用户名: 密码: 验证码:
图核及其在模式识别中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
统计模式识别和结构模式识别是模式识别中两种主要方法。在统计模式识别中,研究对象一般用特征向量来表示,因此,可以借用向量空间中的一些成熟算法。统计模式识别的缺点是难以表示复杂物体各部分之间的关系。在结构模式识别中,研究对象一般用图来表示,对象的相似性或匹配问题就变为图的相似性或匹配问题。图匹配的计算复杂度高并且没有系统化的计算方法,因此,自结构模式识别出现之日起,研究人员就试图把统计模式识别和结构模式识别统一起来。
     近年来,由于核方法具有坚实的理论基础,以及在许多实际问题中成功的应用,引起了人们越来越大的关注。核方法不仅适用于以特征向量表示的模式,也适用于结构化的数据。因此,把核方法引入图成了新的研究热点。所谓图核,就是把图映射到特征向量空间,使得两个图的相似性就是它们在特征向量空间的点积。因此,向量里的运算都适用于图。
     目前提出的图核有:通路核,扩散核,卷积核。但是仍然有许多问题需要进一步研究,本文研究图核及其在模式识别中的应用。
     本文主要包括以下创新工作:
     (1)构造了生成树核及其派生核,并对这些核进行了比较。本文构造的生成树核是可表示的、正定的、可计算的、适用范围较宽的图核;计算它们的时间复杂度低于随机通路核的时间复杂度;将这些核应用在人脸识别中,它们的人脸识别正确率高于通路核的识别正确率。
     (2)用两种方法构造了基于生成树的回路核及其派生核,并对这些核进行了比较。本文构造的基于生成树的回路核的时间复杂度低于现有的回路核的时间复杂度,它们是可计算的;并且克服了随机通路核的不足:通路中的顶点和边可以重复出现。将这些核应用在人脸识别中,它们的人脸识别正确率高于通路核的识别正确率。
     (3)构造了强分支核。强分支核不仅适用有向图,也可扩展为适用无向图;既适用连通图,也适用不连通图;既适用平面图也适用非平面图;既适用有标号图,也适用无标号图。将定义的强分支核应用于人脸识别中,人脸识别正确率平均为96%。
     (4)提出了一种基于合成核的人脸识别方法,合成核的人脸识别正确率高于单核的识别正确率。本文对人脸图像进行了区域和LBP的特征提取,并改进了直方图交核,提高了人脸识别正确率。在此基础上,把直方图交核和图核结合在一起,进一步提高了人脸识别正确率。
     最后,作者介绍了今后的进一步研究方向,并对本文进行了总结。
The discipline of pattern recognition is usually divided into the statistical and thestructural approach. In statistical pattern recognition, the object is generallyrepresented by feature vector, so we can use the mature algorithms in the vector space.The disadvantage of statistical pattern recognition is that it is difficult to representcomplex relationships that might exist among different parts of a pattern. In structuralpattern recognition, object of study is generally represented by graph, and then thesimilarity of objects has been transformed to the similarity of graph. However, thecomputational complexity of graph matching algorithm is high and there is nosystematic computing method. Therefore, researchers have tried to unify statisticalpattern recognition and structural pattern recognition since the birth of structuralpattern recognition.
     In recent years, kernel methods have solid theoretical foundation and have beensuccessfully applied to many practical problems. Kernel methods have become aresearch hotspot. Kernel method applies not only to feature vector representation ofthe pattern but also to the structural data. Consequently, graph kernel has become anew research hotspot. Graph kernel can be thought of as a dot product in some featurespace. Consequently, algorithms in vector space are also fit for graph.
     Diffusion Kernels, Convolution Kernels and Walk Kernels have been proposed inthe literatures. But there are still many issues that need further research, the paperresearches on graph kernels and their application in pattern recognition.
