用户名: 密码: 验证码:
基于滚环扩增技术和纳米材料的生物传感新方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命体中蛋白质、核酸、酶活性以及生物小分子活动信息的研究对生物医学以及临床诊断和治疗有着非常巨大的意义。如何实时、动态、快速、准确地获取这些生命活动的信息,就成为了分析化学科研工作者面临的重大的挑战。为了克服这个难题,就需要我们发展一些准确性高、灵敏度高以及特异性高的定性或定量的方法,达到获取信息的目的。本论文瞄准上述挑战进行研究,基于滚环扩增技术和纳米材料发展了一系列分别以小分子、核酸、蛋白质和酶活性为检测对象的高灵敏性高选择性的生物传感技术,并通过对实际样品的分析,初步验证了这些技术的可行性和准确性。
     第2章中,单个细胞中microRNA的空间分布和表达水平对于考察microRNA及其调控网络的复杂性在生物学中的作用具有十分重要的意义。我们开发一种基于目标自引物等温滚环扩增技术高灵敏高选择性的原位检测肿瘤细胞microRNA。该方法,首先利用改良的microRNA固定方法,将microRNA的5'端磷酸基团与细胞中蛋白质的氨基通过EDC共价交联,达到固定microRNA的目的。然后预先制备的DNA环状探针与microRNA经过原位杂交,microRNA作为引物,在dNTPs和聚合酶的作用下进行滚环扩增反应,产生一条长的与环形DNA模板互补的单链DNA。细胞原位产生的扩增产物利用荧光染料标记的探针杂交识别,由于滚环扩增产物可以与成千上万的荧光染料标记探针杂交,从而达到目标microRNA高灵敏的可视化的检测。由于滚环扩增反应只能由microRNA游离的3'端触发,因此从根本上消除了mRNA以及microRNA前体的干扰。我们使用这种方法来实现人肝癌细胞SMMC-7721和人正常细胞株L02细胞中mir-222与mir-223表达水平的高灵敏的可视化检测,并进一步实现了单个细胞中不同microRNA的同时检测。我们认为目标触发的基于目标自触发滚环扩增原位检测方法是可靠的研究疾病相关的microRNA表达分析方法,在基础研究和临床诊断上具有很大的应用潜力。
     第3章中,DNA甲基化修饰作为一种重要的表观遗传修饰,在调节基因表达的过程中通过影响染色质结构, DNA构象、稳定性以及与蛋白质相互作用方式等途径来实现。DNA甲基化目前已成为多种肿瘤诊断的生物标志物。高灵敏高特异性的检测CpG岛DNA甲基化表型对于甲基化的研究和临床诊断都具有非常重大的意义。在本章中,我们将滚环扩增技术与DNA为模板形成荧光特性的银纳米簇相结合发展了一种可用于实际体系中DNA甲基化检测的方法。该方法首先将DNA经过亚硫酸盐的处理,再利用Ecoli DNA连接酶对错配的碱基对高特异性识别,在进行退火连接-变性解链的热循环过程中,亚硫酸盐处理后的甲基化的目标DNA与经过合适设计的与其具有完全互补碱基对的挂锁探针杂交,通过连接酶的作用下产生连接产物,该连接产物自身具有发夹结构,并有完整的限制性内切酶识别位点。银纳米簇DNA模板作为引物,在具有强链置换能力的DNA聚合酶的作用下自发启动聚合酶延伸反应以及链置换的恒温滚环放大反应,随后在限制性内切酶的作用下,释放出大量可以合成银纳米簇的DNA模板。在硝酸银、硼氢化钠的作用下,产生荧光信号,从而可实现目标DNA甲基化的检测。该方法设计巧妙新颖,有较高的灵敏度和选择性,检测限达6.4fM。
     第4章中,基于鸟嘌呤可触发DNA为模板合成银纳米簇荧光增强的性质发展了一种高灵敏检测肿瘤细胞中端粒酶活性的分析方法。在该方法中,我们设计了一条包含合成银纳米簇模板的端粒酶扩增引物序列,未存在端粒酶的时候,此模板合成出荧光信号很弱的银纳米簇。在目标端粒酶的作用下,引物进行扩增,扩增出富含G碱基的TTAGGG重复序列,此时合成银纳米簇不仅使得荧光信号有很大的增强,同时荧光发射波谱红移。这种方法实现了对Hela细胞中端粒酶活性的高灵敏检测,动态响应范围为500到50000个细胞,并且在该范围内峰荧光信号与HeLa细胞个数的对数呈现良好的线性关系,同时该方法具有较高选择性,线性范围宽,高灵敏度等优点。
     第5章中,基于核酸适配体探针可自组装在二硫化钼纳米片的表面上形成稳定的适配体-二硫化钼纳米片结构的生物传感器,发展了一种高灵敏的蛋白质和生物小分子的检测新方法。修饰了荧光素的核酸适配体探针自组装在二硫化钼纳米片的表面,依旧保持核酸适配体高的特异性和亲和力。这种复合结构可以作为低背景的平台用于ATP和凝血酶的检测。当靶目标不存在时,荧光探针与MoS2发生荧光共振能量转移,荧光被显著淬灭。当靶目标存在的情况下,靶物质与核酸适配体结合具有高的特异性和亲和力,诱导核酸适配体其形成更加刚性的分子结构,这种刚性结构的形成减弱了核酸适配体与MoS2的之间的范德华力作用,使得核酸适配体不能被MoS2有效的吸附淬灭,适配体探针与靶目标结合脱离二硫化钼纳米片的表面,荧光恢复。该方法设计简单、操作简便、灵敏度高选择性好,也可以通过灵活的使用不同的核酸适配体和DNA修饰上不同的荧光基团应用于生物医学领域多组分物质的同时检测。
     第6章中,多聚核苷激酶(PNK)对DNA的磷酸化修饰过程在许多的生理活动中起着非常重要的作用。本章以T4多聚核苷酸激酶(T4Polynucleotide Kinase,T4PNK)为模型,基于磷酸化的DNA被特异性外切酶降解结合WS2独特的吸附和淬灭性能发展了一种荧光方法用于T4PNK酶活性的测定。由于WS2与双链DNA的结合力较弱不能有效淬灭染色双链产物的荧光,因此得到较强的荧光信号。双链DNA作为T4PNK的底物,当T4PNK作用之后,双链DNA模板将被磷酸化,导致双链DNA立即被λ核酸外切酶降解,产生得到的单链DNA被WS2强烈吸附同时淬灭其荧光。WS2的超强荧光淬灭能力也为该方法提供了有较宽的线性范围和低的检测限,其检测下限为0.01U/mL。另外,该方法不仅可以对T4PNK的抑制剂进行定量表征,还适用于复杂生物环境中目标物的测定。本方法设计简单、操作方便、灵敏度高且选择性好,有望成为PNK酶检测的一种很好的选择并能应用于DNA损伤修复机理的研究。
The essential information on small molecules, nucleic acids, protein and enzymes obtained accurately and sensitively has great significance for biological medicine study, clinical diagnosis and therapy. However, with the development of the scientific research, getting the dynamic information of these life processes sensitively and accurately in real time is still great challenge to analysts. Therefore, the development of strategies with high sensitivity, selectivity and accuracy is important for biomedical research and clinical diagnosis. In this thesis, a series of novel biosensing strategies based on rolling circle amplification and nanomaterials were developed for small molecule, nucleic acid, proteins and enzyme activity detection, respectively. These results primarily proved that the proposed technologies were feasible, reliable and accurate. The detailed content was described as follows:
     In Chapter2: The ability to detect spatial and temporal microRNA (miRNA) distribution at the single-cell level is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. We report for the first time the development of a target-primed RCA (TPRCA) strategy for highly sensitive and selective in situ visualization of miRNA expression patterns at the single-cell level. This strategy uses a circular DNA as the probe for in situ hybridization (ISH) with the target miRNA molecules, and the free3′terminus of miRNA then initiates an in situ RCA reaction to generate a long tandem repeated sequence with thousands of complementary segment. After hybridization with fluorescent detection probes, target miRNA molecules can be visualized with ultrahigh sensitivity. Because the RCA reaction can only be initiated by the free3′end of target miRNA, the developed strategy offers the advantage over existing ISH methods in eliminating the interference from precursor miRNA or mRNA. This strategy is demonstrated to show high sensitivity and selectivity for the detection of miR-222expression levels in human hepatoma SMMC-7721cells and hepatocyte L02cells. Moreover, the developed TPRCA-based ISH strategy is successfully applied to multiplexed detection using two-color fluorescent probes for two miRNAs that are differentially expressed in the two cell lines. The results reveal that the developed strategy may have great potential for in situ miRNA expression analysis for basic research and clinical diagnostics.
