用户名: 密码: 验证码:
集合型故障检测与诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
故障检测与诊断(FDD, Fault Detection and Diagnosis)是保证现代工业安全性、可靠性、产品质量和效益的重要手段。由于传统的单一型故障检测与诊断技术仅适合处理某些简单系统,难以直接扩展至时变、非线性、非高斯、多模、间歇等复杂的多变量动态随机工业过程,因此,近年来将几种单一型故障检测与诊断技术相结合的集合型故障检测与诊断技术,特别是,集合型实时故障检测与诊断技术成为国内外学术界和工业界研究的热点与难点。
     为了提高集合型故障检测与诊断的准确性、实时性和快速性,本文在总结和分析国内外研究现状基础上,重点围绕集合型实时故障检测与诊断的三个关键技术:提升小波实时降噪技术、故障特征增量提取技术、基于在线机器学习的故障分类与聚类技术,展开了深入研究。主要工作包括:1)集合型实时故障检测与诊断一般结构研究;2)针对实时数据,集合型实时故障检测与诊断改进方法研究;3)针对历史数据,批量式集合型快速故障检测与诊断改进方法研究。
     本文将提升小波、增量式特征提取和在线分类与聚类技术相结合,提出了一种集合型实时故障检测与诊断典型结构,即“提升小波实时去噪+增量式特征提取+在线故障分类与聚类”结构。
     为了降低噪声对集合型实时故障检测与诊断性能的影响,提出了基于提升小波双变量阈值实时降噪方法。
     为了提高集合型故障检测的准确性、实时性和快速性,针对高斯过程,提出了3种集合型故障检测改进方法。具体为:针对时变过程,提出了基于提升小波和移动窗PCA (LW-MWPCA)实时故障检测方法;针对动态非线性过程,提出了基于提升小波和动态核PCA (LW-DKPCA)故障检测方法;针对间歇过程,提出了基于提升小波和多项PCA(LW-MPCA)故障检测方法。
     为了提高集合型故障诊断的准确性、实时性和快速性,针对高斯过程,提出了基于提升小波和自适应递推最小二乘支持向量机(LW-ARLSSVM)、基于提升小波和增量概率神经网络(LW-IPNN)、基于提升小波和增量聚类(LW-ICLUSTER)3种集合型实时故障诊断改进方法;针对非高斯过程,提出了在提升小波实时降噪基础上,基于快速独立成分分析和在线机器学习两种集合型快速故障诊断改进方法,即LW-FICA-ARLSSVM、LW-FICA-IPNN方法。
     理论分析和实验研究表明,本文提出的集合型故障检测与诊断系列方法的性能优于单一类型的故障检测与诊断方法的性能。本论文的研究,为集合型实时故障检测与诊断技术的应用提供了理论依据。
Fault detection and diagnosis (FDD) is an important means to ensure industrial safety, reliability, product quality and effectiveness. Traditional single fault detection and diagnosis techniques are only suitable for handling some simple systems, and are difficult to be directly extended to complex multi-variable, dynamic, stochastic industrial processes with time-varying, nonlinear, non-Gaussian, multi-models, fed batch characteristics. For these reasons, ensemble fault detection and diagnosis techniques, which combine several single methods, in particular, ensemble real-time fault detection and diagnosis techniques have become research hotspots and are full of challenge in recent years.
     To improve the accuracy, real-time and rapidity of ensemble fault detection and diagnosis, this thesis based on summary and analysis of existing research work at home and abroad, pays much attention on three key technologies of the ensemble real-time fault detection and diagnosis:data real-time de-noising technique based on lifting wavelet transform, incremental fault feature extraction technique, fault classification and clustering technique based on online machine learning. The main tasks of this thesis are:1) to do research on general structure of ensemble real-time fault detection and diagnosis;2) to present some improved real-time ensemble fault detection and diagnosis methods based on real-time data;3) to put forward some improved fast ensemble approaches of fault detection and diagnosis based on historical data.
     A typical structure of ensemble real-time fault detection and diagnosis, which is composed of "lift wavelet de-noising+incremental feature extraction+online fault classification and clustering" is presented in this thesis.
     To reduce the impact of noise on the performance of ensemble real-time fault detection and diagnosis, a real-time de-noising method which based on lifting wavelet bivariate threshold is proposed.
