用户名: 密码: 验证码:
基于统计学方法的自适应过程监控与故障诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业过程规模的不断扩大和复杂性的日益提高,有效的过程监控和故障诊断是保证生产安全、提高产品质量和经济效益的关键。对复杂的工业过程来说,准确详细的数学模型往往很难得到。即使能够得到,这些理论上的等式也只能描述系统中一部分能量及物料平衡关系。这就限制了基于模型的过程监控方法的应用。另外,随着计算机集散控制系统的应用和发展,大量的测量数据被及时采集和存储。如何从这些海量数据中挖掘出隐藏的有用信息,提高过程监控和故障诊断能力,已经成为越来越迫切需要解决的问题。统计过程监控就是在这种背景下发展起来的,并且受到了广泛关注。
     统计过程监控是一种基于多元统计理论的方法。它通过对测量数据进行分析和解释,建立统计监控模型,判断过程所处的运行状态,在线检测和识别过程中出现的异常工况,从而减小由过程故障所造成的损失,提高生产效率。
     本文在介绍统计过程监控的研究内容、方法和发展现状的基础上,首先关注了连续生产过程自适应监控方法。基于主元分析(PCA)模型的传统过程监控假设工业过程是静止的,PCA模型一旦建立就不需要发生变化。而实际的工业过程大部分都是时变的,当用一个固定的PCA模型去监控一个时变系统必然引起高的错误率。其次,对于广泛应用于过程故障诊断的Fisher判别分析(FDA),尽管比PCA或偏最小二乘(PLS)具有更好的故障诊断性能,但是当故障数据存在相互重叠时,它的故障诊断能力显著下降。与其它模式分类问题不同,过程故障诊断具有一个特殊类:正常数据类。改进的FDA充分利用这个特殊类,有效提高了FDA的故障诊断能力。最后,通过核方法将上述自适应监控方法和改进的FDA推广到非线性情况。具体来说,本文的主要工作和贡献体现在以下几个方面:
     1、针对工业过程时变特性,提出了一种新的基于可变移动窗PCA(VMWPCA)的自适应监控方法。在递归更新协方差矩阵的基础上,VMWPCA首先将移动窗技术与经典的秩r奇异值分解算法(R-SVD)结合起来,实现了PCA监控模型的递归更新。另一方面,移动窗的长度应该是一个取决于过程变化快慢的重要调节参数,而不能简单凭经验选择一个固定长度。为此,提出了一种可变移动窗策略,并详细讨论了各参数的选择方法。它的最大特点是最优移动窗长度直接由反映过程变化的均值和协方差矩阵的变化来决定。
     2、针对非线性时变工业过程,结合核主元分析(KPCA)处理非线性数据的优点,提出了基于可变移动窗核主元分析(VMWKPCA)的非线性自适应监控方法。通过核方法将VMWPCA推广到VMWKPCA,需要解决两个主要问题:一是通过核化R-SVD实现KPCA监控模型的递归更新;二是实现特征空间上的可变移动窗策略。
     3、结合过程故障诊断的特点,提出了基于变量加权FDA(VW-FDA)的故障诊断方法。VW-FDA将变量加权与传统FDA结合起来。通过变量加权获得每一个故障的加权向量后,对所有故障数据类分别进行加权。VW-FDA能够从这些加权数据中获得更多判别信息,从而提过FDA的故障诊断能力。准确的变量加权是VW-FDA的重要一环。为此,提出了基于偏F值和累计变化百分比(CPV)的变量加权方法。CPV从全部测量变量中挑选候选变量后,只计算候选变量的偏F值,而不是全部测量变量的偏F值。这样,不仅提高了偏F值的计算效率,而且也有效消除了无关变量的影响,改善了偏F值的加权性能。
     4、将非线性变量加权与核FDA(KFDA)结合起来,提出了基于变量加权KFDA(VW-KFDA)的非线性故障诊断方法。这里非线性变量加权通过最大化变量加权准则:核目标对齐(Kernel Target Alignment)来获得每一个故障的加权变量。与KFDA中的瑞利商(Reyleigh Quotient)准则不同,核目标对齐只与核矩阵有关,而不需要在优化过程中反复计算判别向量。通过对加权故障数据集执行KFDA,VW-KFDA能够从相互重叠数据中获得更多判别信息,从而提高KFDA的故障诊断能力。
With the progress of industrial processes in scale and complexity, e?ectivelyprocess monitoring is the key to ensure safety, enhance product quality and economybenefit. It is di?cult to construct the accurate mathematical model for a complexindustrial process. Even if it could be achieved, the predigested equations can onlydescribe partial relationships of energy and mass. These limit the application ofmethods based on the rigorous mathematical model. On the other hand, with therapid development of computer technology, a large amount of process data havebeen collected. How to transform these data into valuable information to improvethe monitoring performance becomes a challenge issue. It is one of the most activeresearch areas in the field of process control.
     Statistical process monitoring is a method based on statistical theory. Moni-toring model is constructed by analysis and interpretation of the collected data foron-line fault detection and diagnosis so as to reduce the losses caused by faults andenhance product e?ciency.
