用户名: 密码: 验证码:
南京龙山钾矿物表生细菌的生物多样性及其与含钾矿物相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物广泛分布于各种地质环境中,几乎参与了从地球表面到地下深部岩石圈中所有的地质地球化学过程,直接或间接地影响了地球化学环境。本论文通过研究不同风化程度钾矿物表生细菌的生物学特性及其对硅酸盐矿物的分解效应,为阐明从矿物到土壤过程中微生物群落变化及其与矿物风化之间的关系,以及对于深入理解矿物-微生物相互作用机制等提供理论依据,丰富微生物资源库、基因库并为微生物肥料的研制提供充足菌源。
     通过构建16SrDNA克隆文库对南京龙山不同风化程度钾矿物表生细菌的群落多样性进行研究,结果表明该矿区细菌群落主要可归属于14大细菌类群,其中Proteobacteria(变形菌门)及Acidobacteria(酸杆菌门)在整个克隆文库中占主要优势。Gemmatimonadetes(芽单胞菌门)是仅在土壤中发现的细菌类群。低风化度矿物样品表生细菌种群以Acidobacteria, Actinobacteria(放线菌门)及α-Proteobacteria为优势种群;高风化度矿物样品中细菌种群以α-Proteobacteria, Acidobacteria, Bacteroidetes(拟杆菌门),Actinobacteria为优势种群;而土壤样品中细菌种群以Acidobacteria及β-Proteobacteria为优势种群。菌群β-,δ-Proteobacteria, Firmicutes(厚壁菌门),Planctomycetes (浮霉菌门),Chloroflexi(绿弯菌门),Nitrospira(硝化螺旋菌门),Ktedonobacteria(纤线杆菌纲)及Verrucomicrobia(疣微菌门)随着矿物风化程度的增高呈递增的趋势。
     通过对供试矿物样品中有效性元素含量等基本理化性质与表征细菌种群多样性的16S rDNA克隆文库的香农-威纳指数,辛普森指数,均匀度及丰富度指数进行PCA及CCA分析,发现矿物风化程度与矿物表生细菌存在着相互影响,相互制约的关系,矿物风化程度的高低与其中细菌多样性之间有着明显的相关性。菌群α-Proteobacteria, Bacteroidetes, Gemmatimonadetes与样品中的K,Ca,Mg含量相关,而β-Proteobacteria, Planctomycetes, Ktedonobacteria, Firmicutes及Acidobacteria与Si,Al,Fe含量及样品pH相关。菌群Proteobacteria, Bacteroidetes及Acidobacteria在钾矿物风化及矿质元素转化过程中起了重要的作用。
     通过平板分离法,从不同风化程度钾矿物表面及土壤中共分离筛选出矿物表生细菌63株。限制性酶切多态性分析(ARDRA)和16S rDNA序列系统发育分析表明供试细菌具有较丰富的物种多样性。分离自土壤样品的供试菌株归属于菌群α-,β-,γ-Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes。高风化度钾矿物样品中包含4个菌群,分别为Firmicutes, Actinobacteria, a-Proteobacteria, Bacteroidetes;低风化度钾矿物样品中有2个菌群,分别为Firmicutes和Actinobacteria。Bacillus成为该矿区可培养细菌的优势菌群,52.4%的供试菌株包括在其中,而Arthrobacter和Paenibacillus,分别包含了19%和11.1%的供试菌株。
     通过摇瓶试验筛选出具有明显矿物分解能力的细菌菌株21株。经16S rDNA序列系统发育分析,结果表明矿物分解细菌主要归属于Bacillus(芽孢杆菌属),Paenibacillus(类芽孢杆菌属),Arthrobacter(节杆菌属),Flexibacter(屈挠杆菌属),Rhizobium(根瘤菌属),Ralstonia(雷尔氏菌属)和Pantoea(泛菌属)菌属。本研究首次发现Rhizobium, Ralstonia, Pantoea和Flexibacter菌属的菌株对含钾硅酸盐矿物也有较强的分解能力。高效矿物分解细菌菌株M65鉴定为Rhizobium sp.。
     在短期摇瓶试验及长期静置试验中,菌株Q12及M65对黑云母的分解效果最好,对钾长石的分解效果略低。两株矿物分解细菌不但能够促进原生硅酸盐矿物的风化而且还具有一定的成矿效应。
     在矿物存在的条件下,菌株M65和Q12的菌体形态发生了一定的改变。供试菌株对硅酸盐矿物中铁,钙和铝等金属元素的溶出效果显著,且随着时间的变化对矿物有反复溶解和沉淀的作用。菌株M65具备两种群体感应系统,即luxR/I型信息系统与luxS/AI-2型信息系统,且在矿物存在的条件下以luxR/I型信息系统为主要的信号传递系统,其生物膜的产生与其AHLs的产量有关。菌株Q12只具备luxS/AI-2型的信息系统。细菌信号分子的产量与细胞群体数量及生长状态有关,在细菌生长的对数期内达到最高值,进入稳定期后急剧下降。
Microbes inhabit diverse environments at and near the Earth's surface. Their potential to cause geochemical change is immense. These microorganisms directly or indirectly affect the Earth's geochemical environments. Research on mineral surface's bacterial biological characteristics and their effects on the silicate mineral weathering will further understand microbial resources and diversity, clarify microbial community changes from minerals to soils and the correlation with the mineral weathering in the natural conditions. This paper also isolated mineral-solubilizing bacteria and investigated mineral-microbes interaction which would provide the theoretical and experimental bases for further understanding of mineral-microbes interaction mechamisms.