     To improve the accuracy, real-time and rapidity of ensemble fault detection, three ensemble fault detection approaches are proposed. Specifically, they are the improved real-time fault detection methods based on lifting wavelet and moving window PCA (LW-MWPCA) for stochastic time-varying systems, lifting wavelet and dynamic kernel PCA (LW-DKPCA) for dynamic nonlinear systems, and lifting wavelet and multiway PCA (LW-MPCA) for batch processes.
     To improve the accuracy, real-time and rapidity of ensemble fault diagnosis, three improved ensemble real-time fault diagnosis methods that are based on lifting wavelet and adaptive recursive least squares support vector machine (LW-ARLSSVM), or based on lifting wavelet and incremental probabilistic neural network (LW-IPNN), or based on lifting wavelet and incremental clustering (LW-ICLUSTER) are proposed for real-time data. In addition, based on real-time noise reduction by lifting wavelet, two improved ensemble fast fault diagnosis approaches including fast independent component analysis and adaptive recursive support vector machine (LW-FICA-ARLSSVM), fast independent component analysis and incremental probabilistic neural network (LW-FICA-IPNN) are presented for non-Gaussian processes.
     Theoretical analysis and experimental studies have shown that the performance of ensemble fault detection and diagnosis approaches proposed in this thesis are superior to that of single type methods of fault detection and diagnosis. This thesis provides a theoretical basis for the application of ensemble real-time fault detection and diagnosis techniques.
引文
[1]S. Sahin, M.R. Tolun, R. Hassanpour. Hybrid expert systems:A survey of current approaches and applications. Expert Systems with Applications,2012,39 (4):4609-4617
    [2]Yin S, Ding S X, Haghani A, etc. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control,2012,22(9):1567-1581
    [3]Ribeiro L, Barata J. Re-thinking diagnosis for future automation systems:An analysis of current diagnostic practices and their applicability in emerging IT based production paradigms. Computers in Industry,2011,62(7): 639-659
    [4]Jianping Ma, Jin Jiang. Applications of fault detection and diagnosis methods in nuclear power plants:A review. Progress in Nuclear Energy,2011,53(3):255-266
    [5]Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industry System. London:Springer-Verlag, 2001:26-28
    [6]Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results. Automatica,1990,26(3):459-474
    [7]Maurya M R, Rengaswamy R, Venkatasubramanian V. Fault diagnosis using dynamic trend analysis:A review and recent developments. Engineering Applications of Artificial Intelligence,2007,20(2):133-146
    [8]Venkatasubramanian V, Rengaswamy R, Yin K, etc. A review of process fault detection and diagnosis:Part Ⅰ: Quantitative model-based methods. Computers & Chemical Engineering,2003,27(3):293-311
    [9]Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis:Part Ⅱ: Qualitative models and search strategies. Computers & Chemical Engineering,2003,27(3):313-326
    [10]Venkatasubramanian V, Rengaswamy R, Kavuri S N, etc. A review of process fault detection and diagnosis:Part Ⅲ: Process history based methods. Computers & Chemical Engineering,2003,27(3):327-34
    [11]Worden K, Staszewski W J, Hensman J J. Natural computing for mechanical systems research:A tutorial overview. Mechanical Systems and Signal Processing,2011,25(1):4-111
    [12]雷亚国,何正嘉.混合智能故障诊断与预示技术的应用进展.振动与冲击,2011,30(9):129-135
    [13]Wong B K., Lai V S. A survey of the application of fuzzy set theory in production and operations management: 1998-2009. International Journal of Production Economics,2011,129(1):157-168
    [14]Petr Kadlec, Ratko Grbi, Bogdan Gabrys. Review of adaptation mechanisms for data-driven soft sensors. Computers and Chemical Engineering,2011,35 (1):1-24
    [15]李晗,萧德云.基于数据驱动的故障诊断方法综述.控制与决策,2011,26(1):1-9,16
    [16]Maurya M R, Paritosh P K, Rengaswamy R, etc. A framework for on-line trend extraction and fault diagnosis. Engineering Applications of Artificial Intelligence,2010,23(6):950-960
    [17]Israel L, Nesrin S K. A review of uncertainty in flight vehicle structural damage monitoring, diagnosis and control: Challenges and opportunities. Progress in Aerospace Sciences,2010,46(7):247-273
    [18]刘强,柴天佑,秦泗钊,等.基于数据和知识的工业过程监视及故障诊断综述.控制与决策,2010,25(6):801-813
    [19]Kadlec P, Gabrys B, Strandt S. Data-driven Soft Sensors in the process industry. Computers and Chemical Engineering,2009,33(4):795-814
    [20]王宏,柴天佑,丁进良,等.数据驱动的故障诊断与容错控制:进展与可能的新方向.自动化学报,2009,35(6):739-747
    [21]Lauer F, Bloch G. Incorporating prior knowledge in support vector machines for classification:A review. Neurocomputing,2008,71 (7-9):1578-1594
    [22]周东华,胡艳艳.动态系统的故障诊断技术.自动化学报,2009,35(6):748-758
    [23]Qin S J, Yu J. Recent developments in multivariable controller performance monitoring. Journal of Process Control, 2007,17(3):221-227
    [24]Jardine A K S, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing,2006,20(7):1483-1510
    [25]王红卫,祁超,魏永长,等.基于数据的决策方法综述.自动化学报,2009,35(6):820-833.