     After the content, method and development of statistical process monitoring aregeneralized, the dissertation firstly pays attention to adaptive process monitoring.Under the assumption that the industrial process is stationary or time-invariant,the static principal component analysis (PCA) model used for process monitoringis reasonable. However, the time-varying character of most industrial processesalways violates the assumption. When the PCA model for some particular processcondition is used to monitor these processes with normal changes, a number of falsealarms often arise. Secondly, as a classical linear technique for dimension reductionand pattern classification, Fisher discriminant analysis (FDA) has been approved tooutperform PCA-based or partial least squares-based diagnosis methods. However,the classification performance of FDA will degenerate as long as overlapping samplesexist. Unlike those classification problems in other fields, process fault diagnosis hasa common benchmark class: a normal data set. The improved FDA makes full useof the special class to improve the diagnosis performance of FDA. Finally,”kernel trick”has been used to develop the nonlinear versions of the adaptive monitoringapproach and the improved FDA.
     Specifically, the main contributions of this dissertation are as follows:
     1. In view of a time-invariant industrial process, an adaptive process monitoringapproach with variable moving window PCA (VMWPCA) is proposed. On the basisof recursively updating the correlation matrix, the approach combines the movingwindow technique with the classical rank-r singular value decomposition (R-SVD)to construct a new PCA model e?ciently and parsimoniously. Furthermore, thewindow size is an important tunable parameter that varies depending on how fast thenormal process can change. Instead of the fixed moving window selected empirically,a variable moving window strategy and the guidance to select its parameters arediscussed in detail. One merit is that the optimal moving window size is contingentupon the changes of the mean and covariance matrix that represent directly processchanges.
     2. In view of the nonlinear time-variant industrial process and integrating themerit of kernel PCA (KPCA) to deal with nonlinear data, an nonlinear adaptiveprocess monitoring approach with variable moving window KPCA (VMWKPCA)is proposed. For the kernel version of VMWPCA: VMWKPCA, two key pointsare discussed: e?ciently updating the KPCA model though kernelizing the R-SVDalgorithm and the variable moving window strategy in the feature space.
     3. An extension of FDA: variable-weighted FDA (VW-FDA) is proposed forprocess fault diagnosis. The approach incorporates the variable weighting into theconventional FDA. The variable weighting finds out each weight vector for all faults.The summed fault data weighted by the corresponding weight vectors involve morefault characteristic information than the original fault data. FDA is performed onthe summed fault data. It is helpful for VW-FDA to extract discriminative fea-tures from overlapping fault data so as to improve the fault diagnosis performanceof FDA. The exact variable weighting is a key procedure to VW-FDA. The vari-able weighting based on the partial F-values with the cumulative percent variation(CPV) is adopted. CPV based on each variable’s equivalent variation is proposedto determine candidate variables. Then, the partial F-values can be performed on these candidate variables rather than all variables. It not only reduces the com-putational complexity but also eliminates the redundant variables to improve thevariable weighting performance.
     4. A new nonlinear fault diagnosis approach with variable-weighted kernel FDA(VW-KFDA) is proposed. The approach incorporates the nonlinear variable weight-ing into KFDA. The nonlinear variable weighting finds out the weighted vector ofeach fault by maximizing the variable weighting criteria: the kernel target alignment(KTA). Unlike the Rayleigh quotient in KFDA, KTA depends on only the kernel ma-trix and doesn’t time-consumingly calculate the optimal discriminant vector duringthe optimization procedure. KFDA is performed on the weighted fault data, whichis helpful for VW-KFDA to extract discriminative features from overlapping faultdata so as to improve the fault diagnosis performance of KFDA.
引文
[1] Chiang, L.H., Russell, E.L., Braatz, R.D. Fault detection and diagnosis in in-dustrial systems. London: Springer, 2001.
    [2] Isermann, R., Ball, P. Trends in the application of model based fault detectionand diagnosis of technical processes. In Proc. of the 13th IFAC World Congress,Piscataway, New Jersey: IEEE Press, 1996, N: 1-12.
    [3] Kesavan, P., Lee, J.H. Diagnostic tools for multivariable model-based controlsystems. Ind. Eng. Chem. Res. 1997, 36(7): 2725-2738.
    [4] Nimmo, I. Adequately address abnormal situation operations. Chemical Engi-neering Process. 1995, 91(9): 36-45.
    [5]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社. 2000.
    [6] Venkatasubramanian, V., Rengaswamy, R., Yin, K.W., Kavuri, S.N. A review ofprocess fault detection and diagnosis Part I: Quantitative model-based methods.Computers and Chemical Engineering. 2003, 27(3): 293–311.
    [7] Venkatasubramanian, V., Rengaswamy, R., Yin, K.W., Kavuri, S.N. A reviewof process fault detection and diagnosis Part II: Qualitative models and searchstrategies. Computers and Chemical Engineering. 2003, 27(3): 313–326.
    [8] Venkatasubramanian, V., Rengaswamy, R., Yin, K.W., Kavuri, S.N. A reviewof process fault detection and diagnosis Part III: Process history based methods.Computers and Chemical Engineering. 2003, 27(3): 327–346.
    [9]谢磊.间歇过程统计性能监控研究[博士论文].杭州:浙江大学. 2005.
    [10] Basseville, M. Detecting changes in signals and systems - a survey. Automatica.1988, 24(3): 309-326.