     In Chapter3: DNA methylation is an important epigenetic event for transcriptional regulation, being regarded as a biomarker for cancer. Sensitive and specific detection of DNA methylation in CpG sites of genomic DNA is imperative to DNA methylation discovery, study, and clinical diagnosis. Herein, we present a facile detection of DNA methylation by RCA coupled with fluorescent DNA-scaffolded AgNCs. After bisulfite treatment of methylated DNA, padlock probe was hybridized onto the target bisulfte treated and formed a circular probe by the E. coli DNA ligase if it was a perfect match between them. The oligonucleotides as scaffolds for the synthesis of AgNCs serve subsequently as a template for RCA. After HhaI cleavage reaction, the resultant reporter oligonucleotides can act as scaffolds for the synthesis of fluorescent AgNCs functioning as signal indicators in a label-free and environmental-friendly format.This RCA-based method exhibits excellent specificity and high sensitivity with a detection limit of6.4fM.
     In Chapter4: we presented a novel biosensing technology for the detection of telomerase activity in cancer cells based on the fact that guanine can trigger transformation of Ag NCs from a dark species to a bright red-emitting species. In this assay, the primer contains oligonucleotides as scaffolds for the synthesis of AgNCs. This primer can act as scaffolds for the synthesis of dark AgNCs without telomerase. The bright red-emitting clusters AgNCs can be obtained when the primer adds hexameric repeats (TTAGGG)n by the action of telomerase.The results indicated that the method could be used for sensitive determination of telomerase in a concentration range from500to50000HeLa cells. Given the simplicity, convenience of this approach, the proposed method may provide an alternative approach for the study of the telomerase activity.
     In Chapter5: A novel biosensor was designed for sensing of targets such as protein and small molecule based on the self assembled aptamer–MoS2nanosheets architecture. This DNA-MoS2nanosheet was constructed with aptamer labeled with fluorophore only at one end can self assembled onto the surface of MoS2nanosheet to form stable aptamer–MoS2nanosheet architecture, still keeping the binding affinity and specificity of the aptamer. DNA-MoS2nanosheets can act as a low background signal platform was used for the small molecule (Adenosine triphosphate) or protein (human α-thrombin) detection based on long-range resonance energy transfer. In the absence of target, the adsorption of the aptamer labeled with fluorophore on MoS2nanosheets makes the dyes approaching closely toward the proximity to MoS2nanosheets surface resulting in high efficiency quenching of fluorescence of the dyes and shows very low background. With the addition of target, binding of the aptamer probes to the target can release the aptamer away from the MoS2nanosheet, the quenched fluorescence is recovered significantly. This biosensor has the advantages in its superb specificity, being rapid, and convenient. Morover, aptamer–MoS2aptasensor design can be easily extended to develop a variety of probes for detection of a wide range of targets by simply changing the fluorophores and altering aptamer sequences.
     In Chapter6: DNA phosphorylation, catalyzed by polynucleotide kinase (PNK), plays significant regulatory roles in many biological events. Here, a novel fluorescent nanosensor based on phosphorylation-specific exonuclease reaction and efficient fluorescence quenching of single-stranded DNA (ssDNA) by WS2nanosheet has been developed for monitoring the activity of PNK using T4polynucleotide kinase (T4PNK) as a model target. The fluorescent dye-labeled double-stranded DNA (dsDNA) remains highly fluorescent when mixed with WS2nanosheets because of the weak adsorption of dsDNA on WS2nanosheets. While dsDNA is phosphorylated by T4PNK, it can be specifically degraded by λ exonuclease, producing ssDNA strongly adsorbed on WS2nanosheets with greatly quenched fluorescence. Because of the high quenching efficiency of WS2nanosheets, the developed platform presents excellent performance with a wide linear range, low detection limit and high signal-to-background ratio, the detection limit of T4PNK was0.01U mL-1. Additionally, inhibition effects from adenosine diphosphate, ammonium sulfate, and sodium chloride have been investigated. The method may provide a universal platform for PNK activity monitoring and inhibitor screening in drug discovery and clinic diagnostics.