     Bacterial community and diversity of different weathered feldspar and soil samples were studied by16S rDNA clone libraries. The results showed that bacterial communities from the three series samples were affiliated with fourteen major groups. Proteobacteria and Acidobacteria were the most abundant groups in the clone libraries. Gemmatimonadetes were only found in the soil samples. Bacterial community composition may be related to the degree of mineral weathering. Clones from less-weathered feldspar mineral belonged to three major groups:Acidobacteria, Actinobacteria and a-Proteobacteria; Clones from more-weathered feldspar minerals belonged to four major groups:a-Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria; Clones from the soils belonged to two major groups:Acidobacteria and (3-Proteobacteria. An increasing abundance of β,δ-Proteobacteria, Firmicutes, Planctomycetes, Chloroflexi, Nitrospira, Ktedonobacteria and Verrucomicrobia were found along the weathering gradient from the weathered feldspar minerals to the soils.
     PCA and CCA analyses of the available element contents and the bacterial diversity index showed that the degree of mineral weathering was clearly correlation with bacterial community diversity. a-Proteobacteria, Bacteroidetes, Gemmatimonadetes were correlated with K, Ca, and Mg contents; while P-Proteobacteria, Planctomycetes, Ktedonobacteria, Firmicutes and Acidobacteria were correlated with Si, Al, Fe, and pH. Proteobacteria, Bacteroidetes and Acidobacteria played an important role in the process of mineral weathering and the elements mobilization.
     Sixty-three strains were isolated from different weathered feldspar and soil samples by conventional plate culture technique. ARDRA and16S rDNA sequences phylogenetic analyses indicated that the bacteria showed abundant diversity. Bacteria isolated from the soils belonged to six groups:a-, β-and y-Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes; bacteria isolated from more-weathered feldspar minerals belonged to four groups:Firmicutes, Actinobacteria, a-Proteobacteria, and Bacteroidetes; bacteria isolated from less-weathered feldspar belonged to two groups:Firmicutes and Actinobacteria. Bacteria belonging to Bacillus, Arthrobacter and Paenibacillus accounted for52.4%,19%, and11.1%, respectively.
     Of the sixty-three isolates, twenty-one strains have the ability of dissolving feldspar mineral compared to the control.16S rDNA sequences phylogenetic analysis indicated that mineral-solubilizing bacteria belonged to Bacillus. Paenibacillus, Arthrobacter, Flexibacter, Rhizobium, Ralstonia and Pantoea. Rhizobium, Ralstonia, Pantoea and Flexibacter were the first reported bacteria which could promote the mineral solubilization. Strain M65identified as Rhizobium sp. was very effective in enhancing feldspar dissolution.
     A short period flask-based and long period unflask-based experiments showed that the biotite was easier to be weathered by strains Q12and M65than feldspar. The presence of the bacteria not only promoted mineral solubilizition, but also induced mineral mineralization.
     The morphogeneses of strains Q12and M65were changed in the presence of feldspar and biotite minerals. The release of Fe, Ca and Al was obviously increased in the presence of stains Q12and M65. Mineral solubilization and precipitation were existed alternatively. Strain M65had two quorum signalling:luxI/luxR quorum senxing system and luxS/AI-2quorum sensing system. luxI/luxR quorum sensing system as primary autoinducers-producing allowed strain M65to control the gene expression of bioflim formation in response to changes in cell numbers. Strain Q12only had luxS/AI-2quorum sensing system. The production of autoinducers was related with cell population desity and growth state. It reached the highest production of autoinducers during the bacterial logarithm phase, and decreased significantly in the stable phase of the strains Q12and M65.
引文
1. Alexandne A, Meunier JD, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and releated weathering processes. Geochemica et Cosmochimica Acta,1997,61(3):677-682.
    2. Arakyan ZA, Pivovarova TA, Kavaraiko GI. Properties of a new speicies Bacillus mucilaginosus. Mikrobiologica,1986,55:477-482.
    3. Bancroft I. Duplicate and diverge:the evolution of plant genome microstructure. Trends genet, 2001,17(2):89-93.
    4. Banfield JF, Barker WW, Welch SA, et al. Biological impact on mineral dissolution:Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceeding of the National Academy of Sciences of the United States of America,1999,96:3404-3411.