    [11] Frank, P.M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results. Automatica. 1990, 26(3):459-474.
    [12] Huang, Y., Gertler, J., Mcavoy, T.J. Sensor and actuator fault isolation bystructured partial PCA with nonlinear extensions. Journal of Process Control.2000, 10(5): 459-469.
    [13] Wang, X.Z., McGreavy, G. Automatic classification for mining process opera-tional data. Industrial & Engineering Chemistry Research. 1998, 37(6): 2215–2222.
    [14] Martin, E.B., Morris, A.J. An overview of multivariate statistical process con-trol in continuous and batch process performance monitoring. Transactions ofthe Institute of Measurement and Control. 1996, 18(1): 51–60.
    [15] Kourti, T. Process analysis and abnormal situation detection: Form theory topractice. IEEE Transactions on Control Systems Magazine. 2002, 22 (5): 10–25.
    [16] Liang, J., Qian, J. Multivariate statistical process monitoring and control: Re-cent developments and applications to chemical industry. Chinese Journal ofChemical Engineering. 2003, 11(2): 191–203.
    [17]陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测.自动化学报.2006, 32(3): 400–410.
    [18] Qin, S.J. Statistical process monitoring: Basics and beyond. Journal of Chemo-metrics. 2003, 17(8-9): 480–502.
    [19]张杰,阳宪惠.多变量统计过程控制.北京:化学工业出版社. 2000.
    [20] MacGregor, J.F. Using on-line process data to improve qualtiy: challenages forstatisticians. International Statistical Review. 1997, 65 (3): 309–323.
    [21]赵旭.基于统计学方法的过程监控与质量控制研究[博士论文].上海:上海交通大学. 2006.
    [22]王惠文.偏最小二乘回归方法及应用.北京:国防工业出版社, 1999.
    [23] Pearson, R.K. Data clearing for dynamic modeling and control. In Proc. of theEuropean Control Conf., Karlsruhe, Germany, IFAC, 1999, Paper F853.
    [24] Kourti, T. Application of latent variable methods to process control and mul-tivariate statistical process control in industry. Int. J. Adapt. Control SignalProcess, 2005,19(4): 213-246.
    [25] Jackson, J.E. A user’s guide to principal components. New York: Wiley. 1991.
    [26] Wise, B.M., Ricker, N.B., Velkamp, D.J., Kowalski, B.R. A theoretical basis forthe use of principal component models for monitoring multivariate processes.Process Control and Quality. 1990, 1: 41-51.
    [27] Dunia, R., Qin, S.J., Edgar, T.F., McAvoy, T.J. Identification of faulty sensorsusing principal component analysis. AIChE J.. 1996, 42(10): 2797-2812.
    [28] Geladi, P., Kowalshi, B.R. Partial least squares regression: A tutorial. AnalyticaChimica Acta. 1986, 185(1): 1-17.
    [29] Hoskuldsson, A. PLS regression methods. Journal of Chemometrics. 1988, 2(3):211–228.
    [30]郭明.基于数据驱动的流程工业性能监控与故障诊断研究[博士论文].浙江:浙江大学. 2004.
    [31] Tsung, F. Statistical monitoring and diagnosis of automatic controlled processusing dynamic PCA. International Journal of Production Research. 2000, 38(3):625-637.
    [32] Chen, J.H., Liao, C.M. Dynamic process fault monitoring based on neural net-work and PCA. Journal of Process Control. 2002, 12(2): 277-289.
    [33] Kaspar,M.H., Ray, W.H. Dynamic PLS modeling for process control. ChemicalEngineering Science. 1993, 48: 3447-3461.
    [34] Lakshminarayanan, S., Shah, S.L., Nandakumar, K. Modeling and control ofmultivariable processes: Dynamic PLS approach. AIChE Journal. 1997, 43(9):2307-2322.
    [35] Ku, W., Storer, R.H., Georgakis, C. Disturbance detection and isolation by dy-namic principal component analysis. Chemometrics and Intelligent LaboratorySystems. 1995, 30(1): 179-196.
    [36]陈耀,王海文,孙优贤.基于动态主元分析的统计过程监视.化工学报. 2000,51(5): 666-670.
    [37] Gnanadesikian, R. Methods for Statistical Data Analysis of Multivariate Ob-servation. New York: Wiley. 1977.
    [38] VapniK, V.N. The nature of statistical leaning theory. New York: Springer.1995.
    [39] Scholkoph, B., Smola, A. Learning with kernels. MIT Press. 2002.
    [40] Chiang, L.H., Kotanchek, M.E., Kordon, A.K. Fault diagnosis based on Fisherdiscriminant analysis and support vector machines. Computers and ChemicalEngineering. 2004, 28(8): 1389–1401.
    [41] Lee, J.M., Yoo, C.K., Choi, S.W., Vanrolleghem, P., Lee, I.B. Nonlinear processmonitoring using kernel principal component analysis. Chemical EngineeringScience. 2004, 59 (1): 223–234.
    [42] Hastie,T., Stuetzle, W. Principal curves. Journal of American Statistical Asso-ciation, 1989, 84: 502-516.
    [43] Dong, D., McAvoy, T.J. Nonlinear principal component analysis–based on prin-cipal curves and neural networks. Computers and Chemical Engineering. 1996,20(1): 65–78.