引文
[1]许春向.生物传感器及其应用.北京:科学出版社,1993
    [2]王飞.生物传感器的发展与未来.湖北省环境保护研究所,1993
    [3]张先恩.生物传感技术原理与应用.长春:吉林科学技术出版社,1990,6-8
    [4] Notsu H, Tatsuma T, Fujishima A. Tyrosinase-modified boron-doped diamondelectrodes for the determination of phenol derivatives. Journal ofElectroanalytical Chemistry,2002,523(1-2):86-92
    [5]许改霞,吴一聪,李蓉等.细胞传感器的研究进展.科学通报,2002,47(15):1126-1132
    [6] Su X D, Li S F. Serological detection of helicobacter lyloei infection usingsandwiched and enzymatically amplified piezoelectric biosensor. AnalyticaChimita Acta,2001,429(1):27-36
    [7] Oungpipat W, Alexander P W, Southwell-Keely P. A reagentless amperometricbiosensor for hydrogen peroxide determination based on asparagus tissue andfellrocene mediation. Analytica Chimita Acta,1995,309(1-3):35-45
    [8] Karube I, Nomura Y, Adkawa Y. Biosensors for environmental control. Trends inAnalytical Chemistry,1995,14(7):295-299
    [9] Patolsky F, Katz E, Bardea A, et a1. Enzyme–linked amplified electrochemicalsensing of oligonucleotide-DNA interactions by means of the precipitation of aninsoluble product and using impedance spectroscopy. Langmuir,1999,15(11):3703-3706
    [10]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社,1997,386-391
    [11] Toppozada A R, Wright J, Eldefrawi A T. Evaluation of a fiber opticimmunosensor for quantitating cocaine in coca. Biosensors and Bioelectronics,1997,12(2):113-124
    [12] Plowman T E, Reichert W M, Peters C R, et a1. Femtomolar sensitivity using achannel-etched thin film waveguide fluoroimmunosensor. BiosensorsBioelectronics,1996, l1(1-2):149-160
    [13] Bartlett P N, Booth S, Caruana D J, et a1. Modification of glucose oxidase by thecovalent attachment of a tetrathiafulvalent derivative. Analytical Chemistry,1997,69(4):734-742
    [14] Zhang D, Wu J, Ye F, et a1. Amplification of circularizable probes for thedetection of target nucleic acids and proteins. Clinica Chimica Acta,2006,363(1-2):61-70
    [15] Fire A, Xu S Q. Roling replication of short DNA circles. Proceedings of theNational Academy of Sciences,1995,92(10):4641-4645
    [16] Landegren U, Kaiser R, Sanders J, et al. A ligase–mediated gene detectiontechnique. Science,1988,241(4869):1077-1080
    [17] Nilsson M, Malmgren H, Samiotaki M, et al. Padlock probes: circularizingoligonucleotides for localized DNA detection. Science,1994,265(5181):2085-2088
    [18] Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single–moleculecounting using isothermal rolling-circle amplification. Nature Genetics,1998,19(3):225-232
    [19] Szemes M, Bonants P, Weeixh M, et al. Diagnostic application of padlockprobes–multiplex detection of plant pathogens using universalmicroarrays.Nucleic Acids Research,2005,33(8):701-704
    [20] Baner J, Nilsson M, Mendel H M, et al. Signal amplification of padlock probesby rolling circle replication. Nucleic Acids Research,1998,26(22):5073-5078
    [21] Liu D Y, Daubendiek S L, Zillman M A, et al. Rolling circle DNA synthesis:Small circular oligonucleotdies as efficient templates for DNA polymerases.Joumal of the American Chemical Society,1996,118(7):1587-1594
    [22] Nilsson M, Krejci K, Koch J, et al. Padlock probes reveal single–nucleotidedifferences, parent of origin and in situ distribution of centromeric sequences inhuman chromosomes13and21. Nature Genetics,1997,16:252-255
    [23] Li J S, Deng T, Chu X, et al. Rolling circle amplification combined with goldnanoparticle aggregates for highly sensitive identification of single-nucleotidepolymorphisms. Analytical Chemistry,2010,82(7):2811-2816
    [24] Nilsson M, Dahl F, Larsson C, et al. Analyzing genes using closing andreplicating Circles. Trends in Biotechnology,2006,24(2):83-88
    [25] Lage J M, Leamon J H, Pejovic T. Whole genome analysis of genetic alterationsin small DNA samples using multiple displacement amplification and array–CCH,Genome Research,2003,13(2):294-307
    [26] Thomas D, Nardone G, Randall S. Amplification of padlock probes for DNAdiagnostics by cascade rolling circle amplification or the polymerase chainreaction. Archives of Pathology&Laboratory Medicine,1999,123(12):1170-1176
    [27] Hafner G J, Yang L C, Staggord W M R, et a1. Isothermal amplification andmultimerization of DNA by Bst DNA polymerase. Biotechniqueas,2001,30(4):852-856
    [28] Dean F B, Hosono S, Fang L, et a1. Comprehensive human genome amplificationusing multiple displacement amplification. Proceedings of the National Academyof Sciences,2002,99(8):5261-5266
    [29] Simison W B, Lindberg D R, Boore J L. Rolling circle amplification of metazoanmitochondrial genomes. Molecular Phylogenetics and Evolution,2006,39(2):562-567
    [30] Liu H Y, Li L, Duan L L, et al. High specific and ultrasensitive isothermaldetection of microRNA by padlock probe-Based exponential rolling circleamplification. Analytical Chemistry,2013,85(16):7941-7947
    [31] Konry T, Hayman R B, Walt D R. Microsphere-based roiling circle amplificationmicroarray for the detection of DNA and proteins in a single assay. AnalyticalChemistry,2009,81(14):5777-5782
    [32] Akter F, Mie M, Grimm S, et al. Detection of antigens using a protein-DNAchimera developed by enzymatic covalent bonding with phiX gene A*.Analytical Chemistry,2012,84(11):5040-5046
    [33] Christian A T, Pattee M S, Attix C M, et a1. Detection of DNA point mutationsand mRNA expression levels by rolling circle amplification in individual cells.Proceedings of the National Academy of Sciences,2001,8(25):14238-14243
    [34] Larsson C, Koch J, Nygren A, et al. In situ genotyping individual DNA moleculesby target-primed rolling-circle amplification of padlock probes. Nature Methods,2004,1(3):227-232
    [35] Larsson C, Grundberg I, S derberg O, et al. In situ detection and genotyping ofindividual mRNA molecules. Nature Methods,2010,7(5):395-397
    [36] Lynn E. Nanotechnology: Science, Innovation, and Opportunity, First Edition,Foster Prentice Hall,2009
    [37] Borisenko V E, Ossicini S. What is what in the nanoworld: A Handbook onNanoscience and Nanotechnology, Second, John Wiley&Sons, Inc,2008
    [38] Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection ofbiomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    [39] Trojanowicz M. Analytical applications of carbon nanotubes: a review. TrACTrends in Analytical Chemistry,2006,25(5):480-489
    [40] Knopp D, Tang D, Niessner R. Review: Bioanalytical applications ofbiomolecule-functionalized nanometer-sized doped silica particles. AnalyticaChimica Acta,2009,647(1):14-30
    [41] Shang L, Dong S, Nienhaus G U. Ultra-small fluorescent metal nanoclusters:synthesis and biological applications. Nano Today,2011,6(4):401-418
    [42] Chen S, Ingram R S, Hostetler M J, et al. Gold nanoelectrodes of varied size:transition to molecule-like charging. Science,1998,280(5372):2098-2101
    [43] Lee D, Donkers R L, Wang G, et al. Electrochemistry and optical absorbance andluminescence of molecule-like Au38nanoparticles. Joumal of the AmericanChemical Society,2004,126(19):6193-6199
    [44] Shiang Y, Huang C, Chang H. Gold nanodot-based luminescent sensor for thedetection of hydrogen peroxide and glucose. Chemical Communications,2009,45(23):3437-3439
    [45] Li P, Lin J, Chen C, et al. Using gold nanoclusters as selective luminescentprobes for phosphate-containing metabolites. Analytical Chemistry,2012,84(13):5484-5488
    [46] Huang C C, Yang Z, Lee K H, et al. Synthesis of highly fluorescent goldnanoparticles for sensing mercury(II). Angewandte Chemie International Edition,2007,46(36):6824-6828
    [47] Durgadas C V, Sharma C P, Sreenivasan K. Fluorescent gold clusters asnanosensors for copper ions in live cells. Analyst,2011,136(5):933-940
    [48] Wen F, Dong Y, Feng L, et al. Horseradish peroxidase functionalized fluorescentgold nanoclusters for hydrogen peroxide sensing. Analytical Chemistry,2011,83(4):1193-1196.