    5. Baoley VL, Smith JL, Botion HJR. Fungal-to-Bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry,2002,34 (7):997-1007.
    6. Barker BJ and Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiology Ecology,2003,44:139-152.
    7. Barker WW and Banfield JF. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracelluar microbial polymers in lithobiontic communities. Chemical. Geology,1996,132:55-69.
    8. Barker WW and Banfield JF. Biologically versun inorganically-mediated weathering reactions relationship between minerals and extracellularm microbial polymers in litnobionitic communities. Chemical Geology,1996,132:55-69.
    9. Barker WW, Welch SA, Chu S. Experimental observations of the effect of bacteria on alumina silicate weathering. Mineral,1998,83:1551-1563.
    10. Behrne L, Larger LL, Behme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture Ecosystems and Environment, 2005,109(122):141-152.
    11. Bennett PC, Hiebert FK, Choi WJ. Microbial colonization and weathering of silicates in a petroleum contaminated ground water. Chemical Geology,1996,132:45-53.
    12. Bidle KD, Lee S, Marchant DR, et al. Fossil genes and microbes in the oldest ice on Earth. Proceeding of the National Academy of Sciences of the United States of America,2007, 104:13455-13460.
    13. Bond PL, Smriga SP, Banfield JF. Phylogeny of microorganism populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mind drainage site. Applied Environmental Microbiology,2000,66:3842-3849.
    14. Bossio DA, Scow KM. Impacts of carbon and flooding on soil microbial communities phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology,1998,35 (3):265-278.
    15. Brantley SL, Liermann L, Ban M. Uptake of trace metals and rare earth elements from hornblende by a soil bacterium. Geomicrobiology Journal,2001,18:37-61.
    16. Calvaruso C, Turpault MP, Leclerc E and Frey-Klett P. Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microbial Ecology.2007,54,567-577.
    17. Cameselle C, Nunez MF. Cema JM. Leaching of kaolin iron-oxides withorganic acid. Chemical Technological Biotechnology,1997,70:349-354.
    18. Cameselle C, Ricart MT, Nunez MF, et al. Iron removel from kaolin comparison between "in situ" and "two-stage" bioleaching process. Hydrometallurgy,2003,68:97-105.
    19. Campkell I B and Claridge GGC. Antarctica:soils, weathering processes and environment. Elservier Amsterdam,1987,107-110.
    20. Castro 1M, Fielto JLR, Vieira RX, etal. Bioleaching of zine and nicked from silicate using Aspergillus niger cultures. Hydrometallurgy,2000,57:39-49
    21. Chapelle FH, Bradley PM. Microbial acetogenesis as a source of organic acids in ancient Atlantic coastal plain sediments. Geology,1996,24:925-928.
    22. Chen J and Gong ZT. Role of lichens in weathering and soil forming processes on fileds prinsula, Antarctica. Pedosphere,1995,5:305-314.
    23. Chen X, Schauder S. Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature,2002,415:545-549.
    24. Chi R, Xiao C, Gao H. Bioleaching of phosphorus from rock phosphate containing pyrites by Acidithobactiilus ferrooxidans. Minerals Engineering,2006,19:979-981.
    25. Christensen BE and Characklis WG. Physical and chemical properties in biofilms. Biofilms, Wiley, NewYork:1990:93-130.
    26. Daughney CJ, Rioux JP, Fortin D, et al. Laboratory investigation of the role of bacteria in the weathering of basalt near deep sea hydrothermal vents. Geomicrobiology Journal,2004,21:21-31.
    27. DeGrood SH, Classen VP, Scow KM. Microbial community composition on native and drastically disturbed serpentine soils. Soil Biology and Biochemistry,2005,37(8):1427-1435.
    28. Diallo MD, Martens M, Vemans N, et al. Phylogenetic analysis of partial bacterial 16S rDNA sequences of tropical grass pasure soil under Acacia tortilis subsp. Raddiana in Senegal. System and Applied Microbial,2004,27:238-252.
    29. Dong H, Knkkadapu RK, Fredrickson JK, et al. Microbial reduction of structural Fe(Ⅲ) in illite and goethite. Enoironmental Science and Technology,2003,37:1268-1276.
    30. Donlan RM. Biofilm:microbial life on surface. Emerging Infections Diseases,2002,8:881-890.
    31. Dopson M, Lovgren L, Bostrom, D. Silicate mineral dissolution in the presence of acidophilic microorganisms:Implications for heap bioleaching. Hydrometallurgy,2009,96,288-293.
    32. Duentea ME, Rodniguez JMC, Ching YL, et al. Image analysis fro quantification of bacterial rock weathering. Journal of Microbiological Methods,2006,64:275-286.