    [44] Kramer, M.A. Nonlinear principal component analysis using autoassociativeneural net-works. AIChE Journal. 1991, 37(2):233–243.
    [45] Tan, S., Mavrovouniotis, M.L. Reducing data dimensionality through optimiz-ing neural network inputs. AIChE Journal. 1995, 41(6):1471–1480.
    [46] Chessari, C.M. Studies in modeling and advanced control[PhD thesis]. Aus-tralia: University of Sydney. 1995.
    [47] Kulkarni, S.G., Chaudhary, A.K., Nandi, S., Tambe, S.S., Kulkarni, B.D. Mod-eling and monitoring of batch processes using principal component analysis(PCA) assisted generalized regression neural networks (GRNN). BiochemicalEngineering Journal. 2004, 18(3): 193-210.
    [48] Wold, S., Kettaneh-Wold, N., Skagerberg, B. Nonlinear PLS modeling. Chemo-metrics and Intelligent Laboratory Systems. 1989, 7(1-2): 53–65.
    [49] Qin, S.J., McAvoy, T.J. Nonlinear PLS modeling using neural networks. Com-puters and Chemical Engineering. 1992, 16(4): 379–391.
    [50] Martin, E.B., Morris, A.J. Non-parametric confidence bounds for process per-formance monitoring charts. Journal of Process Control. 1996, 6(6): 349-358.
    [51] Chen, Q., Wynne, R.J., Goulding, P. The application of principal componentanalysis and kernel density estimation to enhance process monitoring. ControlEngineering Practice. 2000, 8(5): 531-543.
    [52]陈希孺,方兆本,李国英,陶波.非参数统计.上海:上海科学技术出版社. 1989.
    [53]王海清,宋执环,王慧,詹宜巨.小波阈值密度估计器的设计与应用.仪器仪表学报. 2002, 23(1): 12-15.
    [54] Hyvarinen, A., Karhunen, J., Oja, E. Independent component analysis. NewYork: Wiley. 2001.
    [55] Kano, M., Tanaka, S., Hasebe, S., Hashimoto, I., Ohno, H. Monitoring inde-pendent components for fault detection. AIChE Journal. 2003, 49(4): 969–976.
    [56] Kano, M., Hasebe, S., Hashimoto, I., Ohno, H. Evolution of multivariate sta-tistical process control: Application of independent component analysis andexternal analysis. Computers and Chemical Engineering. 2004, 28(6-7): 1157–1166.
    [57] Lee, J.M., Yoo, C.K., Lee, I.B. Statistical process monitoring with independentcomponent analysis. Journal of Process Control. 2004, 14(5): 467–485.
    [58] Lee, J.M., Yoo, C.K., Lee, I.B. Statistical monitoring of dynamic processesbased on dynamic independent component analysis. Chemical Engineering Sci-ence. 2004, 59(14): 2995–3006.
    [59]陈国金,梁军,钱积新.独立元分析方法(ICA)及其在化工过程监控和故障诊断中的应用.化工学报. 2003, 54(10): 1474–1477.
    [60]何宁,郭明,谢磊,王树青.基于独立成分的动态多变量过程的故障检测与诊断方法.化工学报. 2005, 56(4): 646–652.
    [61] Ge, Z.Q., Song, Z.H. Process monitoring based on independent componentanalysis-principal component analysis (ICA-PCA) and similarity factors. In-dustrial & Engineering Chemistry Research. 2007, 46(7): 2054–2063.
    [62] He, X.B., Yang, Y.P. Variable MWPCA for Adaptive Process Monitoring. Ind.Eng. Chem. Res. 2008, 47(2): 419-427.
    [63] Fortescue, T.R., Kershenbaum, L.S., Ydstie, B.E. Implementation of self-tuningregulators with variable forgetting factors. Automatica. 1981, 17(6): 831-835.
    [64] Choi, S.W., Martin, E.B., Morris, A.J., Lee, I.B. Adaptive multivariate statis-tical process control for monitoring time-varying process. Ind. Eng. Chem. Res.2006, 45(9): 3108-3118.
    [65] Li, W., Yue, H. H., Valle-Cervantes, S., Qin, S.J. Recursive PCA for adaptiveprocess monitoring. J. Process Control. 2000, 10(5): 471-486.
    [66] Golub, G.H., Van Loan, C.F. Matrix computations. Baltimore, Maryland. TheJohns Hopkins University Press. 1996.
    [67] Nomikos, P., MacGregor, J.F. Monitoring batch processes using multiway prin-cipal component analysis. AIChE Journal. 1994, 40(8): 1361–1375.
    [68] Nomikos, P., MacGregor, J.F. Multivariate SPC charts for monitoring batchprocesses. Technometrics. 1995, 37(1): 41–59.
    [69] Nomikos, P., MacGregor, J.F. Multi-way partial least squares in monitoringbatch processes. Chemometrics and Intelligent Laboratory Systems. 1995, 30(1):97–108.
    [70] Lennox, B., Hiden, H.G., Montague, G.A., Kornfeld, G., Goulding, P.R. Appli-cation of multivariate statistical process control to batch operations. Computersand Chemical Engineering. 2000, 24(2-7): 291–296.
