用户名: 密码: 验证码:
钴基核壳纳米结构材料及空心纳米结构的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,采用液相化学方法(溶胶-凝胶法、均匀沉淀法、水热法)制备了核壳结构复合物。在制备核壳结构复合物的基础上,通过化学刻蚀的方法,除去内核模板,得到空心球,并且通过改变前驱体的浓度或反应时间,实现了对壳层厚度的控制。在合成的基础上进一步研究了核壳结构复合物的形成机理,以及介孔的形成机理,并讨论了它们的结构对其电化学性质、磁性质的影响。
     1.介孔Co_3O_4/介孔SiO_2核壳纳米结构复合物的合成与表征
     利用文献报道的方法,首先制备了四氧化三钴纳米颗粒。然后,将四氧化三钴纳米颗粒分散在一定比例的乙醇-水-氨水-CTAB混合溶液中,加入前驱体TEOS,二氧化硅沉积在四氧化三钴超晶格颗粒的表面,形成介孔Co_3O_4/介孔SiO_2核壳纳米结构复合物。根据广角XRD表征结果,在形成核壳结构复合物的过程中,四氧化三钴物的相未发生变化,表明四氧化三钴具有良好的化学稳定性和水热稳定性。低角度XRD表征结果表明,四氧化三钴和二氧化硅具有介观结构。通过改变前驱体TEOS的浓度,可以调节二氧化硅壳层的厚度(10-35nm)。电镜观察表明二氧化硅壳层的存在有效地抑制了高温下Co_3O_4纳米晶的生长。氮气吸附脱附测试结果表明介孔Co_3O_4/介孔SiO_2核壳纳米结构复合物(壳层厚度:20nm)的比表面积为238.6m~2/g,其孔径呈现双模式介孔分布,最可几孔径尺寸分别为2.0nm和8.8nm。随着壳层厚度的增加,核壳纳米结构复合物的比表面积变大。用氢氟酸刻蚀介孔Co_3O_4/介孔SiO_2核壳结构纳米复合物,可以除去二氧化硅壳层,得到介孔四氧化三钴纳米颗粒。氮气吸附测试结果显示介孔四氧化钴的比表面积为86.4m~2/g,最可几孔径尺寸是8.7nm。实验结果证明核壳结构复合物的形成是源于荷负电的Co_3O_4纳米颗粒、荷正电的CTAB胶束、荷负电的水解聚硅酸根之间的静电引力。这为核壳结构复合物的合成及由纳米晶聚集形成的介孔材料的合成提供了一条新的路线。电化学测试结果表明,与未包覆的四氧化钴纳米颗粒相比,介孔Co_3O_4/介孔SiO_2核壳纳米结构复合物显示出更高的放电容量,这是由于二氧化硅壳层抑制Co_3O_4纳米晶生长,导致复合物具有尺寸更小的Co_3O_4纳米晶的缘故。
     2.介孔氢氧化亚钴纳米空心球的合成与表征
     首先,采用文献报道的方法合成出二氧化硅纳米颗粒,颗粒尺寸约为75nm。然后,将一定量的二氧化硅纳米颗粒分散于去离子水中,分别加入一定比例的尿素、硝酸钴,在80℃进行回流,氢氧化亚钴沉积在二氧化硅纳米颗粒的表面,得到二氧化硅/介孔氢氧化亚钴核壳结构纳米复合物。用氢氧化钠溶液刻蚀二氧化硅/介孔氢氧化亚钴核壳纳米结构复合物,除去二氧化硅模板,得到介孔氢氧化亚钴空心球。通过改变反应时间,可以实现对介孔氢氧化亚钴纳米空心球壁层厚度的控制(10-25nm)。XRD表征表明氢氧化亚钴为无定形态。用0.5M的氢氧化钠溶解复合物中的二氧化硅,得到氢氧化亚钴纳米空心球。相应的低角度XRD谱图在2θ≈1.5°出现一宽的衍射峰,表明氢氧化亚钴空心球具有无序介孔结构,电镜观察表明介孔是由氢氧化亚钴纳米管而导致,这是首次利用液相技术制备具有均匀内直径的氢氧化亚钴纳米管。根据XPS表征结果,在复合物中,Co 2p的特征峰位于798.37eV和782.47eV,Co 2p_(1/2)和Co 2p_(3/2)的电子结合能间隔为15.9eV,证明复合物中钴是以氢氧化亚钴形式存在。根据氮气吸附测试的结果,氢氧化亚钴空心球(壁层厚度:10nm)的比表面积为418m~2/g,其最可几孔径尺寸为3.9nm,孔径尺寸的分布范围相对较窄。随着壁层厚度的增加,氢氧化亚钴空心球的比表面积减小。实验结果证明核壳结构复合物的形成是源于荷负电的二氧化硅纳米颗粒、荷正电的水合钴离子之间的静电引力,而氢氧化亚钴纳米管的形成则经历了氢氧化亚钴纳米颗粒——氢氧化亚钴纳米片层——氢氧化亚钴纳米管的变化过程。电化学测试结果表明,与块体氢氧化亚钴相比,该氢氧化亚钴纳米空心球电极材料显示出更高的比电容和循环稳定性,这是由于氢氧化亚钴纳米空心球具有更大的比表面积和较短的离子传输距离的缘故。
     3.铁酸钴空心球的合成与表征
     将葡萄糖-硫酸钴-硫酸亚铁铵的混合溶液进行水热处理,葡萄糖首先通过水热反应,形成微米级碳球。碳球的表面具有许多羟基,混合溶液中的Fe~(2+)、Co~(2+)能够直接吸附在碳球的表面,形成碳球/金属盐核壳结构复合物。通过焙烧处理除去碳球,得到铁酸钴空心球。XRD和EDS表征结果证实产物是铁酸钴。TEM和HRTEM观测的结果表明铁酸钴空心球的尺寸介于600nm-900nm之间,壁层厚度约为150nm。铁酸钴空心球由纳米晶聚集而成,纳米晶的尺寸约为28nm。磁性质测试结果表明,铁酸钴空心球具有铁磁性。其饱和磁化强度为54emu/g,小于块体铁酸钴的饱和磁化强度(72emu/g)。这是由于铁酸钴空心球为纳米晶聚集体,具有表面效应和小颗粒尺寸效应的缘故。铁酸钴空心球的矫顽力为860Oe,剩余磁化强度是18emu/g。该材料具有较高的磁饱和强度和矫顽力。这种表面亲水的材料具有生物相容性,在药物传输方面具有潜在的应用价值。