    [26]Jia M X, Chu F, Wang F L, etc. On-line batch process monitoring using batch dynamic kernel principal component analysis. Chemometrics and Intelligent Laboratory Systems,2010,101(2):110-122
    [27]蒋丽英,王树青.基于MPCA-MDPLS的间歇过程的故障诊断.化工学报,2005,56(3):482-486
    [28]谢磊,刘雪芹,张建明,等.基于NGPP-SVDD的非高斯过程监控及其应用研究.自动化学报,2009,35(1):107-112
    [29]Ge Z Q, Gao F R, Song Z H. Batch process monitoring based on support vector data description method. Journal of Process Control,2011,21(6):949-959
    [30].王安娜,李云路,赵锋云,等.一种新的半监督直推式支持向量机分类算法.仪器仪表学报,2011,32(7):1546-1550
    [31]Zhang Y W, Li Z M, Zhou H. Statistical analysis and adaptive technique for dynamical process monitoring. Chemical Engineering Research and Design,2010,88(10):1381-1392
    [32]张曦,阎威武,赵旭,等.基于小波去噪核主元分析和邻近支持向量机的性能监控和故障诊断.上海交通大学学报,2008,42(2):181-185
    [33]叶昊,王桂增,方崇智.小波变换在故障检侧中的应用.自动化学报,1997,23(6):736-741
    [34]王海清,宋执环,李平.主元分析方法的故障可检测性研究.仪器仪表学报,2002,23(3):232-240
    [35]Wang Y J, Jia M X, Mao Z Z. Weak fault monitoring method for batch process based on multi-model SDKPCA. Chemometrics and Intelligent Laboratory Systems.2012,118(15):1-12
    [36]Djeziri M A, Bouamama B O, Merzouki R. Modelling and robust FDI of steam generator using uncertain bond graph model. Journal of Process Control,2009,19 (1):149-162
    [37]Celebi M E, Kingravi H A, Vela P A. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications,2013,40(1):200-210
    [38]Kerkhof P V, Gins G, Vanlaer J, et al. Dynamic model-based fault diagnosis for (bio)chemical batch processes. Computers & Chemical Engineering,2012(40):12-21
    [39]Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of ball bearings using continuous wavelet transform. Applied Soft Computing,2011,11(2):2300-2312
    [40]Zhu K, Wong Y S, Hong G S. Wavelet analysis of sensor signals for tool condition monitoring:A review and some new results. International Journal of Machine Tools & Manufacture,2009,49 (7-8):537-553
    [41]MacGregor J, Cinar A. Monitoring, fault diagnosis, fault-tolerant control and optimization:Data driven methods. Computers & Chemical Engineering,2012,47(20):111-120
    [42]Bouveresse D J R, Moya-Gonzalez A, Ammari F, etc. Two novel methods for the determination of the number of components in independent components analysis models. Chemometrics and Intelligent Laboratory Systems,2012, 112(3):24-32
    [43]Ku W F, Storer R H. Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems,1995,30 (1):179-196
    [44]Dong D, McAvoy, T J. Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering,1996,20(1):65-78
    [45]Lee J M, Yoo C K, Choi S W, etc. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science,2004,59(1):223-234
    [46]Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science,2004,59(24):5897-5908
    [47]Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics,1995,37(1): 41-59
    [48]Chen J, Liu K. On-line-batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science,2002,57(1):63-75.
