
    Rovira A.D., Foster R.C., Martin J.K. (1979) Origin, nature and nomenclature of the organic material in the rhizosphere [A]. In:Harley J L. Russell R S. The Soil-Root Interface [C]. London:Academic Press,1-4
    Ruan W.B., Wang. J., Pan H., Li H.B., Wang J.G., Zhang F.S., Gao Y.B. (2005) Effects of sesame seed cake allelochemicals on the growth cucumber (Cucumis sativus L. cv. Jinchun 4) [J]. Allelopathy J. 16:217-225
    Rudrappa T., Czymmek K.J., Pare P.W., Bais H.P. (2008) Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant Physiol 148(3):1547-1556
    Ryu C-M., Kim J., Choi O., Kim S.H., Park C.S. (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame [J]. Biol Control 39:282-289
    Saravanan T., Muthusamy M. and Marimuthu T. (2003) Development of integrated approach to manage the fusarial wilt of banana [J]. Crop Protect.22:1117-1123
    Scheffknecht S., Mammerler R., Steinkellner S., Vierheilig H. (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants [J]. Mycorrhiza 16(5):365-370
    Schenk P.M., Kazan K., Wilson I., et al. (2000) Coordinated plant defense responses in Arabidops is revealed by microarray analysis [J]. Proc Natl Acad Sci USA 97:11655-11660
    Sivan A., Chet I. (1992) Microbial control of plant disease [M]. In:Mitchell, R. (Ed.), Environmental Microbiology. Wiley, New York, pp 335-354
    Steinkellner S., Mammerler R., Vierheilig H. (2008) Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains [J]. European Journal of Plant Pathology 122:395-401
    Tai L.M., Xu Y.L. (2006) Effects oi Fusarium oxysporum toxin on the ultrastructure of soybean ridicule tissue [J]. Acta Phytopathologica Sinica 36(6):512-516
    Tang C.S. and Young C.C. (1982) Collection and identification of allelopathic components from the undisturbed root system of Bigalta Limpograss (Hemarthria altissinia) [J]. Plant Physiology 69: 155-160
    Tenover F.C. (2006) Mechanisms of antimicrobial resistance in bacteria [J]. American Journal of Infection Control 34:S3-10
    Timmusk S., Grantcharova N., Wagner E.G. (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology 71(11):7292-7300
    Timmusk S., van West P., Gow N.A., Paul Huffstutler R. (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. Journal of Applied Microbiology 106:1473-1481
    Tombolini R., van der Gaag D.J., Gerhardson B., Jansson J.K. (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA 342 on barley seeds visualized by using green fluorescent protein [J]. Appl. Environ. Microbiol.65:3674-3680