In this paper, the core-shell nanostructures were prepared using simple liquid chemical methods (sol-gel method; homogeneous precipitation method; hydrothermal method). On the basis of this composite, the hollow sphere was obtained after the core template was removed by chemical etching or calcination. The shell thickness could be controlled by changing the concentration of precursor or reaction time. Based on the experiment, the formation mechanisms of core-shell structure and the mesopores were studied. It was discussed how the structure has effect on its electrochemical properties or magnetic properties.
     1. Fabrication and Characterization of Mesoporous Co_3O_4 Core/MesoporousSilica Shell Nanocomposites
     The parent Co_3O_4 particles comprised of oriented-aggregated nanocrystals was firstly prepared followed our previous report. Then, the Co_3O_4 nanoparticles were dispersed in a certain proportion of ethanol-water-ammonia-CTAB mixture. After the addition of the precursor TEOS, the silica directly deposited on the surface of Co_3O_4 nanoparticles, and the mesoporous Co_3O_4/mesoporous silica core/shell nanocomposite was formed. Based on the wide-angle X-ray diffraction results, both of the bare Co_3O_4 nanoparticles and the coated Co_3O_4 nanoparticles exhibit the same spinel structure. So it is concluded that Co_3O_4 nanoparticles has good chemical stability and thermal stability. Based on the low-angle X-ray diffraction results, it is confirmed that the Co_3O_4 core and the silica shell have mesostructures. TEM observation indicates that the presence of the silica shell effectively prevents the Co_3O_4 nanocrystals from growing. The thickness of silica shell could be controlled by changing the concentration of precursor TEOS. Based on the experiments, the formation mechanism of the nanocomposite with a mesoporous silica shell and a mesoporous Co_3O_4 core was proposed, which is based on the electrostatic attraction between negatively charged parent Co_3O_4 particles, the positively charged CTAB micelles and the negatively charged silicate species. The mesoporous structure of the Co_3O_4 core and the silica shell has been further confirmed by the N_2 adsorption-desorption isotherm. This work might provide a novel route to core/shell nanostructures and the mesoporous materials from the aggregating of the nanocrystals. Electrochemical analysis reveals that the composite shows a relatively higher discharge capacity comparing to its corresponding bare Co_3O_4 nanoparticles.