     The following innovative works have been completed:
     (1) The spanning tree kernel and its derived kernels have been constructed, andalso a comparison of these kernels has been made. The constructed spanning treekernel is expressive, positive definite, computable graph kernel, and it is applicableto most graphs. Their compution time complexity is lower than the random walkkernel. In the face recognition, the recognition accuracy rate of these kernels ishigher than the walk kernel.
     (2)The cycle kernel, based on spanning tree, and its derived kernel have beenconstructed by two methods, and a comprison of these kernels has been made. Thetime complexity of the cycle kernel based on spanning tree is lower than the existingcycle kernel. They are computable and overcome the lack of random walk kernel, inwhich the vertices and edges can be repeated. In the face recognition, the recognition accuracy rate of these kernels is also higher than the walk kernel.
     (3)The diconnected components kernel has been constructed. It is applicable todirected graph, undirected graph, connected graph, non-connected graph, plan graph,non-plan graph, labeled graph and non-labeled graph. When the diconnectedcomponents kernel is applied to face recognition, the average recognition accuracyrate reaches to96%.
     (4)Finally, the face recognition method based on synthesis kernel has beenproposed, and the face recognition accuracy rate of synthesis kernel is higher than thesingle kernel. Here the paper extractes the region and LBP features of face images,and improves the histogram intersection kernel, and the face recognition accuracy rategets a lot improvement. On this basis, the combination of histogram intersectionkernel and graph kernel furtherly improves the face recognition accuracy rate.
     Finally, a summary of this article has been made and the direction of the furtherresearch has been described.
引文
1F. Songhe, et al. A novel graph kernel based SVM algorithm for image semantic retrieval. inAdvances in Neural Networks-ISNN2006. Third International Symposium on Neural Networks.Proceedings,28May-1June2006.2006. Berlin, Germany: Springer-Verlag.
    2A. Lumini, D. Maio and D. Maltoni. Inexact Graph Matching for Fingerprint Classification.Machine Graphics& Vision.1999,8(2):231-248.
    3W. W. A. W. J. Huan. Accurate Classification of Protein Structural Families Using CoherentSubgraph Analysis. Proceedings of Pacific Symposium on Biocomputing,2004,1:411-422.
    4D. Conte, P. Foggia, C. Sansone and M. Vento. Thirty Years of Graph Matching in PatternRecognition. International Journal of Pattern Recognition and Artificial Intelligence.2004,18(3):265-298.
    5T. Wen-Hsiang and F. King-Sun. Error-Correcting Isomorphisms of Attributed RelationalGraphs for Pattern Analysis. IEEE Transactions on Systems, Man and Cybernetics.1979,SMC-9(12):757-768.
    6T. Wen-Hsiang and F. King-Sun. Subgraph Error-Correcting Isomorphisms for SyntacticPattern Recognition. IEEE Transactions on Systems, Man and Cybernetics.1983, SMC-13(1):48-62.
    7L. G. Shapiro and R. M. Haralick. A Metric for Comparing Relational Descriptions [ComputerVision]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1985, PAMI-7(1):90-94.
    8E. Wong. Three-Dimensional Object Recognition by Attributed Graphs. H. Bunke, A. Sanfeliu(Eds.), Syntactic and Structural Pattern Recognition: Theory and Applications,1990,1:381-414.
    9A. Sanfeliu and F. King-Sun. A distance measure between attributed relational graphs forpattern recognition. in Proceedings of the6th International Conference on Pattern Recognition,19-22Oct.1982.1982. New York, NY, USA: IEEE.
    10H. Bunke and G. Allermann. Inexact Graph Matching for Structural Pattern Recognition.Pattern Recognition Letters.1983,1(4):245-253.
    11H. Bunke. Error Correcting Graph Matching: On the Influence of the Underlying CostFunction. IEEE Transactions on Pattern Analysis and Machine Intelligence.1999,21(9):917-922.
    12X. Bing, G. Xinbo, T. Dacheng and L. Xuelong. Hmm-Based Graph Edit Distance for ImageIndexing. International Journal of Imaging Systems and Technology.2008,18(2-3):209-218.