    Tremaroli V., Fedi S., Tamburini S., Viti C., Tatti E., Ceri H., Turner R.J., Zannoni D. (2011) A histidine-kinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism [J]. Biofouling 27(1):33-46
    Trillas M.I., Casanova E., Corxarrera L., Ordovas J., Borrero C., Aviles M. (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings [J]. Biol Control 39:32-38
    Van Dijk K., Nelson E.B. (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium Germination and damping-off [J]. Appl. Environ. Microbiol 66:5340-5347
    Vandermolen GE., Beckman C.H., Rodehorsr E. (1987) The ultrastructure of tylose formation in resistant banana following inoculation with Fusarium oxysporum f.sp.cubense [J]. Physiol. Mol. Plant Pathol 53:185-200
    Vierheilig H., Lerat S., Piche Y. (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167-170
    Warembourg F.R., Billes G (1979) Estimating carbon transfers in the plant rhizosphere [A].In:Harley J L, Russell R S. The Soil-Root Interface [C]. London:Academic Press,183-194
    Weller D. (1988) Bological control or soilborne plant pathogens in the rhizosphere with bacteria [J]. Annual Review of Phytopathology 26(1):397-407
    Whelan J.A., Russell N.B., Whelan M.A. (2003) A method for the absolute quantification of cDNA using real-time PCR [J]. J. Immunol. Methods 54:287-300
    Wu H.S., Raza W., Fan J.Q., Sun Y.G., Bao W., Shen Q.R. (2008a) Cinnamic Acid Inhibits Growth but Stimulates Production of Pathogenesis Factors by in Vitro Cultures of Fusarium oxysporum f.sp. niveum [J]. Journal of Agricultural and Food Chemistry 56:1316-1321
    Wu H.S., Raza W., Liu D.Y., Wu C.L., Mao Z.S., Xu Y.C., Shen Q.R. (2008b) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp. niveum [J]. World Journal of Microbiology and Biotechnology 24:1297-1304
    Wu U.S., Yang X.M., Fan J.Q., Miao W.G, Ling N., Shen Q.R. (2008c) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms [J]. BioControl 54:287-295
    Wu H.S., Liu D.Y., Ling N., et al. (2009) Influence of Root Exudates of Watermelon on Growth and Virulence Factors of in vitro Fusarium oxysporum f.sp.niveum [J]. Soil Sci Soc America J 73: 1150-1156
    Yao J., Allen C. (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum [J]. Journal of Bacteriology 188:3697-3708
    Yaryura P.M., Leon M., Correa O.S., Kerber N.L., Pucheu N.L., Garcia A.F. (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339 [J]. Curr Microbiol 56(6):625-632
    Yasuhiro H., Ivano B.,2006. Quantitative determination of callose in tree roots [J]. Journal of Plant Physiology 163,1333—1336