     2. Synthesis and Characterization of Mesoporous cobalt hydroxide nano-hollow sphere
     Firstly, the silica nanoparticles were synthesized according to previous report. The average size of silica particles is about 75 nm. Then, a certain amount of silica nanoparticles were dispersed in deionized water. After the addition of the urea and cobalt nitrate, the solution was heated to 80℃, and refluxed at that temperature for 2 hours. As a result, the cobalt (II) hydroxide was deposited on the surface of silica, and the silica core/mesoporous cobalt (II) hydroxide shell nanocomposite was formed. On the basis of the nanocomposite, the mesoporous cobalt (II) hydroxide hollow sphere was obtained after the core template was eroded by sodium hydroxide. The wall thickness of the mesoporous cobalt hydroxide hollow sphere could be controlled by changing the reaction time. XRD analysis demonstrated that cobalt (II) hydroxide existed as amorphous. Based on the low-angle X-ray diffraction results, it was concluded that the cobalt hydroxide hollow sphere had mesoscopic structure. XPS spectra shows the characteristic Co 2p peaks at 798.37 and 782.47eV with the separation of 15.9eV between Co 2p_(1/2) and Co 2p_(3/2), which confirmed that Co mainly existed as Co(OH)_2. The formation of the mesoporous cobalt hydroxide shell has been further confirmed by the nitrogen adsorption-desorption experiment. The BET surface area of the hollow sphere (wall thickness: 10nm) is 418m~2/g, and BJH analysis shows that the most probable pore sizes is ca.3.9 nm with narrow size distribution. The thicker the wall thickness is, the smaller the BET surface area of the hollow sphere is. According to the experimental results, the formation mechanism of the nanocomposites with a silica core and a cobalt hydroxide shell was proposed, which is based on the electrostatic attraction between negatively charged silica particles, the positively charged cobalt ions, and the formation of cobalt hydroxide nanotubes was proposed. Firstly, the cobalt hydroxide nanoparticles were formed by hydrolysis of cobalt ions, then, the cobalt hydroxide nanosheets were formed by aggregation of nanoparticles, finally, the cobalt hydroxide nanosheets curled to form nanotubes. Electrochemical test results showed that the hollow sphere of cobalt hydroxide electrode materials demonstrated a higher capacitance and cycle stability than the corresponding bulk cobalt hydroxide. This is due to the larger specific surface area and shorter ion transmission distance of the mesoporous cobalt hydroxide hollow sphere.
     3. Synthesis and Characterization of CoFe_2O_4 hollow spheres
     Firstly, the micron carbon sphere was formed through the decomposition of glucose during the hydrothermal reaction in the glucose-cobalt sulphate-ammonium ferrous sulfate system. Due to many hydroxyl groups on the surface of carbon sphere, Fe~(2+) , Co~(2+) were directly adsorbed on the carbon sphere surface, as a result, carbon/metal salt core-shell composite was formed. After calcination, the cobalt ferrite hollow sphere could be obtained. EDS and XRD characterization demonstrated that the product was spinel cobalt ferrite. Based on the results of TEM and HRTEM observation, the Size of cobalt ferrite hollow spheres was between 600nm and 900nm, which was formed by the nanocrystalline aggregates with the size of ca.28 nm. Magnetic Properties showed that cobalt ferrite hollow spheres were ferromagnetic. The saturation magnetization of CoFe_2O_4 hollow sphere was 54 emu/g, which was less than that of the bulk cobalt ferrite (72 emu/g). This is due to the nanocrystalline's surface and size effects. The coercivity of CoFe_2O_4 hollow spheres was 860 Oe, and remanence magnetization was 18 emu/g. This material has high saturation magnetization and coercivity. Such material with hydrophilic surface is biocompatible and has potential applications in drug delivery.
引文
1. Caruso, F.; Caruso, R.; M6hwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating Science 1998, 282, 1111-1114.
    2. Zhao, W.; Gu, J.; Zhang, L.; Chen, H.; Shi, J. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure J. Am. Chem. Soc. 2005, 127, 8916-8917.
    3. Lin, Y. -S.; Wu, S. -H.; Hung, Y.; Chou, Y. -H.; Chang, C.; Lin, M. -L.; Tsai, C. -P.; Mou, C. -Y. Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous Chem. Mater. 2006, 18, 5170-5172.