    [49]Lee J M, Yoo C K, Lee I B. Fault detection of batch processes using multiway kernel principal component analysis. Computers & Chemical Engineering,2004,28(9):1837-1847
    [50]Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica,2010,36(4):593-597
    [51]Jia M X, Chu F, Wang F L, etc. On-line batch process monitoring using batch dynamic, kernel principal component analysis. Chemometrics and Intelligent Laboratory Systems,2010,101 (2):110-122
    [52]Li W H, Yue H H, Valle-Cervantes S, etc. Recursive PCA for adaptive process monitoring. Journal of Process Control,2000,10 (5):471-486
    [53]Kano M, Hasebe S, Hashimoto I, et al. A new multivariate statistical process monitoring method using principal component analysis. Computers and Chemical Engineering,2001,25(7-8):1103-1113
    [54]Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processe. Control Engineering Practice,2003,11(6):613-632
    [55]Lee J M, Yoo C K, Lee I B. On-line batch process monitoring using a consecutively updated multiway principal component analysis model. Computers & Chemical Engineering,2003,27 (12):1903-1912
    [56]Wang X, Kruger U, Irwin G W. Process Monitoring Approach Using Fast Moving Window PCA. Industrial& Engineering Chemistry Research,2005,44:5691-5702
    [57]Liu X, Kruger U, Littler T, etc. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometrics and Intelligent Laboratory Systems,2009,96(2):132-143
    [58]Jeng J C. Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms. Journal of the Taiwan Institute of Chemical Engineers,2010,41(4):475-481
    [59]Alkaya A, Eker I. Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application. IS A Transactions,2011,50(2):287-302
    [60]Khediri I B, Limam M, Weihs C. Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring. Computers & Industrial Engineering,2011,61(3):437-446
    [61]Huang H H, Yeh Y R. An iterative algorithm for robust kernel principal component analysis. Neurocomputing,2011, 74(18):3921-3930
    [62]Zhang Y W, Li S, Teng Y D. Dynamic processes monitoring using recursive kernel principal component analysis. Chemical Engineering Science,2012,72 (16):78-88
    [63]Majid N A A, Taylor M P, Chen J J J, etc. Aluminium process fault detection by Multiway Principal Component Analysis. Control Engineering Practice,2011,19(4):367-379
    [64]Kano M, Nakag Y. Data-based process monitoring, process control, and quality improvement:recent developments and applications in steel industry. Computers and Chemical Engineering,2008,32(1-2):12-24
    [65]Miletic I, Quinn S, Dudzic M, et al. An industrial perspective on implementing on-line applications of multivariate statistics. Journal of Process Control,2004,14(8):821-836
    [66]Kramer M A. Autoassociative neural network. Computers & Chemical Engineering,1992,16(4):313-328
    [67]Bakshi B R. Multiscale PCA with Application to Multivariate Statistical Process Monitoring. AIChE Journal,1998, 44(7):1596-1610
    [68]Shao R, Jia F, Martin E B, etc. Wavelets and non-linear principal components analysis for process monitoring. Control Engineering Practice,1999,7 (7):865-879
    [69]Doymaz F, Chen J, Romagnoli J A, etc. A robust strategy for real-time process monitoring. Joural of Process Control,2001,11(4):343-359
    [70]Wang D W, Romagnoli J A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control,2005,15(8):869-882
    [71]Deng X G, Tian X M. Multivariate statistical process monitoring using multi-scale kernel principal component analysis. Fault Detection, Supervision and Safety of Technical Processes 2006,2007 1:108-113
    [72]Xian G M, Zeng B Q. An intelligent fault diagnosis method based on wavelet packer analysisand hybrid support vector machines. Expert Systems with Applications,2009,36(10):12131-12136
    [73]Pan Y N, Chen J, Li X L. Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means. Mechanical Systems and Signal Processing,2010,24(2):559-566
    [74]Hsu C C, Chen M C, Che L S. Intelligent 1CA-SVM fault detector for non-Gaussian multivariate process monitoring. Expert Systems with Applications,2010,37 (4):3264-3273
    [75]Wang G, Hao J, Ma J, etc. A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering. Expert Systems with Applications,2010,37 (9):6225-6232
    [76]Zvokelj M, Zupan S, Prebil I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method. Mechanical Systems and Signal Processing,2011,25 (7):2631-2653
    [77]Liu X Q, Li K, McAfee M, et al. Improved nonlinear PCA for process monitoring using support vector data description. Journal of Process Control,2011,21(9):1306-1317
    [78]Liu Z, Cao H, Chen X. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing,2012, http://dx.doi.org/10.1016/i.neu com.2012.07.019
    [79]Sweldens W. The construction and Application of Wavelets in Numerical Analysis[D]. Belgium:Department of Computer Science, Katholieke Universiteit Leuven,1995
    [80]Sweldens W. The lifting scheme:A construction of second generation wavelets. Siam Journal On Mathematical Analysis,1998,29(2):511-546
    [81]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps.Technical Report, Princeton and Lucent Technologies, NJ, September,1996.