    Ye S.F., Yu J.Q., Peng Y.H., Zheng J.H., Zou L.Y. (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates [J]. Plant and Soil 263:143-150
    Ye S.F., Zhou Y.H., Sun Y, Zou L.Y, Yu J.Q. (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt [J]. Environmental and experimental botany 56: 255-262
    Yu J.Q., Matsui Y (1994) Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). Journal of Chemical Ecology,20:21-31
    Zhang S.S., Raza W., Yang X.M., Hu J., Huang Q.W., Xu Y.C., Liu X.H., Ran W., Shen Q.R. (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer. Biology and Fertility of Soils 44:1073-1080
    Zhang Z., Zhang J., Wang Y, Zheng X. (2005) Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonisin infected plant tissues and soil. FEMS Microbiology Letters 249(1):39-47
    Zhang N., Wu K., He X., Li S.-q., Zhang Z.-h., Shen B., Yang X.-m., Zhang R.-f., Huang Q.-w., Shen Q.-r. (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11 [J]. Plant Soil 344:87-97
    Zhao Q., Dong C., Yang X., Mei X., Ran W., Shen Q., Xu Y. (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer [J]. Appl. Soil Ecol.47:67-75
    毕建水,李翠翠,郑泽臣,等.(2008)微生物菌肥中不同菌株对黄瓜和番茄幼苗生长的影响[J].青岛农业大学学报(自然科学版),25(2):128-130
    陈慧,郝慧荣,熊君,等.(2007)地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,18(12):2755-2759
    陈利锋,徐敬友.(2001)农业植物病理学(南方本)[M].北京,中国农业出版社
    陈旭升,陈永萱,黄骏麒.(1996)黄萎病菌致萎毒素引起棉苗维管系统变化的电镜观察[J].棉花学报,8(5):111—112
    陈宗泽,殷勤燕.(1997)大豆连作对土壤微生物生物量的影响[J].大豆通报,6:15
    邓小龙,颜继烂,李艳君,等.(2011)西瓜枯萎病的发生及防治[J].安徽农学通报,17(08):115-116
    高峰,曹林奎,张浩.(2003)生物有机肥在茄子上的应用[J].上海农业学报,19(2):55-57
    高子勤、张淑香.(1998)连作障碍与根际微生态研究Ⅰ根系分泌物及其生态效应[J].应用生态学报.9(5):549-554
    郜红建,常江,张自立,等.(2003)研究植物根系分泌物的方法[J].植物生理学通讯,39(1):56-60
    葛慈斌,刘波,朱育菁,等.(2004)生防菌NH-BS-2000对西瓜枯萎病原菌抑制作用的研究[J].厦门大学学报(自然科学版),43(8):88-90
    耿广东,张素勤,程智慧.(2009)辣椒根系分泌物的化感作用及其化感物质分析[J].园艺学报,36(6):873-878
    郭荣君,刘杏忠,杨怀文.(1998)大豆根际细菌拮抗大豆根腐病菌研究[J].大豆科学,17(1):53-58
    郭小芳,宗兆锋,杨洪俊.(2005)6种放线菌抗药性标记及其在植株体内定殖能力测定[J].西北农业学报,14(2):69-73
    郭艳玲.(2005)增产菌在青贮玉米上的试验研究[J].内蒙古农业科技,6:35-37
    何欣,郝文雅,杨兴明,等.(2010)生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报,16(4):978-985
    郝文雅,沈其荣,冉炜,等.(2011)西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J].南京农业大学学报,34(3):77—82
    姜瑞波,张晓霞,吴胜军.(2003)生物有机肥及其应用前景[J].磷肥与复肥,18(4):62-63
    金戈.(1991)未结冰低温胁迫下小麦叶细胞质膜透性的变化过程及性质[J].植物生理学报,17(13):295-300
    孔建,赵白鸽,王文夕,等.(1998)枯草芽孢杆菌抗菌物质对镰孢菌抑制机理的镜下研究[J].植物病理学报,28(4):337-340
    李春俭,马玮,张福锁.(2008)根际对话及其对植物生长的影响[J].植物营养与肥料学报,14(1):178-183
    李冬梅,魏珉,张海森,等.(2006)氮、磷、钾用量和配比对温室黄瓜叶片相关代谢酶活性的影响[J].植物营养与肥料学报,12(3):382-387