    [71] Kassidas, A., MacGregor, J.F., Taylor, P.A. Synchronization of batch trajecto-ries using dynamic tine warping. AIChE Journal. 1998, 44(4): 864–875.
    [72] Gollmer,K., Posten, C. Supervision of bioprocesses using a dynamic time warp-ing algorithm. Control Engineering Practice. 1996, 4(9): 1287–1295.
    [73] Kourti, T., Lee, J., MaGregor, J.F. Experiences with industrial applications ofprojection methods for multivariate statistical process control. Computers andChemical Enginerring. 1996, 20(1): S745–S750.
    [74] Neogi, D., Schlags, C. Multivariate statistical analysis of an emulsion batchprocess. Industrial & Engineering Chemistry Research. 1998, 37(10): 3971–3979.
    [75]谢磊,王树青,张建明.基于PSO的间歇生产鲁棒统计过程监控研究.化工学报.2005, 56(3): 492–498.
    [76] Xie, L., Zhang, J.M., Wang, S.Q. A robust statistical batch process monitoringframework and its application. Chinese Journal of Chemical Engineering. 2004,12(5): 682–687.
    [77] Bakshi, B.R. Multiscale PCA with application to multivariate statistical processmonitoring. AIChE Journal. 1998, 44(7): 1596–1610.
    [78] Wang, D., Romagnoli, J.A. Robust multi-scale principal components analysiswith applications to process monitoring. Journal of Process Control. 2005, 15(8):869–882.
    [79] Yoo, C.K., Choi, S.W., Lee, I.B. Dynamic monitoring method for multiscalefault detection and diagnosis in MSPC. Industrial & Engineering ChemistryResearch. 2002, 41(17): 4303–4317.
    [80] Lee, D.S., Park, J.M., Vanrolleghem, P.A. Adaptive multiscale principal com-ponent analysis for on-line monitoring of a sequencing batch reactor. Journalof Biotechnology. 2005, 116(2): 195–210.
    [81] Janne, K., Pettersen, J., Lindberg, N.-O., Lundstedt, T. Hierarchical principalcomponent analysis(PCA) and projection to latent structures(PLS) techniqueon spectroscopic data as a data pretreatment for calibration. Journal of Chemo-metrics. 2001, 15(4):203–213.
    [82] MacGregor, J.F., Jaeckle, C., Kiparissides, C., Koutoudi, M. Process monitor-ing and diagnosis by multiblock PLS methods. AIChE Journal. 40(5):826–838,1994
    [83] Kosanovich, K.A., Piovoso, M.J., Dahl, K.S. Multi-way PCA applied to an in-dustrial batch process. Proceeding of American Control Conference, Baltlmore,Maryland, 1994, 1294-1298.
    [84] Wold, S., Kettaneh, N., Tjessem, K. Hierarchical multiblock PLS and PC mod-els for easier interpretation and as an alternative to variable selection. Journalof Chemometrics. 1996, 10(5-6): 463-482.
    [85] Wangen, L.E., Kowalski, B.R. A multiblock partial least squares algorithm forinvestigating complex chemical systems. Journal of Chemometrics. 1998, 3(1):3-20.
    [86] Westerhuis, J.A., Kourti, T., MacGregor, J.F. Analysis of multiblock and hier-archical PCA and PLS models. Journal of Chemometrics. 1998, 12(5): 301-31.
    [87]陈亚华,蒋丽英,郭明,树青.基于多向Fisher判别分析的间歇过程性能监控.吉林大学学报(信息科学版). 2004, 22(4): 384-387.
    [88] Zhao, X., Shao, H. On-line batch process monitoring and diagnosis based onFisher discriminant analysis. Journal of Shanghai Jiaotong University. 2006,3(8): 307-312.
    [89] Zhou, Y., Hahn, J., Mannan, M.S. Process monitoring based on classificationtree and discriminant analysis. Reliability Engineering and System Safety. 2006,91(5): 546-555.
    [90] Daniel, B.E., Bongers, R. Development of a classification scheme for fault de-tection in Longwall systems[Ph.D thesis]. Brisbane, Australia: Queensland Uni-versity. 2004.
    [91] Negiz, A., Cinar, A. Statistical monitoring of multivariable dynamic processeswith state-space models. AIChE J.. 1997, 43(8): 2002-2020.
    [92] Russell, E.L., Chiang, L.H., Braatz, R.D. Fault detection in industrial processesusing canonical variate analysis and dynamic principal component analysis.Chemometrics and Intelligent Laboratory Systems. 2000, 51(1): 81–93.
    [93] Simoglou, A., Martin, E.B., Morris, A.J. Statistical performance monitoringof dynamic multivariate processes using state space modelling. Computers andChemical Engineering. 2002, 26(6): 909–920.
    [94]赵忠盖,刘飞.因子分析及其在过程监控中的应用.化工学报. 2007, 58(4):970-974.
    [95] Kamaledin Setarehdan, S. Modified evolving window factor analysis for processmonitoring. Journal of Chemometrics. 2005, 18(9): 414-421.
    [96] Hu, K., Yuan, J. Multivariate statistical process control based on multi-way locality preserving projections. Journal of Process Control. 2008, 18(7-8):797–807.
    [97] Hu, K., Yuan, J. Statistical monitoring of fed-batch process using dynamicmultiway neighborhood preserving embedding. Chemometrics and IntelligentLaboratory Systems. 2008, 90(2): 195–203.
