用户名: 密码: 验证码:
哈茨木霉SOD基因的克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈茨木霉(Trichoderma harzianum)是一种优秀的生防真菌,在植物病害,尤其是土壤传染病害的生物防治中有重要的应用价值。哈茨木霉主要通过重寄生作用、溶菌作用、抗生素作用、蛋白酶作用以及对空间和营养的竞争机制达到防治植物病原菌的目的。现已在生产上已被广泛应用于植物病害的生物防治,但由于在各种恶劣的生存条件下哈茨木霉的抑菌功能受到了极大限制和破坏,限制了其优秀生防潜力的进一步发挥。因而,有必要提高哈茨木霉的抗逆性,以保证其生防功能顺利实现。
     本文利用二元表达载体pBI121,pCAMBIA1301和克隆载体pUC18,成功构建了用于根癌农杆菌介导的丝状真菌遗传转化表达载体pCA-GSOD,可应用于各种丝状真菌的遗传转化。该载体含有超氧化物岐化酶(SOD)基因,以潮霉素抗性基因为选择标记,目的基因的启动子为CaMV35S,含T-DNA区段。pCA-GSOD表达载体的构建,为提高SOD基因在哈茨木霉中的表达,进而增强哈茨木霉的抗逆性奠定了基础。
     本实验应用根癌农杆菌介导的遗传转化系统从根本上解决了传统真菌转化方法所面临的操作繁杂、转化效率低、遗传不稳定等问题。试验中对影响哈茨木霉转化的因素进行优化,获得了该系统转化木霉的最佳条件。经过潮霉素抗性选择培养,Southern杂交及传代分析得到稳定遗传的转化子。
     采用与植物病原菌室内拮抗实验,检测了木霉菌各转化子的抑菌活性。结果表明通过根癌农杆菌介导的转化系统所获得转化子保持了木霉菌的抑菌活性,对三种植物病原菌都表现出良好的拮抗作用。在拮抗机制上也同木霉菌原菌一样,主要表现为竞争和重寄生作用。这充分表明,本文的转基因操作没有影响木霉菌的抑菌能力。对木霉原菌和转化子进行高温和盐胁迫实验,结果表明转化子在逆境下仍能正常存活,且在与植物病原菌拮抗实验中仍具备较好的拮抗作用;而木霉原菌在逆境下不能正常存活,在与植物病原菌拮抗实验中丧失其抑菌功能。
     SOD基因在哈茨木霉中的表达,提高了哈茨木霉对高温和高盐的抗逆性,保证了哈茨木霉能够在高温和高盐的条件下发挥其优秀的生防功能。从而,为哈茨木霉的抑菌功能在更广泛的领域中应用奠定了基础。
Trichoderma. Harzianum was an antimicrobial strain. It had important applied value in the biocontrol of plant diseases, especially diseases infected through soil. T. harzianum biologically controlled the plant pathogenic fungi by mycoparasitism, bactericidal efficacy, antibiotic effect, protease effect and the competitive mechanism with space and nutrition. It was widely used in biocontrol of plant disease now. But because of various adverse suvivial conditions, the antimicrobial efficacy of T. harzianum was restricted and badly damaged, so it was necessary to enhance the adversity resistance of T. harzianum in order to realize its function of biocontrol.
     Express vector pCA-GSOD for filamentous fungi transformation mediated by Agrobacterium tumefaciens was successfully constructed by using binary vector of pBI121,pCAMBIA1301 and clone vector of pUC18. Including the SOD gene, hygromycin resistance gene as selected marker and CaMV35S promoter with section of T-DNA.the vector pCA-GSOD could be used for genetic transformation of mycelial fungus. The construction of vector pCA-GSO, suggests a stratergy for the enhancement of SOD expression in T. harzianum and improvement of T. harzianum’environmental resistance.
     In this work, genetic transformation system mediated by A. tumefaciens was used to transformate T. harzianum and may solve the problem of traditional fungus transformation, complex operation, low transformation frequency and genetic unstability of transformants faced by traditional fungus transformation system. The best conditions of this system to transformate T. harzianum were got by analysis every transformation factors. Positive transformant was harvested by the selected method, southern blot analysis and passage culturing.
     Antifungal activities of the transformants of T. harzianum was tested by means of dual culture with three kinds of plant pathogens, and the results showed that there was no obvious difference in inhibition activity to these pathogens between original strain of T. harzianum and its transformants obtained by A. tumefaciens. The main antifungal mechanisms of the transformants were competition and parasitism, which were the same to that of wild strain. These results indicated that our transgenic operation didn’t decrease its antifungal ability. Then stress experiment of wild T. harzianum and its transformants was tested. The result indicated that transformants still suvived. Moreover, dual cultured with plant pathogens, the transformants alse suvived well; however, wild T. harzianum could not tolerate the stresses and lack the inhibition activity to these pathogens.
     This expression of SOD gene in T. harzianum enhanced the resistance of T. harzianum, ensured its excellent biocontriol function in various adverse conditions so as to widen the application area of T. harzianum.