    [49] Jin L, Shang L, Guo S, et al. Biomolecule-stabilized Au nanoclusters as afluorescence probe for sensitive detection of glucose. Biosensors andBioelectronics,2011,26(5):1965-1969
    [50] Liu J M, Yan X P. Competitive aptamer bioassay for selective detection ofadenosine triphosphate based on metal-paired molecular conformational switchand fluorescent gold nanoclusters. Biosensors and Bioelectronics,2012,36(1):135-141
    [51] Shang L, Azadfar N, Stockmar F, et al. One-pot synthesis of near-infraredfluorescent gold clusters for cellular fluorescence lifetime imaging. Small,2012,7(18):2614-2620
    [52] Retnakumari A, Setua S, Menon D, et al. Molecular-receptorspecific, non-toxic,near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancerimaging. Nanotechnology,2010,21(5):055103-055114
    [53] Shang L, Dong S J. Facile preparation of water-soluble fluorescent silvernanoclusters using a polyelectrolyte template. Chemical Communications,2008,9:1088-1090
    [54] Xu H, Suslick K S. Sonochemical synthesis of highly fluorescent Agnanoclusters. ACS Nano,2010,4(6):3209-3214
    [55] Liu S, Lu F, Zhu J J. Highly fluorescent Ag nanoclusters: microwave-assistedgreen synthesis and Cr3+sensing. Chemical Communications,2011,47(9):2661-2663
    [56] Yu J, Patel S A, Dickson R M. In vitro and intracellular production ofpeptide-encapsulated fluorescent silver nanoclusters. Angewandte ChemieInternational Edition,2007,119(12):2074-2076
    [57] Petty J T, Zheng J, Hud N V, et al. DNA-templated Ag nanocluster formation.Journal of the American Chemical Society,2004,126(16):5207-5212
    [58] Ritchie C M, Johnsen K R, Kiser J R, et al. Ag nanocluster formation using acytosine oligonucleotide template. The Journal of Physical Chemistry C,2007,111(1):175-181
    [59] Richards C I, Choi S, Hsiang J, et al. Oligonucleotide-stabilized Ag nanoclusterfluorophores. Journal of the American Chemical Society,2008,130(15):5038-5039
    [60] Zheng J, Dickson R M. Individual water-soluble dendrimer-encapsulated silvernanodot fluorescence. Journal of the American Chemical Society,2002,124(47):13982-13983
    [61] Guo C L, Irudayaraj J. Fluorescent Ag clusters via a protein-directed approach asa Hg (II) ion sensor. Analytical Chemistry,2011,83(8):2883-2889
    [62] Lan G Y, Huang C C, Chang H T. Silver nanoclusters as fluorescent probes forselective and sensitive detection of copper ions. Chemical Communications,2010,46(8):1257-1259
    [63] Qu F, Li N B, Luo H Q. Polyethyleneimine-templated Ag nanoclusters: a newfluorescent and colorimetric platform for sensitive and selective sensing halideions and high disturbance-tolerant recognitions of iodide and bromide incoexistence with chloride under condition of high ionic strength. AnalyticalChemistry,2012,84(23):10373-10379
    [64] Zhou T Y, Rong M C, Cai Z M, et al. Sonochemical synthesis of highlyfluorescent glutathione-stabilized Ag nanoclusters and S2-sensing. Nanoscale,2012,4(14):4103-4106
    [65] Zhang M, Guo S M, Li Y R, et al. A label-free fluorescent molecular beaconbased on DNA-templated silver nanoclusters for detection of adenosine andadenosine deaminase. Chemical Communications,2012,48(44):5488-5490
    [66] Yin J J, He X X, Wang K M, et al. One-step engineering of silvernanoclusters-aptamer assemblies as luminescent labels to target tumor cells.Nanoscale,2012,4(1):110-112
    [67] Yin J J, He X X, Wang K M, et al. Label-free and turn-on aptamer strategy forcancer cells detection based on a DNA-silver nanocluster fluorescence uponrecognition-induced hybridization. Anal Chem,2013,85(24):12011-12019
    [68] Lan G Y, Chen W Y, Chang H T. One-pot synthesis of fluorescentoligonucleotide Ag nanoclusters for specific and sensitive detection of DNA.Biosensors and Bioelectronics,2011,26(5):2431-2435
    [69] Jeffrey T P, Sengupta B, Sandra P S, et al. DNA sensing byamplifying thenumber of near-infrared emitting, ligonucleotideencapsulated silver clusters.Analytical Chemistry,2011,83(15):5957-5964
    [70] Shah P R, R rvig-Lund A, Chaabane S B, et al. Design aspects of bright redemissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano,2012,6(10):8803-8814
    [71] Guo W W, Yuan J P, Dong Q, et al. Highly sequence-dependent formation offluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotidemutation identification. Journal of the American Chemical Society,2009,132(3):932-934
    [72] Huang Z, Pu F, Wang C, et al. Site-specific DNA-programmed growth offluorescent and functional silver nanoclusters. Chemistry-A European Journal,2011,17(13):3774-3780
    [73] Yeh H, Sharma J, Han J J, et al. A DNA-silver nanocluster probe that fluorescesupon hybridization. Nano Letters,2010,10(8):3106-3110
    [74] Yeh H C, Sharma J, Shih I M, et al. A fluorescence light-up Ag nanoclusterprobe that discriminates single-nucleotide variants by emission color. Journal ofthe American Chemical Society,2012,134(28):11550-11558
    [75] Tanaka S, Miyazaki J, Tiwari D K, et al. Fluorescent platinum nanoclusters:synthesis, purification, characterization, and application to bioimaging.Angewandte Chemie International Edition,2011,50(2):431-435
    [76] Rotaru A, Dutta S, Jentzsch E, et al. Selective dsDNA-templated formation ofcopper nanoparticles in solution. Angewandte Chemie International Edition,2010,49(33):5665-5667
    [77] Zhou Z X, Du Y, Dong S J. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label-free aptamer sensor. AnalyticalChemistry,2011,83(13):5122-5127
    [78] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science,2004,306(5696):666-669
    [79] Jiang H J. Chemical preparation of graphene-based nanomaterials and theirapplications in chemical and biological sensors. Small,2011,7(17):2413-2427
    [80] Guo S J, Dong S J. Graphene nanosheet: Synthesis, molecular engineering, thinfilm, hybrids, and energy and analytical applications. Chemical Society Reviews,2011,40(5):2644-2672
    [81] Osada M, Sasaki T. Exfoliated oxide nanosheets: new solution to nanoelectronics.Journal of Materials Chemistry,2009,19(17):2503-2511
    [82] Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layerMoS2. Nano Letters,2013,13(4):1416-1421.