    4. Xiao, X.; Chu, L.; Chen, W.; Wang, S.; Li, Y. Positively Thermo-Sensitive Monodisperse Core-Shell Microspheres Adv. Funct. Mater. 2003, 13, 847-852.
    5. (a) Yah, Q.; Purkayastha, A.; Kim, T.; Kroger, R.; Bose, A.; Ramanath, G. Synthesis and Assembly of Monodisperse High-Coercivity Silica-Capper FePt Nanomagnets of Tunable Size, Comoposition, and Thermal Stability from Microemulisions Adv. Mater. 2006, 18, 2569-2573;
    (b) Mathiowitz, E. Jacob, J.; Jong, Y.; Carino, G.; Chickering, D.; Chaturvedi, E; Santos, C.; Vijayaraghavan, K.; Montgomery, S.; Bassctt, M.; Morrell, C. Biologically erodable microspheres as potential oral drug delivery systems Nature, 1997, 386, 410-414;
    (c) Yu, K.; Thompsett, D.; Tsang, S. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor Chem. Commun. 2003, 1522-1523;
    (d) Huang, Y.; Zheng, Z.; Ai, Z.; Zhang, L.; Fan, X.; Zou, Z. Core-Shell Microsphcrical Ti_(1-x)Zr_xO_2 Solid Solution Photocatalysts Directly from Ultrasonic Spray Pyrolysis J. Phys. Chem. B. 2006, 110, 19323-19328.
    6. Cushing, B. L.; Kolcsnichcnko, V. L.; O'Connor, C. J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles Chem. Rev. 2004, 104, 3893-3946.
    7. Liz-Marzan, L.; Giersig, M.; Mulvaney, P. Synthesis of Nanosized Gold-Silica Core-Shell Particles Langmuir. 1996, 12, 4329-4335.
    8. Yan, O.; Purkayastha, A.; Kim, T.; Kroger, R.; Bose, A.; Ramanath, G. Synthesis and Assembly of Monodisperse High-Coercivity Silica-Capper FePt Nanomagnets of Tunable Size, Comoposition, and Thermal Stability from Microemulisions Adv. Mater. 2006, 18, 2569-2573.
    9. Zhang, H.; Luo, X.; Xu, J.; Xiang, B.; Yu, D. Synthesis of TiO_2/SiO_2 Core/Shell Nanocable Arrays J. Phys. Chem. B. 2004, 108, 14866-14869.
    10. Miyashiro, H.; Kobayashi, Y.; Seki, S.; Mita, Y.; Usami, A.; Nakayama, M.; Wakihara, M. Fabrication of All-Solid-State Lithium Polymer Secondary Batteries Using Al_2O_3-Coated LiCoO_2 Chem. Mater. 2005, 17, 5603-5605.
    11. Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction J. Ant Chem. Soc. 2003, 125, 12567-12575.
    12. Chen, C. -Y.; Cheng, C. -T.; Yu, J. -K.; Pu, S. -C.; Cheng, Y. -M.; Chou, P. -T.; Chou, Y.-H.; Chiu, H.-T. Spectroscopy and Femtosecond Dynamics of Type-Ⅱ CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor J. Phys. Chem. B. 2004, 108, 10687-10691.
    13. Kim, S.; Fisher, B.; Eisler, H. -J.; Bawendi, M. Type-Ⅱ Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures J. Am. Chem. Soc. 2003, 125, 11466-11467.
    14. Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites: Bifunctional Magnetic-Optical Nanocrystals J. Ant Chem. Soc. 2005, 127, 544-546.
    15. Gu, H.; Zheng, R.; Zhang, X.; Xu, B. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles J. Am. Chem. Soc. 2004, 126, 5664-5665.
    16. Wang, D.; Song, C.; Hu, Z.; Fu, X. Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures J. Phys. Chem. B. 2005, 109, 1125-1129.
    17. Dominic W.; Stephen, M. Fabrication of hollow porous shells of calcium carbonate from self-organizing media. Nature 1995, 377, 320-324.
    18. Liu, B.; Zeng, H. C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions". J. Am. Chem. Soc. 2004, 126, 8124-8125.