    [82]Donoho D L. Denosing by soft-thresholding. IEEE Transactions on Information theory,1995,41(3):613-627
    [83]李士心,刘鲁源.基于小波阈值去噪方法的研究.仪器仪表学报,2002,23(3):478-479
    [84]刘卫东,刘尚合,胡小锋,等.小波阈值去噪函数的改进方法分析.高电压技术,2007,33(10):59-63
    [85]唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断.仪器仪表学报,2008,29(6):1216-1220
    [86]Azadeh A, Saberi M, Kazem A. A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization. Applied Soft Computing, 2012, http://dx.doi.org/10.1016/j.asoc.2012.06.020
    [87]肖应旺.基于WTPCA-MSVMs过程监控方法.仪器仪表学报,2010,31(3):558-564
    [88]Monroy I, Benitez R, Escudero G, et al. A semi-supervised approach to fault diagnosis for chemical processes. Computers & Chemical Engineering,2010,34(5):631-642
    [89]孙永奎,陈光(踽),李辉.基于自适应小波分解和的模拟电路故障诊断.仪器仪表学报,2008,29(10):1205-1209
    [90]Yu D, Yang Y, Cheng J. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis. Measurement,2007,40(9-10):823-830
    [91]宋国明,王厚军,刘红,等.基于提升小波变换和SVM的模拟电路故障诊断.电子测量与仪器学报,2010,24(1):17-22
    [92]Yang Y, Liao Y X, Meng G, et al. A hybrid feature selection scheme for unsupervised learning and its application in bearing fault diagnosis. Expert Systems with Applications,2011,38(9):11311-11320
    [93]Khediri I B, Weihs C, Limam M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes. Expert Systems with Applications,2012,39:2166-2171
    [94]Wang S J, Mathew A, Chen Y, et al. Empirical analysis of support vector machine ensemble classifiers. Expert Systems with Applications,2009,36(3):6466-6476
    [95]胡桥,,何正嘉,张周锁,等.基于提升小波包变换和集成支持矢量机的早期故障智能诊断.机械工程学报,2006,42(8):16-22
    [96]薄翠梅,乔旭,张广明,等.基于ICA-SVM的复杂化工过程集成故障诊断方法.化工学报,2009,60(8):2259-2264
    [97]Zhao Y P, Sun J G. Recursive reduced least squares support vector regression. Pattern Recognition.2009,42(5): 837-842
    [98]Suykens J A K, Vandewalle J. Recurrent least squares support vector Machines. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2000,47(7):1109-1114
    [99]王定成,姜斌.支持向量机控制与在线学习方法研究的进展.系统仿真学报,2007,19(6):1177-1181
    [100]Gu Y P, Zhao W J, Wu Z S. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems. Journal of Process Control,2011,21(7):1040-1048
    [101]Amol S. Naik, Shen Yin, Steven X. Ding, Ping Zhang. Recursive identification algorithms to design fault detection systems. Journal of Process Control,2010,20 (8):957-965
    [102]Tangruamsub S, Takada K, Hasegawa O. A fast online incremental learning method for object detection and pose classification using voting and combined appearance modeling. Signal Processing:Image Communication,2012,27 (1):75-829
    [103]Bouchachia A. Incremental learning with multi-level adaptation. Neurocomputing,2011,74(11):1785-1799
    [104]Tan S C, Lim C P, Rao M V C. A hybrid neural network model for rule generation and its application to process faultdetection and diagnosis. Engineering Applications of Artificial Intelligence,2007,20(2):203-213
    [105]Xiao Y Q, Feng L G. A novel neural-network approach of analog fault diagnosis based on kernel discriminant analysis and particle swarm optimization. Applied Soft Computing,2012,12(2):904-920
    [106]Kalle B, Simin N T. Adaptive real-time anomaly detection with incremental clustering. Information Security Technical Report,2007,12(1):56-67
    [107]Chiu S L. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems,1994, 2(3):267-278
    [108]Eftekhar M, Katebi S D, Karimi M, et al. Eliciting transparent fuzzy model using differential evolution. Applied Soft Computing,2008,8(1):466-476
    [109]裴继红,范九伦,谢维信.聚类中心的初始化方法.电子科学学刊,1999,21(3):320-325
    [110]Stefatos G, Hamza A B. Dynamic independent component analysis approach for fault detection and diagnosis. Expert Systems with Applications,2010,37(12):8606-8617
    [111]Hsu C C, Chen M C, Chen L S. Integrating independent component analysis and support vector machine for multivariate process monitoring. Computers & Industrial Engineering,2010,59(1):145-156