    [83] Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets:high-yield preparation and device fabrication. Angewandte Chemie InternationalEdition,2011,50(47):11093-11097
    [84] Dresselhaus S, Chen G, Tang M Y, et al. New directions for low-dimensionalthermoelectric materials. Advanced Materials,2007,19(8):1043-1053
    [85] Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals.Angewandte Chemie International Edition,2007,46(46):8828-8831
    [86] Matte H S, Gomathi A, Manna A K, et al. MoS2and WS2analogues of graphene.Angewandte Chemie International Edition,2010,49(24):4059-4062
    [87] Frindt R F. Single crystals of MoS2several molecular layers thick. Journal ofApplied Physics,1966,37(4):1928-1929
    [88] Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operationsbased on single-layer MoS2. ACS Nano,2011,5(12):9934-9938
    [89] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2field-effect transistors. ACS Nano,2011,5(10):7707-7712
    [90] Li H, Lu G, Yin Z, et al. Optical identification of single-and few-layer MoS2sheets. Small,2012,8(5):682-686
    [91] Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials ResearchBulletin,1986,21,457-461
    [92] Frey G L, Reynolds K J, Friend R H, et al. Solution-processed anodes fromlayer-structure materials for high-efficiency polymer light-emitting diodes.Journal of the American Chemical Society,2003,125(19):5998-6007.
    [93] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemicallyexfoliated MoS2. Nano Letters,2011,11(12):5111-5116
    [94] Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets producedby liquid exfoliation of layered materials. Science.2011,331(6017):568-571.
    [95] Smith R J, King P J, Lotya M, et al. Large-scale exfoliation of inorganic layeredcompounds in aqueous surfactant solutions. Advanced Materials,2011,23(34):3944-3998
    [96] Wang X S, Feng H B, Wu Y M, et al. Controlled synthesis of highly crystallineMoS2flakes by chemical vapor deposition. Journal of the American ChemicalSociety,2013,135(14):5304-5307
    [97] Liu K K, Zhang W, Lee Y H, et al. Growth of large-area and highly crystallineMoS2thin layers on insulating substrates. Nano Letters,2012,12(3):1538-1544
    [98] Li Q, Newberg J T, Walter E C, et al. Polycrystalline molybdenum disulfide(2H MoS2) nano-and microribbons by electrochemical/chemical synthesis. NanoLetters,2004,4(2):277–281
    [99] Zhao W J, Ghorannevis Z, Chu L Q, et al. Evolution of electronic structure inatomically thin sheets of WS2and WSe2. ACS Nano,2013,7(1):791-797
    [100] Song J G, Park J, Lee W, et al. Layer-controlled, wafer-scale, and conformalsynthesis of tungsten disulfide nanosheets using atomic layer deposition. ACSNano,2013,7(12):11333-11340
    [101] Ramakrishna Matte H S, Plowman B, Datta R, et al. Graphen analogues oflayered metal selenides. Dalton Transactions,2011,40(40):10322–10325
    [102] Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translationalinitiation by Let-7MicroRNA in human cells. Science,2005,309(5740)1573–1576
    [103] Meister, G and Tuschl T. Mechanisms of gene silencing by double-stranded RNA.Nature,2004,431(7006):343–349
    [104] He L and Hannon G J. MicroRNAs: small RNAs with a big role in generegulation. Nature Reviews Genetics,2004,5(7):522–531
    [105] Kloosterman W P and Plasterk R H. The diverse functions of microRNAs inanimal development and disease. Developmental Cell,2006,11(4):441–450
    [106] Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify humancancers. Nature,2005,435(7043):834–838
    [107] Li J, Yao B, Huang H, et al. Real-time polymerase chain reaction microRNAdetection based on enzymatic stem-loop probes ligation. Analytical Chemistry,2009,81(13):54465451.
    [108] Pall G S, Codony-Servat C, Byrne C J, et al. Carbodiimide-mediatedcross-linking of RNA to nylon membranes improves the detection of siRNA,miRNA and piRNA by northern blot. Nucleic Acids Research,2007,35(8): e60
    [109] Nelson P T, Baldwin D A, Scearce L M, et al. Microarray-based, high-throughputgene expression profiling of microRNAs. Nature Methods,2004,1(2):155161
    [110] Wen Y Q, Xu Y, Mao X H, et al. DNAzyme-based rolling-circle amplificationDNA machine for ultrasensitive analysis of microRNA in Drosophila larva.Analytical Chemistry,2012,84(18):7664-7669
    [111] Yao J J, Flack K, Ding L Z, et al. Tagging the rolling circle products withnanocrystal clusters for cascade signal increase in the detection of miRNA.Analyst,2013,138(11):3121-3125
    [112] Liu H Y, Li L, Duan L, et al. High specific and ultrasensitive isothermaldetection of microRNA by padlock probe-based exponential rolling circleamplification. Analytical Chemistry,2013,85(16):7941-7947
    [113] Liu Y Q, Zhang M, Yin B C, et al. Attomolar ultrasensitive microRNA detectionby DNA-scaffolded silver-nanocluster probe based on isothermal amplification.Analytical Chemistry,2012,84(12):5165-5169
    [114] Lu J, Tsourkas A. Imaging individual microRNAs in single mammalian cells insitu. Nucleic Acids Research,2009,37(14): e100
    [115] Kloosterman W P, Wienholds E, de Bruijn E, et al. In situ detection of miRNAsin animal embryos using LNA-modified oligonucleotide probes. Nature Methods,2006,3(1):27-29
    [116] Nelson P T, Baldwin D A, Kloosterman W P, et al. RAKE and LNA-ISH revealmicroRNA expression and localization in archival human brain. RNA,2006,12(2):187-191
    [117] Politz J C, Zhang F, Pederson T. MicroRNA-206colocalizes with ribosome-richregions in both the nucleolus and cytoplasm of rat myogenic cells. Proceedingsof the National Academy of Sciences,2006,103(50):18957-18962
    [118] Silahtaroglu A N, Nolting D, Dyrskjot L, et al. Detection of microRNAs infrozen tissue sections by fluorescence in situ hybridization using locked nucleicacid probes and tyramide signal amplification. Nature Protocols,2007,2(10):2520-2528
    [119] Wienholds E, Kloosterman W P, Miska E, et al. MicroRNA expression inzebrafish embryonic development. Science,2005,309(5732):310-311
    [120] Zhao W A, Ali M M, Brook M A, et al. Rolling circle amplification:applications in nanotechnology and biodetection with functional nucleic acids.Angewandte Chemie International Edition,2008,47(34):6330-6337
    [121] McManus S A, Li Y F. Turning a kinase deoxyribozyme into a sensor. Journal ofthe American Chemical Society,2013,135(19):7181-7186
    [122] Li N, Jablonowski C, Jin H L, et al. Stand-alone rolling circle amplificationcombined with capillary electrophoresis for specific detection of small RNA.Analytical Chemistry,2009,81(12):4906-4913