    19. (a) Yu, K. M. K.; Thompsett, D.; Tsang, S. C. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor Chem. Commun. 2003, 13, 1522-1523;
    (b) Lin, K.; Chert, L.; Prasad, M. R.; Cheng, C. Core-Shell Synthesis of a Novel, Spherical, Mesoporous Silica/Platinum Nanocomposite: Pt/PVP@ MCM-41 Adv. Mater. 2004, 16, 1845-1849;
    (c) Yu, J. S.; Yoon, S. B.; Lee, Y. J.; Yoon, K. B. Fabrication of Bimodal Porous Silicate with Silicalite-1 Core/Mesoporous Shell Structures and Synthesis of Nonspherical Carbon and Silica Nanocases with Hollow Core/Mesoporous Shell Structures J. Phys. Chem. B. 2005, 109, 7040-7045.
    20. Büchel, G.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K. A Novel Pathway for Synthesis of Submicrometer-Size Sofid Core/Mesoporous Shell Silica Spheres Adv. Mater. 1998, 10, 1036-1038.
    21. Yu, K.; Thompsett, D.; Tsang, S. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor Chem. Commun. 2003, 1522-1523.
    22. Lin, K.; Chen, L.; Prasad, M. R.; Cheng, C. Core-Shell Synthesis of a Novel, Spherical, Mesoporous Silica/Platinum Nanocomposite: Pt/PVP@MCM-41 Adv. Mater. 2004, 16, 1845-1849.
    23. Lin, Y. -S.; Wu, S. -H.; Hung, Y.; Chou, Y. -H.; Chang, C.; Lin, M. -L; Tsai, C. -P.; Mou, C. -Y. Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous Chem. Mater. 2006, 18, 5170-5172.
    24. Oldfield, G.; Ung, T.; Mulvaney, P. Au@SnO_2 Core - Shell Nanocapacitors Adv. Mater. 2000, 12, 1519-1522.
    25. Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L M. One-Pot Synthesis of Ag@TiO_2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly Langmuir 2000, 16, 2731-2735.
    26. Caruso, R. A.; Antonietti, M. Sol-Gel Nanocoating: An Approach to the Preparation of Structured Materials Chem. Mater. 2001, 13, 3272-3282.
    27. Kawahashi, N.; Persson, C.; Matijevic', E. Zirconium compounds as coatings on polystyrene latex and as hollow spheres J. Mater. Chem. 1991, 1, 577-582.
    28. Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaadercn, A. A General Method to Coat Colloidal Particles with Silica Langmuir 2003, 19, 6693-6700.
    29. Correa-Duarte, M. A.; Giersig, M.; Liz-Marzan, L. M. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure Chem. Phys. Lett. 1998, 286, 497-501.
    30. Kobayashi, Y.; Horie, M.; Konno, M.; Rodriguez-Gonzalez, B.; Liz-Marzan, L M. Preparation and Properties of Silica-Coated Cobalt Nanoparticles J. Phys. Chem. B. 2003, 107, 7420-7425.
    31. Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach Nano Lett. 2002, 2, 183-186.
    32. Zhang, D.; Song, X.; Zhang, R.; Zhang, M.; Liu, E Preparation and Characterization of Ag@TiO_2 Core-Shell Nanoparticles in Water-in-Oil Emulsions Eur. J. Inorg. Chem. 2005, 9, 1643-1648.
    33. Yu, K.; Thompsctt, D.; Tsang, S. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor Chem. Commun. 2003, 1522-1523.
    34. Vestal, C. R.; Zhang, Z. J. Synthesis and Magnetic Characterization of Mn and Co Spinel Ferrite-Silica Nanoparticles with Tunable Magnetic Core Nano Lett. 2003, 3, 1739-1743.
    35. Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots J. Am, Chem. Soc. 2005, 127, 4990-4991.
    36. Cho, S. -J.; Shahin, A. M.; Long, G. J.; Davies, J. E.; Liu, K.; Grandjean, F.; Kauzlarich, S. M. Magnetic and M6ssbauer Spectral Study of Core/Shell Structured Fe/Au Nanoparticles Chem. Mater. 2006, 18, 960-967.
    37. Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic Surfactants Langmuir 2001, 17, 2900-2906.
    38. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach Chem. Mater. 2001, 13, 109-116.
    39. Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles Adv. Mater. 2001, 13, 740-744.
    40. Caruso, F.; Lichtenfeld, H.; Giersig, M.; Mohwald, H. Electrostatic SelfAssembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles J. Am. Chem. Soc. 1998, 120, 8523-8524.