    33. Dunbar J, Barns SM, Ticknor LO. Empirical and theoretical bacterial diversity in four Arizora soils. Applied and Environmental Microbiology,2002,68:3035-3045.
    34. E.Gomez ML, Blazquez A, Ballester et al. Study by SEM and EDS of chalopyrite biolerching using a new Thermophilic bacteria. Minerals Engineering,1996,9(9):985-999.
    35. Edward CA, Bohlen PJ. Biology and ecology of earthworms.3rd Chapman and Hall, Landon, 1996.
    36. Ehrlich HL. Geomicrobiology:Its significance for geology. Earth-Science Reviews,1998,45: 45-60.
    37. Ehrlich HL. Microorganisms inacid mine drainage from copper mine. Jounral of Bacterial,1963, 86:350-352.
    38. Elsas JD, Duarte GF, Rosado AS, et al. Microbiological and molecular biological methods monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiology Methods,1998,32:133-154.
    39. Ewards KJ, Bond PL, Druschel GK. Geochemical and biological aspects of sulfide mineral dissolution:Lessons from Iron Mountain, California. Chemical Geology,2000,169:383-397.
    40. Fikret Kargi, James M, Robinson. Remove of sulfur compounds from coal by the Thermophilic prganism sulfoldbus acidocaldarius. Applied and Environmental Microbiology.1982,44(4):878-883
    41. Forschner SR, Shelter R, Rowley DC, et al. Microbial diversity in cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basic. Environmental Microbiology,2009,11 (3): 630-639.
    42. Fortin D, Farris FG, Boveridge TJ. Surface-mediated mineral development by bacteria. Geomicrobiology:Interaction between microbes and minerals. Washington DC:Mineralogical Socidty of America,1997:161-180.
    43. Fredrickson JK, Zachara JM, Kemedy DW, et al. Biogeniciron mineralization accompanying the dissimilatory reduction of hydrous feniconide by a grounduater bacterium. Geochim et Cosmochim Acta,1998,62:3239-3257.
    44. Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acylhomoserine lactone quorum sensing. Annu Rev Genet,2001,35:439-368.
    45. Garcia B, Lemelle L, Perriat P, et al. Olivine surface dissolution with Escherich coli cell. Geochim et Cosmochin Acta,2004,68(11):A152.
    46. Gast CJ, Whiteley AS, Lilley AK, et al. Bacterial community structure and function in a metal-working fluid. Environmental Microbiology,2003,5 (6):453-461.
    47. Groudeo SN. Use of heterotrophic microorganisms in mineral biotechnology. Acta Biothehnologica, 1987,7(4):299-306.
    48. Guedes RA, Celeste CM, Ceu GM, et al. Bioleaching of tungsten ores. Hydrometallurgy,1990, 24(2):263-267.
    49. Hakenbeck, R and Stock JB. Analysis of two-component signal turansdmtion systems involved in transcriptional regulation. Methods Enzymol,1996,273:281-300.
    50. Hellmann R. The albite-water system:Part I. The kinetics of dissolution as a funetion of pH at 100, 200 and 300 e. Geochimica et Cosmochimica Acta,1994,58:595-611.
    51. Hiasinger P, Elsass F, Jaillard B et al. Root-induced irreversible transform ation of a trioctahedral mica in the rhizosphere of rape. Soil Science,1993,44:535-545.
    52. Hiasinger P, Jaillard B and Dufey JE. Rapid weathering of a trioctahedral micra by the roots of ryegrass. Soil Science,1992,56:977-982.
    53. Hinsinger P, Faillard B. Root-induced release of interlayer potassium and verm iculitization of phlogopite as related to potassium deloption in the rhizosphere of ryegrass. Soil Science,1993. 44:521-534.
    54. Hinsinger P, Fernandes ON, Benedetti MF, et al. Plant-induced weathering of a basaltic rock: Experimental evidence. Geochimica et Cosmochimica Acta,2001,65:137-152.
    55. Hoffland E, Giesler R, Jongmans T, et al. Increasing feldspar tunneling by Fungi across a North Sweden Podzol Chronosequence. Ecosystems,2002,5:11-22.
    56. Hofland E, Giesler R, Jongmans AG, et al. Feldspar tunneling by Fungi along natural productivity grasients. Ecosystems,2003,6:739-746.
    57. Holmfeldt K, Dziallas C, Titelman J, et al. Diversity and abundance of freshwater Actinobacteria along environment gradient in brackish northern Baltic Sea. Environmental Microbiology,2009, 11:2042-2054
    58. Hu XF, Chen JS, Guo JF. Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World Jounral of Microbiology & Biotechnology,2006,22:883-900.
    59. Jayasinghearachchi HS, Seneviralne G. Fungal solubilizating of rock phosphate is enhanced by forming fungal rhizobial biofilm. Soil Biology and Biochemistry,2006,38:405-408.