    13M. A. Fischler and R. A. Elschlager. The Representation and Matching of Pictorial Structures.IEEE Transactions on Computers.1973, C-22(1):67-92.
    14M. C. Boeres, C. C. Ribeiro and I. Bloch. A Randomized Heuristic for Scene Recognition byGraph Matching. Experimental and Efficient Algorithms. Third International Workshop, WEA2004. Proceedings,25-28May2004, Berlin, Germany,2004. Springer-Verlag,2004:100-113.
    15S. Sorlin and S. Solnon. Reactive Tabu Search for Measuring Graph Similarity. Graph-BasedRepresentations in Pattern Recognition.5th IAPR International Workshop, GbRPR2005.Proceedings,11-13April2005, Berlin, Germany,2005. Springer-Verlag,2005:172-182.
    16M. Neuhaus, K. Riesen and H. Bunke. Fast Suboptimal Algorithms for the Computation ofGraph Edit Distance. Structural, Syntactic, and Statistical Pattern Recognition. Joint IAPRInternational Workshops SSPR2006and SPR2006. Proceedings,17-19Aug.2006, Berlin,Germany,2006. Springer-Verlag,2006:163-172.
    17D. Justice and A. Hero. A Binary Linear Programming Formulation of the Graph EditDistance. IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28(8):1200-1214.
    18M. A. Eshera and K. S. Fu. A Graph Distance Measure for Image Analysis. IEEETransactions on Systems, Man and Cybernetics.1984, SMC-14(3):398-408.
    19V. Vapnik. Statistical Learning Theory. New York,1998:60-68.
    20H. B. M. Neuhaus. Bridging the Gap Between Graph Edit Distance and Kernel Machines.2007:85-96.
    21B. Scholkopf. Learning with Kernels. Proceedings of2002International Conference onMachine Learning and Cybernetics, November4,2002-November5,2002, Beijing, China,2002.Institute of Electrical and Electronics Engineers Inc.,2002:1-38.
    22T. Gartner, J. W. Lloyd and P. A. Flach. Kernels for Structured Data.12th InternationalConference, ILP2002, July9,2002-July11,2002, Sydney, Australia,2003. Springer Verlag,2003:66-83.
    23T. Gartner. A Survey of Kernels for Structured Data. Engineering Applications of ArtificialIntelligence2003,5(1):49-58.
    24J. L. R. Kondor. Diffusion Kernels On Graphs and Other Discrete Input Spaces.2002:315-322.
    25J. S. S. J. Kandola. Learning Semantic Similiarity. The MIT Press.2004:657-664.
    26A. J. Smola and R. Kondor. Kernels and Regularization On Graphs.16th Annual Conferenceon Learning Theory and7th Kernel Workshop, COLT/Kernel2003, August24,2003-August27,2003, Washington, DC, United states,2003. Springer Verlag,2003:144-158.
    27G. L. J. Lafferty. Information Diffusion Kernels. Advances in Neural Information ProcessingSystems.2003,15:375-382.
    28J. Lafferty and G. Lebanon. Diffusion Kernels On Statistical Manifolds. Journal of MachineLearning Research.2005,6.
    29C. Watkins. Dynamic Alignment Kernels. Advances in Large Margin Classifiers.2000:39-50.
    30N. D. Michael Collins. Convolution Kernels for Natural Language.2001:625-632.
    31B. Haasdonk. Feature Space Interpretation of Svms with Indefinite Kernels. IEEETransactions on Pattern Analysis and Machine Intelligence.2005,27(4):482-492.
    32F. Chung-Graham, Spectral Graph Theory, AMS,1997:78-89.
    33S. Sarkar, K. Boyer, Quantitative measures of change based on feature organization:Eigenvalues and eigenvectors, Computer Vision and Image Understanding1998,71(1):110–136.