    41. Yuan, J.; Zhou, S.; You, B.; Wu, L. Organic: Pigment Particles Coated with Colloidal Nano-Silica Particles via Layer-by-Layer Assembly Chem. Mater. 2005, 17, 3587-3594.
    42. Kresge, C.; Leonowicz, M.; Roth, W.; Vartuli, J.; Beck, J. Ordered Mesoporous Molecular Sieves Synthesis by a Liquid-crystal Template Mechanism Nature 1992, 359, 710-712.
    43. Beck, J.; Vartuli, J.; Roth, W.; Leonowicz, M.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D.; Sheppard, H.; McCullen, S.; Higgins, J.; Schlenker, J. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J. Ant Chem. Soc. 1992, 114, 10834-10843.
    44. Firouzi, A.; Kumar, D.; Bull, L.; Besier, T.; Sieger, P.; Huo, Q.; Walker, A.; Zasadzinski, J.; Glinka, C. Nicol, J.; Margolese, D.; Stucky, G.; Chmelka, B. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies Science 1995, 267, 1138-1143.
    45.徐如人,庞文琴.无机合成与制备化学.北京:高等教育出版社.1999,440-454.
    46. Monnier, A.; Schiith, E; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R.; Stucky, G.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate Science 1993, 261, 1299-1303.
    47. Steel, A.; Carr, S.; Anderson, M. ~(14)N NMR Study of surfactant mesoporous in the synthesis of mesoporous silicate J. Chem, Soc. Chem. Commun. 1994, 1571-1572.
    48. Firouzi, A.; Atef, E; Oertli, A.; Stucky, G.; Chmelka, B. Alkaline Lyotropic Silicate-Surfactant Liquid Crystals. J. Ant Chem. Soc. 1997, 119, 3596-3610.
    49. Galarneau, A.; Renzo, F.; Fajula, E; Mollo, L.; Fubini, B.; Ottaviani, M. Kinetics of Formation of Micelle-Templated Silica Mesophases Monitored by Electron Paramagnetic Resonance J. Colloid Interface Sci. 1998, 201, 105-117.
    50. Frasch, J.; Zana, R.; Soulard, M.; Lebeau, B.; Patarin. J. Fluorescence Probing Investigations of the Mechanism of Formation of Organized Mesoporous Silica Langmuir 1999, 15, 2603-2606.
    51. Frasch, J.; Lebeau, B.; Soulard, M.; Patarin, J.; Zana. R. In Situ Investigations on Cetyltrimethylammonium Surfactant/Silicate Systems, Precursors of Organized Mesoporous MCM-41-Type Siliceous Materials Langmuir 2000, 16, 9049-9057.
    52. Zhang, W.; Pauly, T.; Pinnavala, T. Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S~0I~0) Assembly Pathway Chem. Mater. 1997, 9, 2491-2498.
    53. Walker, S.; Kennedy, M. Joseph.; Zasadzinski, A. Encapsulation of Bilayer Vesicles by Self-assembly Nature 1997, 387, 61-64
    54. Wu, C.; Bein, T. Microwave Synthesis of Molecular Sieve MCM-41 Chem. Commun. 1996, 925-926.
    55. Lin, W.; Chen, J.; Sun, Y.; Pang, W. Bimodal Mesopore Distribution in a Silica Prepared by Calcining a Wet Surfactant-containing Silicate gel Chem. Commun. 1995, 2367-2368.
    56. Huo, Q.; Margolese, D.; Stucky, G. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials Chem. Mater. 1996, 8, 1147-1160.
    57. Yang, P.; Zhao, D.; Margolese, D. Generalized Syntheses of Large Pore Mesoporous Metal Oxides with Semicrystalline Frameworks Nature 1998, 396, 152-155.
    58. Yang, P.; Zhao, D.; Margolese, D.; Chmelka, B.; Stucky, G. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework Chem. Mater. 1999, 11, 2813-2826.
    59. Beck, J.; Vartuli, J.; Roth, W.; Leonowicz, M.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D.; Sheppard, E.; Mccullen, S.; Higgins, J.; Schlenker, J. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J. Am. Chem. Soc. 1992, 114, 10834-10843.