引文
1邵力平,沈瑞祥,张素轩等.真菌分类学.中国林业出版社. 1996, 304-311.
    2 R. Hellens, P. Mullineaux, H.A. Klee. Guide to Agrobacterium binaryTi veetors.Trends in plant science. 2004,5: 446-451.
    3王芊.木霉菌在生物防治上的应用及拮抗机制.黑龙江农业科学. 2001,1:41-43.
    4刘丕钢,杨谦.哈茨木霉cDNA文库构建及表达序列标签分析.哈尔滨工业大学学报. 2005,11(2):1503-1504.
    5李荣森.我国为生物防治研究与微生物农药产业化的进展.中国病毒学. 2000, 15:1-15
    6 Y. Hiei, T. Komari, T. Kubo.Transformation of rice mediateacterium tumefacieos. Plant Mol Bio1.2002, 35:205-218.
    7土关林,方宏巧.植物基因工程原理与技术.北京:科学出版.2005,473- 474.
    8李卫,郭光沁.根瘤农杆菌介导遗传转化研究的若干新进展.科学通报,2005,45:18-67.
    9杨合同,唐文华.木霉菌与植物病害的生物防治.山东科学.2005,9(1):1-2.
    10刘凡,土国英,曹鸣庆.农杆菌介导的植物原位转基因方法研究进展.分子植物育种,2006,1(1):108-120.
    11王未名,陈建爱,孙永堂等.六种土传病原真菌被木霉抑制作用的初步研究.中国生物防治. 1999,15(3): 142-143.
    12焦综.木霉抑菌物质的抑菌效果.中国生物防治.2000,11(3): 122-124.
    13 I. S. Curbs. Production of transgcnicdip method. Mcthods Mol Bio. 2005, 28:103-123.
    14 M. J. Hynes. Genetic transformation of filamentous fungi. J Genet, 2002, 79:297-311.
    15 N. C. Mishra. Characterization of the new osmotic mutant which or ginated during genetic transformation in Neurospora crassa. Genet Res. 2005, 29:9-19.
    16张博润. SOD研究进展与应用前景.微生物学通报, 2001,2(3): 13-67
    17 M. LaSra, E. Vannini. Grassi.M.Gcnomic staility in Araidopsis thaliana transgcnic plants taincd. Thcor App Gcncl.2004, 109:151-246.
    18祁高富,杨斌,叶建仁.植物病原真菌毒素研究进展.南京林业大学学报.2000, 24(2): 66-70
    19陈淮扬,刘望荑.从SOD的分布与结构看其分子进化.生物化学与生物物理进展. 2000, 23(5):408-412.
    20程光宇,魏锦城,吴国荣等. Fe2SOD在枸杞和何首乌体内的分布和细胞器中的定位.植物生理学会编印, 1998,49-58
    21魏锦城,吴鼎福,王成毅等.高光强对核酮糖二磷酸羧化酶/加氧酶与SOD的影响.南京师范大学学报(自然科学版),2001,14(2):102-109
    22 J. M. Mc Cord Fridovich.Superoxide diamutase.J,Boil chem.1999,224:6069-6055.
    23 J. M. Mc Cord Fridovich.Superoxide diamutase:an enzymic function for erthrocuprein. Boil chem.. 2001, 193:353-358
    24 F. Sala, A. ArcnciSia. Svarialion in transgcn is plan. Nature Biotechnology .2006, 5: 411-419.
    25 N. Durand, P. Reymond, M. Fevre. Transformation of Penicillium roqueforti to Phleomycin.Resistance. Current Genetics. 2002,19 :149-153.
    26 A.G. Pardo, M. Hanif, M. Raudaskoski, et al. Genetic transformation of ectomycorrhizal fungi mediated byAgrobacterium tumefaciens.Mycol Res, 2006 106:132-137.
    27吴宝轩,格林托德.小麦幼苗中SOD活性与幼苗脱水忍耐力相关性的研究.植物学报.1985, 27(2):152-160
    28 Yeshitila Degefu, Mubashir Hanif. Agrobacterium tumefaciens mediated transformation of Helminthosporium turcicum, the maize leaf blight fungus. Arch Microbiol. 2003, 180:279-284.
    29刘学军,苗以农,许守民等.大豆中过氧化物酶和SOD活性的初步研究.东北师范大学学报(自然科学版). 1999,14(4):6571.
    30王爱国,罗广华,邵从本等.植物的氧化代谢及活性氧对细胞的伤害.中国科学院华南植物研究所集刊:华南理工大学出版社. 1989,11-22.
    31张艳红,廖晓全,袁勤生.人锰超氧化物岐化酶(hMn-SOD)研究进展.药物生物技术. 2001, 8(6):352-356.
    32吴国荣,魏锦城,程光宇等.植物药SOD活性与某些性质研究.南京师范大学学报(自然科学版). 1991, 14(2):97-101
    33牛淑敏,洪伟,刘方等.大鼠CuZn-SODcDNA的克隆及高效表达.南开大学学报. 2001, 3(5):69-73
    34 N. J. Misshra E. L. Tatum. Proceedings of the National Academy of Sciences. 2004, 87:2175.
    35 P. J. Punt. Gene transfer system and vector development for filamentous fungi. Applied Molecular Genetics of Fungi. Cambridge Univ. Press. 2003, Cambridge, UK, 4-29.