    [98] Miller, P., Swanson, R.E., Heckler, C.F. Contribution plots: the missing linkin multivariate quality control. Fall Conf. of ASQC and ASA, Milwaukee, WI,1993.
    [99] Hopkins, R.W., Miller, P., Swanson, R.E., Scheible, J.J. Method of controllinga manufacturing process using multivariate analysis. US Patent 5442562. 1995.
    [100] Westerhuis, J.A., Gurden, S.P., Smilde, A.K. Generalized contribution plotsin multivariate statistical process monitoring. Chemometrics and IntelligentLaboratory Systems. 2000, 51(1): 95-114.
    [101] Kourti, T., MacGregor, J.F. Multivariate SPC methods for monitoring anddiagnosing of process performance. Proc. PSE. 1994, 739–746.
    [102] Staroswiecki, M., Comtet-Varga, G. Analytical redundancy relations for faultdetection and isolation in algebraic dynamic systems. Automatica. 2001, 37(5):687-699.
    [103] Gertler, J., Li, W.H., Huang, Y.B., McAvoy, T. Islation enhanced principalcomponent analysis. AIChE Journal. 1999, 45(2): 323-334.
    [104] Gertler, J., Cao, J. Design of optimal structured residuals from partial princi-pal component models for fault diagnosis in linear systems. Journal of ProcessControl. 2005, 15(5): 585-603.
    [105]李荣雨,基于PCA的统计过程监控研究[博士论文].杭州:浙江大学. 2007.
    [106] Dunia, R., Qin, S.J. Subspace approach to multidimensional fault identifica-tion and reconstruction. AIChE Journal. 1998, 44(8): 1813-1831.
    [107] Yue, H.H., Qin, S.J. Reconstruction-based fault identification using a com-bined index. Industrial & Engineering Chemistry Research. 2001, 40(20): 4403-4414.
    [108]王海清,宋执环,王慧. PCA过程检测方法的故障检测行为分析.化工学报.2002, 53(3): 297-301.
    [109] Zhang, J., Martin, E.B., Morris, A.J. Fault detection and diagnosis usingmultivariate statistical techniques. Chemical Engineering Research and Design.1996, 74(1): 89-96.
    [110] Yoon, S., MacGregor, J.F. Fault diagnosis with multivariate statistical modelspart I: Using steady state fault signatures. J. Process Control, 2001, 11(4):387-400.
    [111] Raich, A.C., Cinar, A. Statistical process monitoring and disturbance isolationin multivariate continuous process. In Proc. of the IFAC Conf. on AdvancedControl of Chemical Processes. New York, Pergamon Press 1994, 427-435.
    [112] Raich, A.C., Cinar, A. Multivariate statistical methods for monitoring con-tinuous processes: Assessment of discriminatory power disturbance models anddiagnosis of multiple disturbances. Chemometrics and Intelligent LaboratorySystems. 1995, 30(1): 37-48.
    [113] Nouwen, J., Lindgren, F., Hansen, W.K.B., Verharr, H.J.M., Hermens, J.L.M.Classification of environmentally occurring chemicals using structural fragmentsand PLS discriminant analysis. Environ. Sci. Technol. 1997, 31(8): 2313-2318.
    [114] Chiang, L.H., Russell, E.L., Braatz, R.D. Fault diagnosis in chemical processesusing Fisher discriminant analysis, discriminant partial least squares, and prin-cipal component analysis. Chemometr. Intell. Lab. Syst. 2000, 50(2): 243-252.
    [115] He, Q.P., Qin, S.J., Wang, J. A new fault diagnosis method using fault direc-tions in Fisher discriminant analysis. AIChE J. 2005, 51(2): 555-571.
    [116] He, X.B., Yang, Y.P., Yang, Y.H. Fault diagnosis based on variable-weightedkernel Fisher discriminant analysis. Chemometrics and Intelligent LaboratorySystems. 2008, 93(1): 27–33.
    [117] Singhal, A., Seborg, D.E. Pattern matching in historical batch data usingPCA. IEEE Control Systems Magazine. 2002, 22(5): 53-63.
    [118] Chu, Y., Qin, S.J., Han, C. Fault detection and operation mode identificationbased on pattern classification with variable selection. Industrial & EngineeringChemistry Research. 2004, 43(7): 1701-1710.
    [119] Guo, M., Xie, L., Wang, S.Q. Research on an integrated ICA-SVM basedframework for fault diagnosis. IEEE International Conference on Systems, Man& Cybernetics, Washington, USA, 2003, 2710-2715.
    [120] Wise, B.M., Gallagher, N.B., Butler, S.W., White, D.D., Barna, G.G. A com-parison of principal component analysis, multiway principal component analy-sis, trilinear decomposition and parallel factor analysis for fault detection in asemiconductor etch process. Journal of Chemometrics. 1999, 13(3-4): 379-396.
    [121] Martin, E.B., Morris, A.J., Kiparissides, C. Manufacturing performance en-hancement through multivariate statistical process control. Annual Reviews inControl. 1999, 23(1): 35-44.
    [122]方开泰.实用多元统计分析.上海:华东师范大学出版社. 1992.