    60. Jongmans AG, Van BN, Lundstrfm US, et al. Rock-eating fungi. Nature,1997,389:682-683.
    61. Jonsson C, Warfvinge P and Sverorup H. Uncertainty in predicting weathering rate and environment stress factors with the profile model. Water, Air and Soil Pollution,1995,81:1-23.
    62. Karavioka GI. Role of microorganisms and some physica-chemical factors of the medium quartz destruction. Mikrobiologiya,1984,53:976-981.
    63. Kelly DP, Tuovinen OH. Metabolism of inorganic sulphur compounds by Thiobacillus ferroonidans and some comparative studies on Thiobacillus A2 and T. neapolitanus. Plant and Soil,1975, 43:77-93.
    64. Kelly EF, Chadwich OA and Hilinski TE. The effect of plant on mineral weathering. Biogeochemistry,1998,42:21-53.
    65. Kerr RA. Life goes to extremes in the deep earth and elsewhere? Science,1997,276:703-704.
    66. Khin MMA, Yen PT. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of Biotechnology,2005,116:159-170.
    67. Kiefl TL, Kovacik WP. Factors limiting microbial growth and actioity at a proposed high-level Nuclear repository, Yucca Mountain. Nevada. Applied and Environmental Microbiology,1997, 63:3128-3133.
    68. Koele N, Turpault MP, Hildebrand E E and Uroz S. Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering:Budget analysis and bacterial quantification. Soil Biology and Biochemistry,2009,41,1935-1942.
    69. Lazazzera BA. The intracellular friction of extracellular signaling peptines. Peptides,2001.22(10): 1519-1527.
    70. Leloup J, Fossing H, Kohls K, et al. Sulfate-reducing bacteria in marine sediments (Aarhus Bay, Denmark):aboundance and diversity related to geochemical zonation. Environmental Microbiology,2009,11:1278-1291.
    71. Levis AJ, Miller JDA. Stannous and cuprous ion oxidantion by Thiobacillus ferrooxidens. Canadian Journal of Mcrobiology,1997,23:319-324.
    72. Li Y, Vali H, Sears SK, Yang J, Deng B, Zhang C L. Iron reduction and alteration of nontronite Nau-2 by a sulfate reducing Bacterium. Geochim et Cosmochim Acta,2004,68:3251-3260.
    73. Liang ZB, Drijber RA, Lee DJ, et al. A DGGE-cloning methods to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry,2008,40:956-966.
    74. Lizama HM, Suzuki I. Bacterial leaking of a sulphide are by Thiobacullus ferrooudans and Thiobacillus thioocidan. Shake flask studies. Bioleaknol bioeng,1988,32:110-116
    75. Maurice PA, Vierkorn MA, Hersman L Z, etal. Dissolution of well and poorly ordered kaolinites by anaerobic bacterium. Chemical Geology,2001,180:81-97
    76. Mok KC, Wingreen NS, Bassler BL. Vibrio harveyi quorum sensing:a wincidence detector for weo autoinducers controls gene expression. EMBO Jounral,2003,22:870-881.
    77. Mol G, Vrienda S Pand VanGaans P F M. Feldspar weathering as the key to understanding soil acidification monitoring data:a study of acid sandy soils in the Netherland. Chemical Geology, 2003,202:417-441.
    78. Monib M, Zahra MK, Abolel ALS. Role of silicate bacteria in releasing K and Si from biblite and orthoclase. Soil Biology and conseration of the Biosphere,1984,2:733-743.
    79. Muller B. Impact of bacterium Pseudomonas fluorescens and its genetic derivatives on vermiculite: Effects on trace metals contents and clay mineralogical properties. Geoderma,2009,153,94-103.
    80. Muyzer G, Smalla K. Application of denaturing gradient gel slectrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antoni. Van Lereuwenhoek,1998,73:127-141.
    81. Myzer G, Waal EC, Uitterlinden AG. Profing of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Applied and Environmental Microbiology,1993,59:695-700.
    82. Nelson DL, Beck JV. Chalcocite oxidation and coupled carbon dioxide fixation by Thiobacillus ferrooxidans. Science,1972,175:1124-1126
    83. Pancost RD, Bass M, Danst JSS. D13C values and radiocarbon dates of microbial biomarks as tracers for carbon recycling in peat deposites. Geology,2000,28:663-666.
    84. Pankhurst CE, Yu S, Hanke BG, et al. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity alkalinity at three locations in South Australia. Biol. Fertil. Soil,2001,33:204-217.
    85. Petersen SO, Klug M J. Effects of sieving, storage, and incubation temperature on the phospholipid fatty profile of a soil microbial community. Applied and Environmental Microbiology,1994,60: 72421-72430.
    86. Priscu JC, et al. Geomicrobiology of subglacial ice above Lake Vostok, Antactica. Science,1999, 286:703-704.
    87. Routh J, Grossman EL, Ulrich GA et al. Wolatile organic acids and microbial proceses in the Yegua formation east-central Texas. Applied Geochemistry,2001,16:183-195.