    60. (a) Li, W.; Xu, L.; Chen, J. Co_3O_4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors Adv. Funct. Mater. 2005, 15, 851-857;
    (b) Wang, X.; Chen, X.; Gao, L.; Zheng, H.; Zhang, Z.; Qian, Y. One-Dimensional Arrays of Co_3O_4 Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties J. Phys. Chem. B 2004, 108, 16401-16404;
    (c) Epling, W. S.; Hoflund, G. B.; Weaver, J. F.; Tsubota, S.; Haruta, M. Surface Characterization Study of Au/α-Fe_2O_3 and Au/Co_3O_4 Low-Temperature CO Oxidation Catalysts J. Phys. Chem. 1996, 100, 9929-9934;
    (d) Takada, S.;
    Fujii, M.; Kohiki, S.; Babasaki, T.; Dcguchi, H.; Mitome, M.; Oku, M. Intrapartiele Magnetic Properties of Co_3O_4 Nanocrystals. Nano Lett. 2001, 1, 379-382;
    (e) Wang, Y.; Yang, C.; Schmidt, W.; Splicthoff, B.; Bill, E.; Sehüth, F. Weakly Ferromagnetic Ordercd Mcsoporous Co_3O_4 Synthesizcd by Nanoeasting from Vinyl- Functionalizcd Cubic Ia3d Mesoporous Silica Adv. Mater. 2005, 17, 53-56.
    61. (a) Feng, J.; Zeng, H. C. Reduction and Reconstruction of Co_3O_4 Nanoeubes upon Carbon Deposition J. Phys. Chem. B 2005, 109, 17113-17119;
    (b) Natile, M. M.; Glisenti, A. New NiO/Co_3O_4 and Fe_2O_3/Co_3O_4 Nanoeomposite Catalysts: Synthesis and Characterization Chem. Mater. 2003, 15, 2502-2510;
    (c) Rondinone, A. J.; Samia, A. C. S.; Zhang, Z. J. Superparamagnetic Relaxation and Magnetic Anisotropy Energy Distribution in CoFe_2O_4 Spinel Ferrite Nanoerystallites J. Phys. Chem. B 1999, 103, 6876-6880;
    (d) El-Shobaky, G. A.; Ghozza, A. M. Effect of ZnO doping on surface and catalytic properties of NiO and Co_3O_4 solids Mater. Lett. 2004, 58, 699-705.
    62. Cao, L; Xu, F.; Liang, Y.; Li, H. Preparation of the Novel Nanocomposite Co(OH)_2/Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density Adv. Mater. 2004, 16, 1853-1857.
    63. (a) Hyeon, T.; Chung, Y.; Park, J.; Lee, S. S.; Kim, Y. -W.; Park, B. H. Synthesis of Highly Crystalline and Monodisperse Cobalt Ferdte Nanocrystals J. Phys. Chem. B. 2002, 106, 6831-6833;
    (b) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process J. Am. Chem. Soc. 2001, 123, 12798-12801;
    (c) Yu, S. -H.; Yoshimura, M. Direct Fabrication of Ferdte MFe_2O_4 (M=Zn, Mg)/Fe Composite Thin Films by Soft Solution Processing Chem. Mater. 2000, 12, 3805-3810;
    (d) Hyeon, T. Chemical synthesis of magnetic nanoparticles Chem. Commun. 2003, 927-934;
    (e) Yu, S.; Yoshimura, M. Ferrite/Metal Composites Fabricated by Soft Solution Processing Adv. Funct. Mater. 2002, 12, 9-15;
    (f) Li, X. -H.; Zhang, D. -H.; Chen, J. Synthesis of Amphiphilic Superparamagnetic Ferrite/Block Copolymer Hollow Submicrospheres J. Am. Chem. Soc. 2006, 128, 8382-8383.
    1. (a) Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G. Synthesis of Luminescent Thin-Film CdSc/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe Cheat Mater. 1996, 8, 173-180;
    (b) Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawcndi, M. G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Scales of Highly Luminescent Nanocrystallites J. Phys. Cheat B 1997, 101, 9463-9475;
    (c) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility J. Am. Chem. Soc. 1997, 119, 7019-7029;
    (d) Malik, M. A.; O'Brien, P.; Revaprasadu, N. A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogcnidcs Cheat Mater. 2002, 14, 2004-2010.