    36 M. Lorito, C. K. Hayes, G. E. Harman. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr. Genet. 2004, 44: 239-276.
    37 A. Radfor, S. Pope, A. Sazci, et al. Liposome mediated genetic transformation of Neurospora crassa. Mol. Gene. Genet, 2001, 164:647-689.
    38 S. Kruszewslca Joama. Heterologous expression of genes in filamentous fungi. Acta Biochimica Polonica. 1999, 46(1):181-195.
    39 M. J. A. de Groot, P. Bundock, P. J. J. Hooykaas, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol, 2003, 16:839-842.
    40 R. J. Gouka, C. Gerk, P. J. J. Hooykaas, et al. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nature Biotechnology, 1999, 17:598-601.
    41 S. F. Covert, P. Kapoor, M. Lee, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol. Res., 2001, 105(3):259-264.
    42李卫,郭光沁,郑国昌.根癌农杆菌介导的遗传转化研究的若干新进展.科学通报, 2000, 45(8):798-807.
    43闫培生,罗信昌,周启.丝状真菌基因工程研究进展.生物工程进展. 2001, 19(1):36-41.
    44郭丽红,陈善娜,龚明.根癌农杆菌法转化烟草的条件探索.云南大学学报(自然科学版). 2003, 25(2): 148-152.
    45吴迪,周长梅,朱延明.酚类物质对葡萄遗传转化效率的影响.园艺学报. 2003, 30(1): 77-78.
    46尹鸿瑛,安韩冰,安利佳.影响根癌农杆菌介导水稻转化的因素分析.植物研究. 2001, 21(3): 441-448.
    47王革,方敦煌,李天飞等.木霉拮抗烟草赤星病菌菌株的筛选及拮抗机制.烟草科技. 2000, 3: 45-47.
    48王革,李梅云,段玉琪等.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究.云南大学学报(自然科学版). 2001, 23(3): 222-226.
    49高培基,曲音波,段永城等.纤维毛壳菌玉米及发酵饲料的系统独立分析和营养价值测定.山东大学学报(自然科学版). 1999,34(3):326-331.
    50邢来君,李明春.普通真菌学.高等教育出版社. 1999,346-347.
    51郭润芳,史宝胜,高宝嘉等.木霉菌在植物生物防治中的应用.河北林果研究. 2001, 16(3): 294-298.
    52 H.S.Rho,S.Kang,Y.H.Lee.Agrobacteriumtumefaciens-mediatedtransformation of the plant pathogenic fungus Magnaporthe grisea. Mol. Cells. 2001, 12(3): 407-411.
    53涂玉琴.生物农药的研究和应用进展.江西植保. 1998,(4):32-35.
    54徐同.木霉分子生物学研究进展.真菌学报. 1996,15(2):143-148.
    55 J. S. Ahmad, R. Baker. Rhizosphere competence of Trichoderma harzianum. Phytopathology. 2005, 77:182-189.
    56 K. J. Fullner, J. C. Lara, E. W. Nester. Pilus assembly by Agrobacterium T-DNA transfer genes. Science. 1996, 273:1107-1109.
    57方卫国,张永军,杨星勇.根癌农杆菌介导真菌遗传转化的研究进展.中国生物工程杂志. 2002, 22(5): 40-44.
    58王政逸,李德葆.限制酶介导的插入突变及其在丝状真菌中的应用.菌物系统. 2001, 20(1): 142-147.
    59吴冠英,潘华珍.生物化学与分子生物学实验常用数据手册.科学出版社. 2002:127-129.
    60李建武,余瑞元,袁明秀等.生物化学实验原理和方法.北京大学出版社. 1994:279-283.
    61杨建雄.生物化学与分子生物学实验技术教程.科学出版社. 2002:227-228.
    62 J.萨姆布鲁克, D. W.拉赛尔.分子克隆实验指南(第三版).北京:科学出版社, 2002: 492-499.
    63刘进元.分子生物学实验指导.清华大学出版社. 2002, 11: 128-134.
    64纪晓东.从双元质粒系统农杆菌中制备微型质粒.丹东师专学报. 1997, 19(3): 56-58
    65李东栋,石玮,邓秀新等.不同根癌农杆菌菌株对柑橘愈伤组织遗传转化效率的影响.华中农业大学学报. 2002, 21(4): 379-381.
    66张旭东,刘云龙,张中义.木霉生防菌对植物生长的影响.云南农业大学学报. 2001, 16(4): 299-304.
    67马炳田,文成敬.几种核盘菌菌核重寄生真菌生物防治潜能的研究.中国农学通报. 2002, 18(6): 58-63.
    68田连生,王伟华,石万龙等.木霉对尖镰孢菌的拮抗机制及生防效果研究. 植物保护. 2001, 27(4): 47-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700