    [112]Ajami A, Daneshvar M. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using Independent Component Analysis (ICA). International Journal of Electrical Power & Energy Systems,2012, 43(1):728-735
    [113]Tian X M, Zhang X L, Deng X G, et al. Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing,2009,72(7-9):1584-1596
    [114]Wang J C, Zhang Y B, Cao H, et al. Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error. Journal of Process Control,2012,22(2):477-487
    [115]Rashid M M, Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems,2012,115,(15):44-58
    [116]王俊峰,钱宇,李秀喜,等.用主元分析方法完善DCS过程监控性能.化工自动化及仪表,2002,29(3):15-18
    [117]Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196
    [118]Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Computers and Chemical Engineering,2002,26(2):161-174
    [119]Kano M, Hasebe S, Hashimoto I, et al. Statistical Process Monitoring Based on Dissimilarity of Process Data. AIChE Journal,2002,48(6):1231-1240
    [120]Choi J H, Lee J M, Choi S W, et al. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science,2005,60(1):279-288
    [121]Choi S W, Martin E B, Morris A J, et al. Fault Detection Based on a Maximum-Likelihood Principal Component Analysis (PCA) Mixture. Industrial & Engineering Chemistry Research,2005,44:2316-2327
    [122]Yoo C K, Lee I. Nonlinear multivariate filtering and bioprocess monitoring for supervising nonlinear biological processes, Process Biochemistry,2006,41(8):1854-1863
    [123]Lee J M, Yoo C K, Lee I B. Statistical monitoring of dynamic process based on dynamic independent component analysis. Chemical Engineering Science,2004,59(14):2995-3006
    [124]Downs J J, Vogel E F. A plant-wide industrial-process control problem. Computers & Chemical Engineering,1993, 17(3):245-255
    [125]Odiowei P P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems,2010,103(1):59-65
    [126]Eslamloueyan R. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process. Applied Soft Computing,2011,11(1):1407-1415
    [127]Ge Z Q, Song Z H. A distribution-free method for process monitoring. Expert Systems with Applications.2011, 38(8):9821-9829
    [128]Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation:Penicillin production. Computer & Chemical Engineering,2002,26(11):1553-1565
    [129]Wang Z F, Yuan J Q. Online supervision of penicillin cultivations based on rolling MPCA. Chinese Journal of Chemical Engineering,2007,15(1):92-96
    [130]Zhang X, Yan W W, Zhao X, et al. Nonlinear bio-logical batch process monitoring and fault identification based on kernel fisher discriminant analysis. Process Biochemistry,2007,42:1200-1210
    [131]Kerkhof P V D, Gins G, Vanlaer J, etc. Dynamic model-based fault diagnosis for (bio)chemical batch processes. Computers and Chemical Engineering,2012,40(11):12-21
    [132]Loparo K A. Case Western Reserve University,2000. http://www.eecs.cwru.edu/laboratory/bearing/download.htm
    [133]Zhang L, Xiong G L, Liu H S, etc. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications,2010,37 (8):6077-6085
    [134]Li H, Xiao D Y. Fault diagnosis using pattern classification based on one-dimensional adaptive rank-order morphological filter. Journal of Process Control,2012,22(2):436-449
    [135]Gryllias K C, Antoniadis I A. A Support Vector Machine approach based on physical model training for rolling element bearing. Engineering Applications of Artificial Intelligence,2012,25(2):326-344
    [136]Huang Y X, Liu C L, Zha X F, etc. A lean model for performance assessment of machinery using second generation wavelet packet transform and Fisher criterion. Expert Systems with Applications,2010,37(5):3815-3822

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700