    [123] Wold, S. Cross validatory estimation of the number of components in factorand principal component analysis. Technometrics. 1978, 20: 397-406.
    [124] Osten, D.W. Selection of optimal regression models via cross- validation. Jour-nal of Chemometrics. 1988, 2: 39-48.
    [125] Malinowski, F.R. Factor Analysis in Chemistry. New York. Wiley-Inter- sci-ence. 1991.
    [126] Cattell, R.B. The scree test for the number of factors, Multi- variate Behav.Res. 1966, 1: 245-278.
    [127] Xu, G., Kailath, T. Fast estimation of principal eigenspace using Lanczosalgorithm. SIAM J. Matrix Anal. Appl. 1994, 15(3): 974-994.
    [128] Akaike, H. A new look at the statistical model identification. IEEE Trans.Auto. Control. 1974, 19(6): 716-723.
    [129] Wax, M., Kailath, T. Detection of signals by information theoretic criterial.IEEE Trans. Acoust. Speech Signal Processing. 1985, 33(2): 387-392.
    [130] Rissanen, J. Modeling by shortest data description. Automatica. 1978, 14(5):465-471.
    [131] Jackson, J.E., Mudholkar, G. Control preocedures for residuals associated withprincipal component analysis. Technometrics. 1979, 21(3): 341-349.
    [132] Tracy, N.D., Young, J.C., Mason, R.L. Multivariate control charts for individ-ual observations. J. Qual. Technol. 1992, 24(2): 88-95.
    [133] Wold, S. Exponentially weighted moving principal components analysis andprojections to latent structures. Chemom. Intell. Lab. Syst. 1994, 23(1): 149-161.
    [134] Dayal, B.S., MacGregor, J.F. Recursive exponentially weighted PLS and itsapplications to adaptive control and prediction. Journal of Process Control.1997, 7(3): 169–179.
    [135] Lane,S., Martin, E.B., Morris, A.J., Gower, P. Application of exponentiallyweighted principal component analysis for the monitoring of a polymer .lm man-ufacturing process. Transactions of the Institute of Measurement and Control.2003, 25(1): 17-35.
    [136] Qin, S.J. Recursive PLS algorithms for adaptive data modeling. Comput.Chem. Eng. 1998, 22(4-5): 503-514.
    [137] Lowry, C.A., Woodall, W.H., Champ, C.W., Rigdon, S.E. A multivariate ex-ponentially weighted moving average control chart. Technometrics. 1992, 34(1):46-53.
    [138] Wang, X., Kruger, U., Irwin, G.W. Process monitoring approach using fastmoving window PCA. Ind. Eng. Chem. Res. 2005, 44(15): 5691-5702.
    [139] Aravena, J.L. Recursive Moving Window DFT Algorithm. IEEE Trans. Com-put. 1990, 39(1): 145-148.
    [140] Fuchs, E., Donner, K. Fast Least-Squares Polynomial Approximation in Mov-ing Time Windows. IEEE International Conference on Acoustics, Speech, andSignal Processing. 1997, 1965-1968.
    [141] Li, Y. On incremental and robust subspace learning. Pattern Recognit. 2004,37(7), 1509-1518.
    [142] Lim, J., Ross, D., Lin, R., Yang, M. Incremental learning for visual tracking.AdVances in NIPS. 2004, 793-800.
    [143] Brand, M. Incremental singular value decomposition of uncertain data withmissing values. ECCV. 2002, 707-720.
    [144] Hoegaerts, L., De Lathauwer, L., Goethals, I., Suykens, J.A.K., Vandewalle,J., De Moor, B. E?ciently updating and tracking the dominant kernel principalcomponents. Neural Networks 2007, 20, 220-229.
    [145]冯雄峰,阳宪惠,徐用懋.多元统计过程控制方法的平方预测误差分析.清华大学学报(自然科学版). 1999, 39(7): 42-46.
    [146] Jin, H.D., Lee, Y., Lee, G., Han, C. Robust recursive principal componentanalysis modeling for adaptive monitoring. Ind. Eng. Chem. Res. 2006, 45(2):696-703.
    [147] Hwang, D.H., Han, C. Real-time monitoring for a process with multiple oper-ating models. Control Eng. Pract. 1999, 7(7): 891-902.
    [148] Scholkopf, B., Smola, A.J., Muller, K.R. Nonlinear component analysis as akernel eigenvalue problem. Neural Comput. 1998, 10(5): 1299-1319.
    [149] Choi, S.W., Lee, C., Lee, J.M., Park, J.H., Lee, I.B. Fault detection andidentification of nonlinear processes based on kernel PCA. Chemometrics andIntelligent Laboratory Systems. 2005, 75(1): 55-67.
    [150]谢磊,王树青.递归核PCA及其在非线性过程自适应监控中的应用.化工学报2007, 58(7): 1776-1782
    [151] Shawe-Taylor, J., Cristianini, N. Kernel methods for pattern analysis. London:Cambridge Univ. Pres. 2004.
    [152]边肇祺,张学工.模式识别(第二版).北京:清华大学出版社. 2000.
    [153] Mika, S., Ratsch, G., Weston, J., Sch¨olkopf, B., Müllers, K.R. Fisher discrim-inant analysis with kernels, IEEE International Workshop on Neural Nerworksfor Signal Processing, Madison, USA, 1999, IX: 41-48.