    88. Santelli CM, Orcutt B N, Baning E, et al. Abundance and diversity of microbial life in ocean crust. Nature,2008,453:653-656.
    89. Santelli CM, Welch SA, Westrich HR and Banfield J F. The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution. Chemical Geology,2001,180,99-115.
    90. Santelli CM, Edgromb VP, Bach W, et al. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Environmental Microbiology,2009,11: 86-98.
    91. Schauder S, Bassler BL. The language of bacteria. Genes Development,2001,15:1468-1480.
    92. Schleper C, Puhler G, Kuhlmorgen B, et al. Life at extremely low pH. Science,1995,375:741-742.
    93. Shelobolina ES, Arakyan ZA, Bulygina ES, et al. Description of a new species of mucilaginosus bacteria. Bacillus eaphicus sp. nor. and confirmation the taxonomic status of Bacillus mucilaginosus. Mikrobiogica,1997,66:813-822.
    94. Sheng XF, He LY. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Foural of Microbiology,2006,52:66-72.
    95. Smits MM, Hoffland Z, Jongmans AG, et al. Contribution of mineral tunneling to total feldspar weathering. Geoderma,2005,125:59-69.
    96. Sogin L, Morrison HG, Huber JA, et al. Microbial diversity in the deep sea and the under explored "rare biosphere". Proceeding of the National Academy of Sciences of the United States of America,2006,103:12115-12120.
    97. Sstyriak I, Kraus I, etal. Biodestruction and deferritization of quartz sands by Bacillus species. Mineral Engineering,2003,16:709-713.
    98. Stanley J A. Microbiological perspective of biodiversity. In:Biodiversity of Microbial life staley (ED.) A John Wiley and Sons, Inc. Publication,2002.
    99. Sumons RE, Jahnke LL, Hope JM, et al.2-Methylhopanoids as biomarks for ayanobacterial oxygenic photosynthesis. Nature,1999,400:554-557.
    100. Sundh I, Nilsson M, Borg P. Variation in microbial community structure in two boreal peatlands as determined by abalysis of phospholipid fatty acid profiles. Applied and Environmental Microbiology,1997,63:1476-1482.
    101. Suzuki Y, Matsubar T, Hoshino M. Breakdown of mineral grains by earthworm and kectle lame. Geoderma,2003,112:131-142.
    102. Taylar AS, Blum JD, Lasaga AC, et al. Kinetics of dissolution and sr release during biotite and phologopite weathering. Geochemica et Cosmochimica Acta,2000,64:1191-1208.
    103. Taylor TN, Hass H, Remy W, et al. The lodest fossil lichen. Nature,1995,378:244.
    104. Torsvik V, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology,1990,56:782-787.
    105. Tuovinen OH, Kelly DP. Studies on the growth of Thiobicillus ferrooxidans.3. Influence of uranium, other metalions and 2:4-dinitrophenol on ferrous iron oxidation and carbon dixide fixation by cell suspensions. Arch Mikrobiol JT-Archiv fur mikrobiologie,1974,95(2):165-180.
    106. Tuovinen OH, Kelly DP. Studies on the growth of Thiobicillus ferrooxidans.I., Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2 fixation and iron oxidation as measure of growth. Arch Mikrobiol JT-Archiv fur mikrobiologie,1973, 88(4):285-298.
    107. Ulrike B, Anna G, Derek M. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeoecology,2005,219:117-129.
    108. Uroz S, Calvaruso C, Turpault M P and Frey-Klett P. Mineral weathering by bacteria:ecology, actors and mechanisms. Trends in Microbiology,2009,17,378-387.
    109. Uroz S, Calvaruso C, Turpault MP, et al. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology.2007,73,3019-3027.
    110. Uroz S, Calvaruso C, Turpault MP, et al. Mineral weathering by bacteria:ecology, actors and mechanisms. Trends in Microbiology,2009,17,378-387.
    111. Vancoechoutte M, et al. Evaluation of the applicability of amplified rDNA restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Research in Microbiology, 1995,146:633-641.
    112. Wakelin SA, Macdonald LM, Rogers SL, et al. Habitat selective factors in fluencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biology and Biochemistry,2008,40:803-813.
    113. Watve MG, Gangal RM. Problems in measuring bacterial diversity and a possible solution. Applied and Environmental Microbiology,1996,62:4299-4301.
    114. Welch SA, Ullman UJ. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5℃ and 35℃. Geocheimica et Cosmochimica Acta,1999,63: 3247-3259.
    115. White AF and Brantely SL. The effect of time on the weathering of silicate minerals:Why do weathering rates different in the laboratory and field. Chemical Geology,2003,202:479-506.