    李梦梅,龙明华,黄文浩,等.(2005)生物有机肥对提高番茄产量和品质的机理初探[J].中国蔬菜,(40):18-20
    李庆孝.(1999)西瓜甜瓜病虫草书防治手册[M],北京中国农业出版社
    李琼芳.(2006)不同连作年限麦冬根际微生物区系动态研究[J].十壤通报,37(3):563-567
    李湘民,兰波,黄瑞荣,等.(2008)植物与微生物的互作和微生物群落管理研究进展[J].江西农业学报,20(1):41-43
    李小卫.(2011)西瓜枯萎病的综合防治技术[J].现代农业科技.12:162-164
    李晓磊,李井会,宋述尧..(2006)秸秆有机肥改善设施黄瓜连作土壤微生物区系[J].长春大学学报,16(6):119-122
    李晓倩.(2009)茶树根际促生细菌研究展望[J].山东农业大学学报(自然科学版),40(2):301-303
    李秀英,赵秉强,李絮花,等.(2005)不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,38(8):1591-1599
    李远明,申庆龙,张凤泉,等.(2002)生物有机肥在优质大豆生产中应用效果的研究[J].大豆通报,3:7
    梁建根,竺利红,施跃峰.(2008)试论植物与微生物的互作.现代农业科技,(20):337-338
    刘军,温学森,郎爱东.(2007)植物根系分泌物成分及其作用的研究进展.食品与药品,9(3):63-65
    龙明华,于文进,唐小付,等.(2002)复合微生物肥料在无公害蔬菜栽培上的效应初报[J].中国蔬菜,(5):4-6
    陆雅海,张福锁.(2006)根际微生物研究进展[J].土壤,38(2):113-121
    罗安程,章永松,孙羲.(1996)有机肥对大麦根系生理代谢和磷吸收的影响[J].西北农业学报,5(3):9-12
    吕卫光,杨广超.(2006)有机肥对连作西瓜生长和土壤微生物区系的影响[J].上海农业学报,22(4):96-98
    马凤鸣,王安娜,吴蕾,等.(2011)大豆根系分泌物的鉴定及PAL1,PAL2,C4H的克隆[J].作物杂志,65-71
    马俊永,李科江,曹彩云,郑春莲.(2007)有机-无机肥长期配施对潮土十壤肥力和作物产量的影响[J].植物营养与肥料学报,13(2):236-241
    马艳,赵江涛,常志州,等(2006)西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效[J].江苏农业学报,22(4):388-393
    马云华,魏珉,王秀峰.(2004)日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,15(6):1005-1008
    孟琳,张小莉,蒋小芳,等.(2009)有机肥料氮替代部分化肥氮对稻谷产量的影响及替代率[J].中国农业科学,42(2):532-542
    苗琛,尚富德,江静,等.(2004)西瓜枯萎病抗性的细胞学研究[J].四川大学学报(自然科学版),41(4):877-880
    牟金明,李万辉,张凤霞,等.(1996)根系分泌物及其作用[J].吉林农业大学学报,18(4):114-118
    梅新兰,赵青云,谭石勇,等.(2010)辣椒疫病拮抗菌株筛选、鉴定及其防效[J].应用生态学报,21(10):2652-2658
    齐飞飞,夏觅真,唐欣昀,等.(2008)luxAB基因标记的K21161菌株在棉花根际中的定殖[J].生态学杂志,27(2):192-196
    祁之秋,李兴海,王英姿,等.(2009)黄瓜枯萎病拮抗芽孢杆菌B67在土壤及黄瓜根际的繁殖[J].中国蔬菜,8:63-66
    任欣正,张建华,方中达.(1987)无致病力产细菌素拮抗菌NO E 2104在蕃茄植株上定殖能力研究[J].植物病理学报,17(3):129-133
    阮维斌,刘默涵,潘洁,等.(2003)不同饼肥对连作黄瓜生长的影响及其机制初探[J].中国农业科学,36:1519-1524
    阮维斌,王敬国,张福锁.(2002)根际微生态系统中的大豆孢囊线虫[J].植物病理学报.32(2):200-213
    沈德龙,李俊,姜昕.(2007)我国生物有机肥的发展现状及展望[J].中国农技推广.23(9):35-37
    沈广伟,车宏媛,于振民.(2010)西瓜枯萎病发生规律及防治技术[J].民营科技[J].8:130
    沈萍,范秀荣,李广武主编.(2002)微生物学实验(第三版)[M].北京,高等教育出版社.
    司美如,薛泉宏,余博,等.(2005)36株生防菌对辣椒疫病等4种病原真菌的拮抗作用研究,西北农林科技大学学报[J],33(1):49-54
    孙义春,苑方武,郭友全.(2005)棚室西瓜枯萎病发生原因与防治[J].北方园艺[J],5:90-91.
    涂书新,吴佳.(2010)植物根系分泌物研究方法评述[J].生态环境学报,19(9):2493-2500
    王纯利,王冬梅.(2000)西瓜枯萎病菌致病力与镰刀菌酸和β—1,4葡萄糖苷酶活性的关系[J].新疆农业大学学报,23(1):1-6
    王茹华,周宝利,张启发,等.(2005)嫁接对茄子根际微生物中群数量的影响[J].园艺学报,32(1): 124-126
    王术,戴俊英,王伯伦,等.(2003)有效微生物群(EM)对水稻秧苗素质的影响[J].沈阳农业大学学报,34(2):81-84
    王伟,赵谦,杨微(1997)木霉对土传病原尖孢镰刀菌的拮抗作用[J].中国生物防治:46-47
    王学翠,童晓茹,温学森,等.(2007)植物与根际微生物关系的研究进展[J].山东科学,20(6):40-44