    [123] Tang L H, Liu Y, Ali M M, et al. Colorimetric and ultrasensitive bioassay basedon a dual-amplification system using aptamer and DNAzyme. AnalyticalChemistry,2012,84(11):4711-4717
    [124] Liu J W, Cao Z H, and Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009,109(5):1948-1998
    [125] Silahtaroglu A N, Nolting D, Dyrskj t L, et al. Detection of microRNAs in frozentissue sections by fluorescence in situ hybridization using locked nucleic acidprobes and tyramide signal amplification. Nature Protocols,2007,2(10):2520-2528
    [126] Ou L J, Liu S J, Chu X, et al. DNA encapsulating liposome based rolling circleamplification immunoassay as a versatile platform for ultrasensitive detection ofprotein. Analytical Chemistry,2009,81(23):9664-9673
    [127] Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification: aplatform for electrochemical detection of protein. Analytical Chemistry,2007,79(19):7492-7500
    [128] Bi S, Li L and Zhang S S. Triggered polycatenated DNA scaffolds for DNAsensors and aptasensors by a combination of rolling circle amplification andDNAzyme amplification. Analytical Chemistry,2010,82(22):9447-9454
    [129] Pena, J T, Sohn-Lee C, Rouhanifard S H, et al. miRNA in situ hybridization informaldehyde and EDC-fixed tissues. Nature Methods,2009,6(2):139-141
    [130] Wong Q W, Ching A. K, Chan A W, et al. MiR-222overexpression confers cellmigratory advantages in hepatocellular carcinoma through enhancing AKTsignaling. Clinical Cancer Research,2010,16(3):867-875
    [131] Wong Q W, Lung R W, Law P T, et al. MicroRNA-223is commonly repressed inhepatocellular carcinoma and potentiates expression of Stathmin1.Gastroenterology,2008,135(1):257-269
    [132] Laird P W. The power and the promise of DNA methylation markers. NatureReviews Cancer,2003,3(4):253-266
    [133] Ushijima T. Detection and interpretation of altered methylation patterns incancer cells. Nature Reviews Cancer,2005,5(3):223-231
    [134] Frigola J, Song J, Stirzaker C, et al. Epigenetic remodeling in colorectal cancerresults in coordinate gene suppression across an entire chromosome band. NatureGenetics,2006,38(5):540-549
    [135] Choy J S, Wei S, Lee J Y, et al. DNA methylation increases nucleosomecompaction and rigidity. Journal of the American Chemical Society,2010,132(6):1782-1783
    [136] Scholten S. Genomic imprinting in plant embryos. Epigenetics-Us,2010,5(6):455-459
    [137] Dahl C and Guldberg P. DNA methylation analysis techniques. Biogerontology,2003,4(4):233-250
    [138] Ammerpohl O, Martín-Subero J I, Richter J, et al. Hunting for the5th base:Techniques for analyzing DNA methylation. Biochimica et Biophysica Acta,2009,1790(9):847-862
    [139] Cankovic M, Mikkelsen T, Rosenblum M L, et al. A simplified laboratoryvalidated assay for MGMT promoter hypermethylation analysis of gliomaspecimens from formalin-fixed paraffin-embedded tissue. LaboratoryInvestigation,2007,87(4):392397
    [140] Herman J G, Graff J R, Myo ha nen S, et al. Methylation-specific PCR: a novelPCR assay for methylation status of CpG islands. Proceedings of the NationalAcademy of Sciences,1996,93(18):9821-9826
    [141] Derks S, Lentjes M H, Hellebrekers D M, et al. Methylation-specific PCRunraveled. Cellular Oncology,2004,26(5-6):291-299
    [142] Esteller M, Hamilton S R, Burger P C, et al. Inactivation of the DNA repair geneO6-methylguanine-DNA methyltransferase by promoter hypermethylation is acommon event in primary human neoplasia. Cancer Research,1999,59(4):793-797
    [143] Hayatsu H. The bisulfite genomic sequencing used in the analysis of epigeneticstates, a technique in the emerging environmental genotoxicology research.Mutation Research,2008,659(1-2):77-82
    [144] Pfeifer G P, Steigerwald S D, Mueller P R, et al. Genomic sequencing andmethylation analysis by ligation mediated PCR. Science,1989,246(4931):810-813
    [145] Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocolthat yields a positive display of5-methylcytosine residues in individual DNAstrands. Proceedings of the National Academy of Sciences,1992,89(5):1827-1831
    [146] Clark S J, Harrison J, Paul C L, et al. High sensitivity mapping of methylatedcytosines. Nucleic Acids Research,1994,22(15):2990-2997
    [147] Gonzalgo M L, Liang G, Spruck C H III, et al. Identification and characterizationof differentially methylated regions of genomic DNA by methylation-sensitivearbitrarily primed PCR. Cancer Research,1997,57(4):594-599
    [148] Gonzalgo M L and Jones P A. Rapid quantitation of methylation differences atspecific sites using methylation-sensitive single nucleotide primer extension(Ms-SNuPE). Nucleic Acids Research,1997,25(12):2529-2531
    [149] El-Maarri O, Herbiniaux U, Walter J, et al. A rapid, quantitative, non-radioactivebisulfite-SNuPE-IP RP HPLC assay for methylation analysis at specific CpGsites. Nucleic Acids Research,2002,30(6): e25
    [150] Tost J, Schatz P, Schuster M, et al. Analysis and accurate quantification of CpGmethylation by MALDI mass spectrometry. Nucleic Acids Research,2003,31(9):e50
    [151] Chen W Y, Lan G Y, Chang H T. Use of fluorescent DNA-templated gold/silvernanoclusters for the detection of sulfide ions. Analytical Chemistry,2011,83(24):9450-9455
    [152] Zhang M and Ye B C. Label-free fluorescent detection of copper(II) usingDNA-templated highly luminescent silver nanoclusters. Analyst,2011,136(24):5139-5142
    [153] Zhang M, Guo S M, Li Y R, et al. A label-free fluorescent molecular beaconbased on DNA-templated silver nanoclusters for detection of adenosine andadenosine deaminase. Chemical Communications,2012,48(44):5488-5490
    [154] Clark S J, Harrison J, Paul C L, et al. High sensitivity mapping of methylatedcytosines. Nucleic Acids Research,1994,22(15):2990-2997
    [155] Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocolthat yields a positive display of5-methylcytosine residues in individual DNAstrands. Proceedings of the National Academy of Sciences,1992,89(5):1827-1831
    [156] Bailey V J, Keeley B P, Zhang Y, et al. Enzymatic incorporation of multipledyes for increased sensitivity in QD-FRET sensing for DNA methylationdetection. Chembiochem,2010,11(1):71-74
    [157] Feng F, Wang H, Han L, et al. Fluorescent Conjugated Polyelectrolyte as anIndicator for Convenient Detection of DNA Methylation. Journal of theAmerican Chemical Society,2008,130(34):11338-1343