    116. White DC, Bobbie RJ, Herron JS, et al. Biochemical measurements of microbial mass and activity from environmental samples. In:Proc. ASTM symp. Native aquatic bacteria enumenation, activity and ecology. Minneapolis,1979.
    117. Whitman WB, Coloman DC, Wiebe WJ. Prokaryotes:the unseen majority. Proceeding of the National Academy of Sciences of the United States of America,1985,95.6578-6583.
    118. Woese CR. Refauti taxonomy. East Mayr's view of the microbial world. Proceeding of the National Academy of Sciences of the United States of America,1998,95:11043.
    119. Wu L, Jacobson AD, Hausner M. Characterization of elemental release during micrtobe-granite interactions at T=28℃. Geochimica et Cosmochimica Acta,2008,72,1076-1095.
    120. Zahra MK, Monib M, Abolel ALS, et al. Signifacance of soil inoculation with silicate bacteria. Ientralbiatt fur Mikrobiologiie,1984,139:349-357.
    121. Zhang GX, Dong H L, Xu ZQ, et al. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese continental scientific drilling project in China. Applied and Environmental Microbiology,2005,71:3213-3227.
    122.陈杰,檀满枝.南极石生地衣主要生物风化作用研究进展与展望.极地研究,2003,15(1):65-74.
    123.陈骏,姚素平.地质微生物学及其发展方向.高效地质学报,2005,11(2):154-166.
    124.陈灵芝.中国生物多样性-现状及其保护对策.北京:科学出版社,1993:99-113.
    125.仇刚.高效硅酸盐细菌的分离筛选及其与硅酸盐矿物相互作用机制研究.南京农业大学硕士学位论文,2008.
    126.崔建宇,任理,王建国,等.有机酸影响矿物钾释放的室内试验与数学模型.土壤学报,2002,39(2):241-350.
    127.崔之久,李德文,冯金良,等.夷平面研究的再评述.科学通报,2001,46(21):1761-1767.
    128.代群威,董发勤,邓建军.矿物粉尘硅酸盐细菌S35生长的影响.矿物学报,2006,20(1):33-37.
    129.东秀珠,洪俊华.原核微生物的多样性.生物多样性,2001,9:18-24.
    130.杜叶,周雪莹,连宾.胶质芽孢杆茵的胞外分泌物与细茵的解钾作用.地学前缘,2008,15(6):107-111.
    131.樊竹青.三株具有解钾性能细菌的研究.思茅师范高等专科学校学报,2004,20(3):1-2.
    132.高翔.外生菌根真菌钾吸收特性的研究.西南大学硕士学位论文,2008.
    133.贺积强,李登煜,张小平,等.紫色土硅酸盐细菌的表型特征及溶磷解钾能力.应用与环境生物学报,2003,9(1):71-77.
    134.胡桦.紫色十硅酸盐细菌遗传多样性及系统发育研究.四川大学硕士学位论文,2006.
    135.胡岳华,张在海,程冠周,等.细菌的氧化生理与其浸旷机理的研究.矿冶工程,2004,24(2):24-27
    136.贾丽萍,李为,朱敏,等.典型细菌、真菌、放线菌对石灰岩动态溶蚀效果比较.应用与环境生物学报,2007,13(1):126-130.
    137.蒋宝贵,赵斌.解磷解钾自生固氮菌的分离筛选及鉴定.华中农业大学学报,2005,24(1):24-27.
    138.蒋代华,黄巧云,蔡鹏,等.粘粒矿物对细菌吸附的测定方法.土壤学报,2007,44(4):656-662.
    139.蒋先军,谢德体,杨剑虹,等.硅酸盐细菌对矿粉和土壤的解钾强度及来源研究.西南农业大学学报,1999,21(5):473-476.
    140.来航线,程丽娟,郑险峰.硫细菌对黄绵土养分活化作用的研究.西北农业学报,1988,7(1):72-74
    141.李福春,李莎,杨用钊,等.原生硅酸盐矿物风化产物的研究进展-以长石和云母为例.岩石矿物学杂志,2006,25(5):440-448.
    142.李慧,张颖,苏振成.沈抚石油污水灌区稻田土壤细菌遗传多样性16S rDNA-DGGE分析.土壤学报,2006,43(6):972-980.
    143.李莎,李福春,程良娟.生物风华作用研究进展.矿产与地质,2006,20(6):577-582.
    144.李义明.系统发育多样性测度及其生物多样性集护中的应用.生物多样性,1998,6(1):49-54.
    145.连宾,陈骏,傅平秋,等.微生物影响硅酸盐矿物风化作用的模拟试验.高校地质学报,2005,11(2):191-186.
    146.连宾,陈烨,朱立军,等.微生物对碳酸盐岩的风化作用.地学前缘,2002,15(6):90-99.
    147.凌云。硅酸盐细菌对矿物的风化作用及其初步应用.南京师范大学硕士学位论文,2007
    148.刘荣昌,李凤汀,郝正然,等.生物钾肥(硅酸盐菌剂)开发研究与应用.中国农业科学,1998,31(1):95.