    34B. Luo, R. Wilson, E. Hancock, Spectral embedding of graphs, Pattern Recognition,2003,36(10):2213–2223.
    35T. Caelli, S. Kosinov. Inexact graph matching using eigen-subspace projection clustering. Int.Journal of Pattern Recognition and Artificial Intelligence,2004,18(3):329–355.
    36R.Wilson, E. Hancock, B. Luo, Pattern vectors from algebraic graph theory, IEEETransactions on Pattern Analysis and Machine Intelligence,2005,27(7):1112–1124.
    37A. Robles-Kelly, E. Hancock, A Riemannian approach to graph embedding, PatternRecognition,2007,40(3):1024–1056.
    38W. Lee, R. Duin, A labeled graph based multiple classifier system, in: J. Benediktsson, J.Kittler, F. Roli (Eds.), Proc.8th Int. Workshop on Multiple Classifier Systems, LNCS5519,2009,201–210.
    39E. Pekalska, R. Duin, The Dissimilarity Representation for Pattern Recognition: Foundationsand Applications, World Scientific,2005,76-88.
    40B. Spillmann, M. Neuhaus, H. Bunke, E. Pekalska, R. Duin, Transforming strings to vectorspaces using prototype selection, in: D.-Y. Yeung, J. Kwok, A. Fred, F. Roli, D. de Ridder (Eds.),Proc.11th int. Workshop on Structural and Syntactic Pattern Recognition, LNCS4109, Springer,2006,287–296.
    41K. Riesen, H. Bunke, Graph classification based on vector space embedding, Int. Journal ofPattern Recognition and Artificial Intelligence,2009,23(6):1053–1081.
    42K. Riesen, H. Bunke, Reducing the dimensionality of dissimilarity space embedding graphkernels, Engineering Applications of Artificial Intelligence,2008,22(1):48–56.
    43K. Riesen, H. Bunke, Non-linear transformations of vector space embedded graphs, in: A.Juan-Ciscar, G. Sanchez-Albaladejo (Eds.), Pattern Recognition in Information Systems,2008,173–186.
    44S. A. J. Scholkopf. B. Learning with Kernels. The MIT Press,2002:3-18.
    45D. Haussler. Convolutional Kernels On Discrete Structures.UCSC-CRL-99-10. Departmentof Computer Science. University of California at Santa Cruz, CA95064,1999,56-67.
    46C. N and S. J. An Introduction to Support Vector Machines and Other Kernel-BasedLearning Methods. Cambridge University Press,2001:6-9.
    47M. G. Genton. Classes of Kernels for Machine Learning: A Statistics Perspective. Journal ofMachine Learning Research.2002,2(2):299-312.
    48J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. CambridgeUniversity Press,2004,89-106.
    49汪洪桥,孙富春,蔡艳宁,陈宁,丁林阁.多核学习方法.自动化学报.2010,(8):1037-1050.
    50H. Bunke and K. Riesen. Towards the Unification of Structural and Statistical PatternRecognition. Institute of Computer Science and Applied Mathematics.2011,1-30.
    51K. M. Borgwardt and H. P. Kriegel. Shortest-Path Kernels On Graphs. Proceedings. FifthIEEE International Conference on Data Mining,27-30Nov.2005, Los Alamitos, CA, USA,2006.IEEE Computer Society,2006:60-67.
    52T. Horvath, T. Gartner and S. Wrobel. Cyclic Pattern Kernels for Predictive Graph Mining.KDD-2004-Proceedings of the Tenth ACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining, August22,2004-August25,2004, Seattle, WA, United states,2004.Association for Computing Machinery,2004:158-167.
    53C. Watkins. Dynamic Alignment Kernels. Advances in Large Margin Classifiers.2000,39-50.
    54N. D. Michael Collins. Convolution Kernels for Natural Language. Association forComputing Machinery,2001:625-632.