    [158] Bailey V J, Easwaran H, Zhang Y, et al. MS-qFRET: a quantum dot-basedmethod for analysis of DNA methylation. Genome Research,2009,19(8):1455-1461
    [159] Cohen S B, Graham M E, Lovrecz G. O, et al. Protein composition ofcatalytically active human telomerase from immortal cells. Science,2007,315(5820):1850-1853
    [160] Stone M. D, Mihalusova M, O’Connor C M, et al. Stepwise protein-mediatedRNA folding directs assembly of telomerase ribonucleoprotein. Nature,2007,446(7134):458-461
    [161] Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles forthe amplified detection of DNA or telomerase activity. Nano Letters,2004,4(9):1683-1687
    [162] Herbert B S, Hochreiter A E, Wright W E, et al. Nonradioactive detection oftelomerase activity using the telomeric repeat amplification protocol. NatureProtocols,2006,1(3):1583-1590
    [163] Zheng G. F, Daniel W L, Mirkin C A. A new approach to amplified telomerasedetection with polyvalent oligonucleotide nanoparticle conjugates. Journal of theAmerican Chemical Society,2008,130(30):9644-9645
    [164] Greider C W, Blackburn E H. Identification of a special telomere terminaltransferase activity inTetrahymena extracts. Cell,1985,43(2Pt1):405-413
    [165] Saleh S A, Sun J L, Xie K C, et al. Detection of telomerase activity by EthidiumBromide. Journal of Fudan University (Natural Science),1999,38(5):568-571
    [166] Wen J M, Sun L B, Zhang M, et al. A non-isotopic method for the detection oftelomerase activityin tumour tissues: TRAP-silver staining assay. MolecularPathology,1998,51(2):110-112
    [167] Kim N W, Piatyszek M A, Prowse K R, et al. Specific association of humantelomerase activity with immortal cells and cancer. Science,1994,266(5193):2011–2015
    [168] Pavlov V, Xiao Y, Willner I, et al. Amplified chemiluminescence surfacedetection of DNA and telomerase activity using catalytic nucleic acid labels.Analytical Chemistry,2004,76(7):2152-2156
    [169] Zhou X M, Xing D, Zhu D B, et al. Magnetic bead and nanoparticle basedelectrochemiluminescence amplification assay for direct and sensitive measuringof telomerase activity. Analytical Chemistry,2009,81(1):255-261
    [170] Ono A, Cao S, Togashi H, et al. Specific interactions between silver(I) ions andcytosine-cytosine pairs in DNA duplexes. Chemical Communications,2008,(39):4825-4827
    [171] De Souza N. All that glitters but does not blink. Nature Methods,2007,4:540
    [172] Vosch T, Antoku Y, Hsiang J C, et al. Strongly emissive individualDNA-encapsulated Ag nanoclusters as single-molecule fluorophores.Proceedings of the National Academy,2007,104(31):12616-12621
    [173] Yeh H C, Sharma J, Han J J, et al. A DNA-silver nanocluster probe thatfluoresces upon hybridization. Nano Letters,2010,10(8):3106-3110.
    [174] Cristofari G, Reichenbach P, Regamey P O, et al. Low-to high-throughputanalysis of telomerase modulators with Telospot. Nature Methods,2007,4(10):851-853.
    [175] Herbert B S, Hochreiter A E, Wright W E, et al. Nonradioactive detection oftelomerase activity using the telomeric repeat amplification protocol. NatureProtocols,2006,1(3):1583-1590
    [176] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bindspecific ligands. Nature,1990,346(6287):818-822
    [177] Shi H, He X X, Wang K M, et al. Activatable aptamer probe forcontrast-enhanced in vivo cancer imaging based on cell membraneprotein-triggered conformation alteration. Proceedings of the National Academyof Sciences,2011,108(10):3900-3905
    [178] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4DNA polymerase. Science,1990,249(4968):505-510
    [179] Famulok M, Mayer G, Blind M. Nucleic acid aptamers-from selection in vitro toapplications in vivo. Accounts of Chemical Research.2000,33(9):591-599
    [180] Jayasena S D. Aptamers: an emerging class of molecules that rival antibodies indiagnostics. Clinical Chemistry.1999,45(9):1628-1650
    [181] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers.Biosensors and Bioelectronics,2005,20(12):2424-2434
    [182] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensingbiomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [183] Liu J W, Lee J H, Lu Y. Quantum dot encoding of aptamer-linked nanostructuresfor one-pot simultaneous detection of multiple analytes. Analytical Chemistry,2007,79(11):4120-4125
    [184] Schachermeyer S, Ashby J, Zhong W W. Aptamer-protein binding detected byasymmetric flow field flow fractionation. Journal of Chromatography A,2013,1295,107-113
    [185] Tan W H, Donovan M J, Jiang J H. Aptamers from cell-based selection forbioanalytical applications. Chemical Reviews,2013,113(4):2842-2862
    [186] Zhen S J, Chen L Q, Xiao S J, et al. Carbon nanotubes as a low backgroundsignal platform for a molecular aptamer beacon on the basis of long-rangeresonance energy transfer. Analytical Chemistry,2010,82(20):8432-8437
    [187] Zhang J, Wang L H, Zhang H, et al. Aptamer-based multicolor fluorescent goldnanoprobes for multiplex detection in homogeneous solution. Small,2010,6(2):201-204
    [188] Zhang C Y, Johnson L W. Single quantum-dot-based aptameric nanosensor forcocaine. Analytical Chemistry,2009,81(8):3051-3055
    [189] Tang Z W, Mallikaratchy P, Yang R H, et al. Aptamer switch probe based onintramolecular displacement. Journal of the American Chemical Society,2008,130(34):11268-11269
    [190] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-basedsmall-molecule sensor for the rapid, label-free detection of cocaine inadulterated samples and biological fluids. Journal of the American ChemicalSociety,2006,128(10):3138-3139
    [191] Xiao Y, Piorek B D, Plaxco K W, et al. A Reagentless Signal-On Architecturefor Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement.Journal of the American Chemical Society,2005,127(51):17990-17991
    [192] Xia F, Zuo X L, Yang R Q, et al. Colorimetric detection of DNA, smallmolecules, proteins, and ions using unmodified gold nanoparticles andconjugated polyelectrolytes. Proceedings of the National Academy of Sciences,2010,107(24):10837-10841
    [193] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine.Journal of the American Chemical Society,2002,124(33):9678-9679
    [194] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2transistors.Nature Nanotechnology,2011,6(3):147-150
    [195] Li H, Yin Z Y, He Q Y, X. et al. Fabrication of single-and multilayer MoS2film-based field-effect transistors for sensing NO at room temperature. Small,2012,8(1):63-67
    [196] Yin Z Y, Li H, Jiang L, et al. Single-layer MoS2phototransistors. ACS Nano,2012,6(1):74-80