    149.刘思科,赵丙强,李秀英.不同施肥制度土壤微生物量碳氮比及细菌群落16S rDNA V3片段PCR产物的DGGE分析.生态学报,2007,27(3):1079-1085.
    150.刘玮瑜,茆振川,杨宇红,等.应用16S rRNA基因文库技术分析土壤细菌群落的多样性.微生物学报,2008,48(10):1344-1350.
    151.柳建设,王兆慧,狄梅梅,等.微生物浸出中微生物-矿物多界面作用的研究.矿冶工程,2006.26(1):40-44.
    152.马万里.土壤微生物多样性研究的新方法壤学报,2004,41(1):103-107.
    153.潘牧.一株丝状真菌对含钾矿物的风化作用研究.贵州大学硕士研究生学位论文,2006.
    154.盛下放,黄为一.硅酸盐细菌NBT菌株生理特性的研究.土壤学报,2001,38(4):569-574.
    155.盛下放,何琳燕,陈钰.土壤芽孢杆菌NBT菌株理化诱变筛选汲取对作物生长的影响.中国农业科学,2003,36(4):415-419.
    156.盛下放,黄为一.硅酸盐细菌NBT菌株解钾机理初探.土壤学报,2002,39(6):863-871.
    157.盛下放.硅酸盐细菌在不同生境土壤中的分布.土壤,2004,36(1):81-84。
    158.宋丽娜,包兴国,李隆.利用DGGE法研究不同种植体系中根际微生物群落结构.生物学杂志,2006,23(5):12-15.
    159.孙云鹏,宋水山.细菌的小分子信号转导.生命的化学,2007,27(5):396-398.
    160.王红梅,谢淑茂,顾旭龙,等.分子地质微生物学研究方法述评.地球科学进展,2005,20(6):664-670.
    161.王静,盛下放,曹建芳,等.南京龙山钾矿区植物根际可培养细菌的遗传多样性分析.微生物学报,2009,49(7):867-873.
    162.韦珂.细菌群体感应的研究进展.广西农业生物科学,2007,26,121-125.
    163.温晓芳,黄俊生.细菌呃群体感应及其信号分子.华南热带农业大学学报,2005,11(1):31-35.
    164.吴丰昌,万国江,蔡玉蓉.沉积物-水界面的生物地球化学作用.地球科学进展,1996,11(2):191-197.
    165.肖奕,王汝成,陆现彩,等.低温碱性溶液中微纹长石溶解性质研究.矿物学报,2003,23(4):333-340.
    166.徐文静.氧化亚铁硫杆菌和氧化硫硫杆菌的混合培养以其浸铜机制的研究.兰州大学硕士论文,2006.
    167.续海金,马昌前.地壳风化速率研究综述.地球科学进展,2002,17(5):670-678.
    168.薛智勇,汤江武,钱江,等.硅酸盐细菌在不同土壤中的解钾作用及对甘薯的增产效果.土壤肥料,1996,2:23-26.
    169.余建福.陕西省太白尾矿废弃地重金属抗性根瘤菌的特性及其遗传多样性研究.西北农林科技大学硕士学位论文,2007.
    170.张汉波.铅锌矿渣中重金属耐受细菌的进化生态特征研究.云南大学博士学位论文,2003.
    171.张丽娜.红壤地区土壤氨化细菌特异性16SrRNA文库的RFLP分析.南京理工大学硕士学位论文,2005.
    172.张胜,孙振华,肖宇.地球表层微生物地球化学作用.自然杂志,2001,24(2):78-81.
    173.张胜,张翠云,张云,等.地质微生物地球化学作用的意义与展望.地质通报,2005,24(10-11):1027-1031.
    174.张勇,王瑶,陈世云.群体感应信号分子A1-2研究进展.中国生物工程杂志,2005,25(9):14-19.
    175.张在海,胡岳华,邱冠周,等.从细菌学角度探讨硫化矿物的细菌浸出.矿冶工程,2000,20(2):15-18.
    176.张在海.铜硫化矿生物浸出高效菌种选育及浸出机理.中南大学博士论文,2002.
    177.赵飞,盛下放,黄智,等.山东地区钾矿物分解细菌的分离及生物学特性.生物多样性,2008,16(6):593-600.
    178.赵飞,黄智,何琳燕,等。不同风化程度钾矿物表面矿物分解细菌的筛选及遗传多样性研究。微生物学报,2010,50(5):647-653.
    179.郑会明.慢生型天山根瘤菌luxI类AHL合成酶基因的鉴定、表达及对共生结瘤的影响.南京农业大学硕士学位论文,2006.
    180.周跃飞,陆现彩,王汝成,陆建军.长石微生物风化作用的研究现状与展望.地球科学进展,2008,23(1):17-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700