    55J. L. R. Kondor. Diffusion Kernels On Graphs and Other Discrete Input Spaces. Networks.Neurocomputing,2002:315-322.
    56J. S. S. J. Kandola. Learning Semantic Similiarity. Association for Computing Machinery,2004,657-664.
    57G. L. J. Lafferty. Information Diffusion Kernels. Advances in Neural Information ProcessingSystems.2003,15:375-382.
    58J. Lafferty and G. Lebanon. Diffusion Kernels On Statistical Manifolds. Journal of MachineLearning Research.2005,81-86.
    59R. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete input spaces, in: Proc.19th Int. Conference on Machine Learning,2002,315–322.
    60G. C. Feng and P. C. Yuen. Variance Projection Function and its Application to EyeDetection for Human Face Recognition. Pattern Recognition Letters.1998,19(9):899-906.
    61张汗灵. MATLAB在图像处理中的应用.清华大学出版社,2008,105-120.
    62R. E. W. Rafeal C. Gonzalez. Digital Image Processing(Second Edition). Publising house ofelectronics industry,2007:46-68.
    63R. E. W. Rafeal C. Gonzalez. Digital Image Processing(Second Edition). Publising house ofelectronics industry,2007:72-74.
    64P. S. B. J. Airola A. All-Paths Graph Kernel for Protein-Protein Interaction Extraction withEvaluation of Cross-Corpus Learning. BMC Bioinformatics, special issue.2008,9(Suppl11:S1):1480-1482.
    65P. S. B. J. Airola A. A Graph Kernel for Protein-Protein Interaction Extraction.2008,1-9.
    66H. Kashima, K. Tsuda and A. Inokuchi. Marginalized Kernels Between Labeled Graphs.Proceedings, Twentieth International Conference on Machine Learning, August21,2003-August24,2003, Washington, DC, United states,2003. American Association for Artificial Intelligence,2003,321-328.
    67R. J. A. G. Thomas. Expressivity Versus Efficiency of Graph Kernels. Publising house ofelectronics industry,2003:65-74.
    68T. Gartner, P. Flach and S. Wrobel. On Graph Kernels: Hardness Results and EfficientAlternatives.16th Annual Conference on Learning Theory and7th Kernel Workshop,COLT/Kernel2003, August24,2003-August27,2003, Washington, DC, United states,2003.Springer Verlag,2003,129-143.
    69J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.Proc. Amer. Math Soc.7,1956,48-50.
    70R. Floyd. Algorithm97, shortes path. Comm. ACM,1962,5:345.
    71R. Chellappa, C. L. Wilson and S. Sirohey. Human and Machine Recognition of Faces: ASurvey. Proceedings of the IEEE.1995,83(5):705-741.
    72A. K. Jain, A. Ross and S. Prabhakar. An Introduction to Biometric Recognition. IEEETransactions on Circuits and Systems for Video Technology,2004,14(1):4-20.
    73孙冬梅,裘正定.生物特征识别技术综述.电子学报.2001,1744-1748.
    74G. F. Numeralised Profiles for Classification and Recognition. Nature,1910,31(3):127-130.
    75T. Kanade. Picture Processing System by Computer and Recognition of Human Faces. KyotoUniversity, Ph.D Dissertation,1973:106-136.
    76G. J. Kaufman and K. J. Breeding. The Automatic Recognition of Human Faces From ProfileSilhouettes. Systems, Man and Cybernetics, IEEE Transactions on.1976, SMC-6(2):113-121.
    77T. Kanade. Computer Recognition of Human Faces.1977,1-47.
    78A. L. Yuille, P. W. Hallinan and D. S. Cohen. Feature Extraction From Faces UsingDeformable Templates. International Journal of Computer Vision.1992,8(2):99-111.
    79C. I. Recognizing Face Features and Faces.1992,8(3):1-4.
    80S. Y. Lee, Y. K. Ham and R. H. Park. Recognition of Human Front Faces UsingKnowledge-Based Feature Extraction and Neuro-Fuzzy Algorithm. Pattern Recognition.1996,29(11):1863-1876.