    [154] Bach, F.R., Jordan M.I. Kernel independent component analysis. J. MachineLearning Res. 2002, 3(7):1-48.
    [155] Chin, T.J., Schindler, K., Suter, D. Incremental kernel SVD for face recog-nition with image sets. Proceedings of the 7th International Conference onAutomatic Face and Gesture Recognition. 2006, 461-466.
    [156] Miller, P., Swanson, R.E. Contribution plots: a missing link in multivariatequality control. Appl. Math. And Comp. Sci. 1998, 8(4): 775-792.
    [157] Raich, A.C., Cinar, A. Statistic process monitoring and disturbance diagnosisin multivariable continue processes. AIChE J. 1996, 42(4): 995-1009.
    [158] Akbaryan, F., Bishnoi, P.R. Fault diagnosis of multivariate systems usingpattern recognition and multisensor data analysis technique. Comput. Chem.Eng. 2001,25(9): 1313-1339.
    [159] Duda, R.O., Hart, P.E., Stork, D.G. Pattern classification. New York: Wiley.2000.
    [160] Kang, Y., Morooka, K., Nagahashi, H. Texture classification using hierarchicallinear discriminant space. IEICE Trans. Inf. & Syst. 2005, E88-D(10): 2380-2388.
    [161] Loog, M., Duin, R.P.W., Haeb-Umbach, R. Multiclass linear dimension re-duction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Analysisand Machine Intelligence. 2001, 23(7): 762-766.
    [162] Tang, E.K., Suganthan, P.N., Yao, X., Qin, A.K. Linear dimensionality reduc-tion using relevance weighted LDA. Pattern Reconition. 2005, 38(4): 485-493.
    [163] Beale, G.O., Kim, J.H. Fisher discriminant analysis and the T2 statistic forprocess fault detection and classification. IECON. 2002, 3: 1995-2000.
    [164] Krzanowski, W.J. Principles of multivariate analysis (revised ed.). Oxford:Oxford University Press. 2003.
    [165] Rencher, A.C. Methods of multivariate analysis. New York: Wiley. 2002.
    [166] Nickolay, T.T., Ian, T.J. DALASS: Variable selection in discriminant analysisvia the LASSO. Computational Statistics & Data Analysis. 2007, 51(8): 3718-3736.
    [167] Chiang, L.H., Pell, R.J. Genetic algorithms combined with discriminant anal-ysis for key variable identification. J. Process Control. 2004, 14(2): 143-155.
    [168] Kresta, J.V., MacGregor, J.F., Marlin, T.E. Multivariate statistical monitor-ing of process operating performance. Canadian Journal of Chemical Engineer-ing. 1991, 69(2): 35-47.
    [169] Xu, L., Jiang, J.H., Wu, H.L., Shen, G.L., Yu, R.Q. Variable-weighted PLS.Chemometr. Intell. Lab. Syst. 2007, 85(1): 140-143.
    [170] Downs, J.J., Vogel, E.F. A plant-wide industrial process control problem. Com-put. Chem. Eng. 1993, 17(3): 245-255.
    [171] Lyman, P.R., Georgakis, C. Plant-wide control of the Tennessee Eastmanproblem. Comput. Chem. Eng. 1995, 19(3): 321-331.
    [172] Johannesmeyer, M.C., Singhal, A., Seborg, D.E. Pattern matching in historicaldata. AIChE J. 2002, 48(9): 2022-2038.
    [173] Baudat, G., Anouar, F. Generalized discriminant analysis using a kernel ap-proach. Neural Computation. 2000, 12(10): 2385-2404.
    [174] Yang, J., Frangi, A.F., Yang, J., Zhang, D., Jin, Z. KPCA plus LDA: a com-plete kernel Fisher discriminant framework for feature extraction and recogni-tion. IEEE Transactions On Pattern Analysis and Machine Intelligence. 2005,27(2): 230-244.
    [175] Zhang, Y., Yang, J., Yang, J., Wu, X. A reformative kernel Fisher discriminantalgorithm and its application to face recognition. Neurocomputing. 2006, 69(13-15): 1806-1810.
    [176] Zhang, X., Yan, W., Zhao, X., Shao, H. Nonlinear biological batch processmonitoring and fault identification based on kernel Fisher discriminant analysis.Process Biochemistry. 2007, 42(8): 1200-1210.
    [177] Cho, H.W. Nonlinear feature extraction and classification of multivariate pro-cess data in kernel feature space. Expert System with Application. 2007, 32(2):534-542.
    [178] Cristianini, N., Kandola, J., Elise?, A., Shawe-Taylor, J. On kernel targetalignment, Proceedings of the Neural Information Processing Systems. NIPS’01,MIT Press, 2001, 367-373.
    [179] Kandola, J., Shawe-Taylor, J., Cristianini, N. On the extensionsof kernel alignment. Technical Report. http://eprints.ecs.soton.ac.uk/9745/1/NeuroCOLT Technical Report 2002 120.pdf.
    [180] Louw, N., Steel, S.J. Variable selection in kernel Fisher discriminant analysisby means of recursive feature elimination. Computational Statistics & DataAnalysis, 2006, 51(3): 2043-2055.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700