    王艳博,黄启为,孟琳,沈其荣.(2006)有机无机肥料配施对菠菜生长和土壤供氮特性的影响[J].南京农业大学学报,29(3):44-48
    王英,沙爱华.(2005)DNA微阵列研究植物—病原菌互作及防御反应信号转导机制[J].荆门职业技术学院学报.20(3):92-96
    王占武,李晓芝,刘彦利,等(2002)枯草芽孢杆菌B501在草根际的定殖及其动态变化[J].植物病理学报,33(2):188-189
    王占义,潘宁,罗茜,等.(2010)一种新型根系分泌物收集装置与收集方法的介绍[J].土壤学报,47(4):747-752
    翁启勇,陈庆河,赵键,等(2003)利福平标记菌株BS1在番茄、茄子根部及土壤中的定殖动态[J].福建农业学报,18(2):87-88
    吴楚,王政权,孙海龙,郭盛磊.(2005)氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J].林业科学,7(4):31-36
    吴凤之,赵凤艳,刘元英.(2000)设施蔬菜连作障碍原因综合分析与防治措施,东北农业大学学报[J].31(3):241-247
    吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究,2002,18(1):20-221
    武海,张树源,许大全,等.(1997)珊瑚树叶片叶绿素荧光非光化学猝灭的日变化和季节变化[J].植物生理学报,23(2):145-150
    肖相政,刘可星,廖宗文(2009)短小芽孢杆菌BX-4抗生素标记及定殖效果研究[J].农业环境科学学报,28(6):1172-1176
    谢大森,陈家旺.(1997)西瓜枯萎病研究进展,江西农业大学学报[J].4:42-45
    谢大森,何晓明,彭庆务,等.(2006)瓜类枯萎病发生机理研究进展[J].仲恺农业技术学院学报,19(3):65-70
    新伦,谢荔岩,林奇英,等.(2008)水稻条纹病毒胁迫下抗、感病水稻品种胼胝质的沉积[J].植物保护学报,35(1):19-22
    徐婉明,张志红,雷艳宜,等.(2010)气质联用方法测定香蕉根系分泌物[J].热带作物学报,31(8):1403-1408
    徐左梃,李林,张传摩,等.(1993)西瓜枯萎病土壤含菌量的测定与防病关系的研究[J].9(3):30-32
    徐作埏,李林,孙传宏,等.(1995)抗、感玉米茎腐病的形态解剖研究初报[J].植物保护,21(2):16-19
    许艳丽.(1995)重迎茬大豆土壤微生物生态分布特征研究,见许艳丽,韩晓增主编,大豆重迎茬研究[M],哈尔滨:哈尔滨工程大学出版社
    闫敏,李磊,霍晓兰,等(2009)利用木霉防治地黄枯萎病的研究[J].山西农业科学,37(4):70-72
    杨建霞,范小峰,刘建新.(2005)温室黄瓜连作对根际微生物区系的影响.浙江农业科学,6:441-443
    杨喜田,佐舖宣行,杨臻,等.(2010)不同育苗方式对移栽后侧柏和白榆幼苗根系生长的影响[J].生态学报,30(1):86-92
    杨晓华,蔡金龙,姚莉英,等.(2005)西瓜设施栽培土壤连作障碍及配套防治技术[J].中国瓜菜[J],6:34-36
    杨秀娟,何玉仙,陈福如,等(2007)抗香蕉枯萎病菌拮抗菌的鉴定及定殖[J].中国生物防治,23(1):73-77
    叶志毅,屠振力.(2005)桑树根的分泌物和根际微生物的研究[J].蚕业科学,31(1):18-21
    尹春芸,刘柳浪,叶邦策.(2011)杀镰刀菌素对枯草杆菌致死作用的研究[J].南昌大学学报(工科版).33(3):248-251
    余立云,杨学礼,杨伏云,等.(2008)小拱棚西瓜萎蔫常见原因及防治方法[J].西北园艺[J].3:35-36
    袁龙刚,张军林,张朝阳,等.(2006)连作对辣椒根际土壤微生物区系影响的初步研究[J].陕西农业科学,2:49-50
    张炳欣,张平,陈晓斌(2000)影响引入微生物根部定殖的因素[J].应用生态学报,11(6):951-953
    张彩霞,李壮,陈莹,等.(2010)植物与病原菌互作的蛋白质组学研究进展[J].西北植物学报,30(3):626-632
    张法全,季卫东,汪伟雄,等.(2007)错季栽培防治西瓜枯萎病[J].中国蔬菜,8:54
    张汝民,张丹,陈宏伟,等.(2007)梭梭幼苗根系分泌物提取方法的研究[J].干旱区资源与环境, 21(3):153-157
    张淑梅,沙长青,赵晓宇,等.(2010)一株抗真菌内生多粘芽孢杆菌的分离鉴定及对水稻恶苗病菌的抑制作用[J].中国生物工程杂志,30(2):84-88
    张树生,杨兴明,黄启为,等(2007)施用氨基酸肥料对连作条件下黄瓜的生物效应及土壤生物性状的影响.土壤学报,44(4):689-694
    赵世杰,刘华山,董新纯.(1998)植物生理学试验指导[M].北京:中国农业科学技术出版社
    赵爽,刘伟成,裘季燕,等.(2008)多粘类芽孢杆菌抗菌物质和防病机制之研究进展[J].中国农学通报,24(7):347-350
    郑琦,毕扬,云晓敏,等.(2007)西瓜枯萎病的研究进展及其防治[J].中国植保导刊,27(2):17-19
    郑军.(2007)西瓜主要病害的防治,植物保护[J].214(12):25
    朱育菁,刘波,林抗美,等.(2005)不同配方.存活基质对生防菌ANIT28908A保存、防效和土壤定殖力的影响[J].植物保护,31(4):58-61
    庄敬华,高增贵,杨长城,等.(2005)绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响[J].植物病理学报,35(2):179-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700