    [197] Zhou W J, Yin Z Y, Du Y P, et al. Synthesis of few-layer MoS2nanosheet-coatedTiO2nanobelt heterostructures for enhanced photocatalytic activities. Small,2013,9(1):140-147
    [198] He Q Y, Zeng Z Y, Yin Z Y, et al. Fabrication of flexible MoS2thin-filmtransistor arrays for practical gas-sensing applications. Small,2012,8(19):2994-2999
    [199] Zhu C F, Zeng Z Y, Li H, et al. Single-layer MoS2-based nanoprobes forhomogeneous detection of biomolecules. Journal of the American ChemicalSociety,2013,135(16):5998-6001
    [200] Wang Y, Li Z H, Weber T J, et al. In situ live cell sensing of multiplenucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets.Analytical Chemistry,2013,85(14):6775-6782
    [201] Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbon nanotubesand single-stranded DNA: an effective sensing platform for probingbiomolecular interactions. Analytical Chemistry,2008,80(19):7408-7413
    [202] Chappell C, Hanakahi L A, Karimi-Busheri F, et al. Involvement of humanpolynucleotide kinase in double-strand break repair by non-homologous endjoining. EMBO Journal,2002,21(11):2827-2832
    [203] Whitehouse C J, Taylor R M, Thistlethwaite A, et al. XRCC1stimulates humanpolynucleotide kinase activity at damaged DNA termini and accelerates DNAsingle-strand break repair. Cell,2001,104(1):107-117
    [204] Chen, F, Zhao, Y X, Qi, L, et al. One-step highly sensitive florescence detectionof T4polynucleotide kinase activity and biological small molecules byligation-nicking coupled reaction-mediated signal amplification. Biosensors andBioelectronics,2013,47,218-224
    [205] Richards C C. Phosphorylation of nucleic acid by an enzyme from T4bacteriophage-infected Escherichia coli. Proceedings of the National Academyof Sciences,1965,54(1):158-165
    [206] Becker A, Hurwitz J J. The enzymatic cleavage of phosphate termini frompolynucleotides. Biological Chemistry,1967,242(5):936-950
    [207] Cameron V, Uhlenbeck O C.3'-Phosphatase activity in T4polynucleotide kinase.Biochemistry,1977,16(23):5120-5126
    [208] Phillips D H, Arlt V M. The32P-postlabeling assay for DNA adducts. NatureProtocols,2007,2(11):2772–2781
    [209] Frauendorf C, Hausch F, Rohl I, et al. Internal32P-labeling ofL-deoxyoligonucleotides. Nucleic Acids Research,2003,31(7): e34
    [210] Karimi-Busheri F, Rasouli-Nia A, Allalunis-Turner J, et al. Humanpolynucleotide kinase participates in repair of DNA double-strand breaks bynonhomologous end joining but not homologous recombination. CancerResearch,2007,67(14):6619–6625
    [211] Wang L K, Lima C D, Shuman S. Structure and mechanism of T4polynucleotidekinase: an RNA repair enzyme. EMBO Journal,2002,21(14):3873-3880
    [212] Bernstein N K, Williams R S, Rakovszky M L, et al. The moleculararchitecture of the mammalian DNA repair enzyme, polynucleotide kinase.Molecular Cell,2005,17(5):657-670
    [213] Karimi-Busheri F, Lee J, Tomkinson A E, et al. Repair of DNA strand gaps andnicks containing3'-phosphate and5'-hydroxyl termini by purified mammalianenzymes. Nucleic Acids Research,1998,26(19):4395-4000
    [214] Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acidsphosphorylation process using molecular beacons. Nucleic Acids Research,2005,33(11): e97
    [215] Song C, Zhao M P. Real-time monitoring of the activity and kinetics of T4polynucleotide kinase by a singly labeled DNA-hairpin smart probe coupled withlambda exonuclease cleavage. Analytical Chemistry,2009,81(4):1383-1388
    [216] Huang X, Qi X Y, Boey F, et al. Graphene-based composites. Chemical SocietyReviews,2012,41(2):666-686
    [217] Wang Y, Li Z H, Hu D H, et al. Aptamer/graphene oxide nanocomplex for in situmolecular probing in living cells. Journal of the American Chemical Society,2010,132(27):9274-9276
    [218] Tang L H, Wang Y, Liu Y, et al. DNA-directed self-assembly of graphene oxidewith applications to ultrasensitive oligonucleotide assay. ACS Nano,2011,5(5):3817-3822
    [219] Liu B W, Sun Z Y, Zhang X, et al. Mechanisms of DNA sensing on grapheneoxide. Analytical Chemistry,2013,85(16):7987-7993
    [220] Guo Y S, Jia X P, Zhang S S. DNA cycle amplification device on magneticmicrobeads for determination of thrombin based on graphene oxide enhancingsignal-on electrochemiluminescence. Chemical Communications,2011,47(2):725-727
    [221] Zhao W J, Ghorannevis Z, Chu L Q, et al. Evolution of electronic structure inatomically thin sheets of WS2and WSe2. ACS Nano,2013,7(1):791-797
    [222] Bernardi M, Palummo M, and Grossman J C. Extraordinary sunlight absorptionand one nanometer thick photovoltaics using two-dimensional monolayermaterials. Nano Letters,2013,13(8):3664-3670
    [223] Liu J W, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ionsin aqueous solution with high sensitivity and selectivity. Journal of the AmericanChemical Society,2007,129(32):9838-9839
    [224] He S J, Song B, Li D, et al. A Graphene Nanoprobe for Rapid, Sensitive, andMulticolor Fluorescent DNA Analysis. Advanced Functional Materials2010,20(3):453-459
    [225] Voiry D, Yamaguchi H, Li J W, et al. Enhanced catalytic activity in strainedchemically exfoliated WS2nanosheets for hydrogen evolution. Nature Materials,2013,12(9):850-855
    [226] Vodenicharov M D, Sallmann F R, Satoh M S, et al. Base excision repair isefficient in cells lacking poly(ADP-ribose) polymerase1. Nucleic AcidsResearch,2000,28(20):3887-3896
    [227] Subramanian K, Rutvisuttinunt W, Scott W, et al. The enzymatic basis ofprocessivity in lambda exonuclease. Nucleic Acids Research,2003,31(6):1585-1596
    [228] Perkins T T, Dalal R V, Mitsis P G, et al. Sequence-dependent pausing of singlelambda exonuclease molecules. Science,2003,301(5641):1914-1918
    [229] Karimi-Busheri F, Daly G, Robins P, et al. Molecular characterization of ahuman DNA kinase. Journal of Biological Chemistry,1999,274(34):24187-24194
    [230] Lin L, Liu Y, Yan J, et al. Sensitive nanochannel biosensor for T4polynucleotide kinase activity and inhibition detection. Analytical Chemistry,2013,85(1):334-340
    [231] Dobson C J, Allinson S L. The phosphatase activity of mammalianpolynucleotide kinase takes precedence over its kinase activity in repair of singlestrand breaks. Nucleic Acids Research,2006,34(8):2230-2237
    [232] Swathi R S, Sebastian K L. Long range resonance energy transfer from a dyemolecule to graphene has (distance)(-4) dependence. Journal of ChemicalPhysics,2009,130(8):086101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700