    81M. Bichsel and A. P. Pentland. Human Face Recognition and Face Image Set's Topology.CVGIP. Image understanding.1994,59(2):254-261.
    82M. Turk and A. Pentland. Face Processing: Models for Recognition. Proceedings of the SPIE-The International Society for Optical Engineering Intelligent Robots and Computer Vision VIII:Algorithms and Techniques,6-10Nov.1989,22-32.
    83P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman. Eigenfaces Vs. Fisherfaces:Recognition Using Class Specific Linear Projection. Proceedings of Fourth European Conferenceon Computer Vision. ECCV '96,14-18April1996, Berlin, Germany,1996. Springer-Verlag,1996:45-58.
    84M. Lades, J. C. Vorbrueggen, J. Buhmann, J. Lange, C. V. D Malsburg, R. P. Wuertz and W.Konen. Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEETransactions on Computers.1993,42(3):300-311.
    85A. V. Nefian and M. H. I. Hayes. Hidden Markov Models for Face Recognition. Proceedingsof the1998IEEE International Conference on Acoustics, Speech and Signal Processing,12-15May1998, New York, NY, USA,1998. IEEE,1998:2721-2724.
    86V. Vapnik. Statistical Learning Theory. J. W. A. Sons.1998,156-169.
    87S. Z. Li and A. K. Jain. Handbook of Face Recognition. Science+Business Media,Inc.2002,1-20.
    88T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham. Active Shape Models-their Trainingand Application. Computer Vision and Image Understanding.1995,61(1):38-59.
    89G. J. E. C. T F Cootes. Active Appearance Models. Computer Vision—ECCV,1998,484-498.
    90金忠,胡钟山,杨静宇.基于BP神经网络的人脸识别方法.计算机研究与发展.1999,(3):19-22.
    91S. Y. Kang, K. H. Young and P. Rae-Hong. Hybrid Approaches to Frontal View FaceRecognition Using the Hidden Markov Model and Neural Network. Pattern Recognition.1998,31(3):283-293.
    92阮志邦,冯国灿,赖剑煌.一种基于小波变换和Fourier变换的人像识别方法.中国图像图形学报.1999,10(4):811-816.
    93B. Niu, C. K. S. Simon and K. P. Sankar. Two Dimensional Laplacianfaces Method for FaceRecognition. Rough Sets and Current Trends in Computing.5th International Conference, RSCTC2006. Proceedings,6-8Nov.2006, Berlin, Germany,2006. Springer-Verlag,2006:852-861.
    94Discrete Mathematical Structure.Berbard Kolman,Robert C.Busby,Sharon Ross.PrenticeHall,Inc,1996,30-46.
    95屈婉玲,耿素云,张立昂.离散数学.高等教育出版社,2008,60-78.
    96J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Macmillan,1976:50-55.
    97J. Hopcroft and J. Wong. Linear Time Algorithm for Isomorphism of Planar Graphs.Proceedings of the sixth annual ACM symposium on Theory of computing,1974:172-184.
    98M. Neuhaus and H. Bunke. An Error-Tolerant Approximate Matching Algorithm forAttributed Planar Graphs and its Application to Fingerprint Classification.2010,60-68.
    99P. Mahe and J. P. Vert. Graph Kernels Based On Tree Patterns for Molecules. MachineLearning.2009,75(1):129-161.
    100叶秀明,邵学才.离散数学.电子工业出版社,2009,6-40.
    101M. J. Swain and D. H. Ballard. Color Indexing. International Journal of Computer Vision.1991,7(1):11-32.
    102T. Ojala, M. Pietikainen and T. Maenpaa. Multiresolution Gray-Scale and RotationInvariant Texture Classification with Local Binary Patterns. IEEE Transactions on PatternAnalysis and Machine Intelligence.2002,24(7):971-987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700