    (e) Reiss, P.; Bleuse, J.; Pron, A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion Nano Lett. 2002, 2, 781-784;
    (f) Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals J. Phys. Chem. 1996, 100, 468-471;
    (g) Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogues, J. Beating the superparamagnetic limit with exchange bias Nature 2003, 423, 850-853;
    (h) Zeng, H.; Li, J.; Wang, Z. L; Liu, J. P.; Sun, S. H. Bimagnctic Core/Shell FePt/Fe_3O_4 Nanoparticles Nano Lett. 2004, 4, 187-190.
    2. (a) Ohmod, M.; Matijevic, E. Preparation and Properties of Uniform Coated Inorganic Colloidal Particles J. Colloid Interface Sci. 1993, 160, 288-292;
    (b) Goia, D. V.; Matijevic, E. Preparation of monodispersed metal particles New J. Chem. 1998, 22, 1203-1215.
    3. Velikov, K. P.; Moroz, A.; van Blaaderen, A. Photonic crystals of core-shell colloidal particles Appl. Phys. Lett. 2002, 80, 49-51.
    4. (a) Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites: Bifunctional Magnetic-Optical Nanocrystals J. Am. Chem. Soc. 2005, 127, 544-546.
    (b) Grasset, F.; Labhsetwar, N.; Li, D.; Park, D. C.; Saito, N.; Haneda, H.; Cador, O.; Roisnel, T.; Mornet, S.; Duguet, E.; Portier, J.; Etourneau, J. Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite-Silica Core-Shell Nanoparticles Langmuir 2002,18, 8209-8216;
    (c) Mornet, S.; Grasset, F.; Portier, J.; Duguet, E. Maghemite@silica nanoparticles for biological applications Eur. Cells Mater. 2002,3,110-113.
    5. (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism Nature 1992,359, 710-712;
    (b) Bunker, B. C; Rieke, P. C.; Tarasevich, B. J.; Campell, A. A.; Fryxell, G. E.; Graff, G. L.; Song, L.; Virden, J. W.; Mcvay, G. L. Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing Science 1994, 264, 48-55;
    (c) Sayari, A. Catalysis by Crystalline Mesoporous Molecular Sieves Chem. Mater. 1996,8,1840-1852;
    (d) Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis Chem. ReV. 1997, 97, 2373-2420;
    (e) Yuliarto, B.; Zhou, H.; Yamada, T.; Honma, I.; Katsumura, Y.; Ichihara, M. Effect of Tin Addition on Mesoporous Silica Thin Fihn and Its Application for Surface Photovoltage NO_2 Gas Sensor. Anal. Chem. 2004, 76, 6719-6726;
     (f) Tura, C; Coombs, N.; Dag, O. One-Pot Synthesis of CdS Nanoparticles in the Channels of Mesosructured Silica Films and Monoliths Chem. Mater. 2005, 17, 573-579;
    (g) Long, Y.; Xu, T.; Sun, Y.; Dong, W. Adsorption Behavior on Defect Structure of Mesoporous Molecular Sieve MCM-41 Langmuir 1998,14, 6173-6178.
    6. (a) Buchel, G.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K. A Novel Pathway for Synthesis of Submicrometer-Size Solid Core/Mesoporous Shell Silica Spheres Adv. Mater. 1998,10, 1036-1038;
    (b) Yu, K. M. K.; Thompsett, D.; Tsang, S. C. Ultra-thin porous silica coated silver-platinum alloy nano-particle as a new catalyst precursor Chem. Commun. 2003, 13, 1522-1523;
    (c) Lin, K.; Chen, L.; Prasad, M. R.; Cheng, C. Core-Shell Synthesis of a Novel, Spherical, Mesoporous Silica/Platinum Nanocomposite: Pt/PVP@MCM-41. Adv. Mater. 2004, 16, 1845-1849;
    (d) Yu, J. S.; Yoon, S. B.; Lee, Y. J.; Yoon, K. B. Fabrication of Bimodal Porous Silicate with Silicalite-1 Core/Mesoporous Shell Structures and Synthesis of Nonspherical Carbon and Silica Nanocases with Hollow Core/Mesoporous Shell Structures J. Phys. Chem. B 2005, 109, 7040-7045.
    7. Zhao, W.; Gu, J.; Zhang, L.; Chen, H.; Shi, J. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure J. Ant Chem. Soc. 2005, 127, 8916-8917.
    8. Bouizi, Y.; Diaz, I.; Rouleau, L.; Valtchev, V. P. Core-Shell Zeolite Microcomposites Adv. Funct. Mater. 2005, 15, 1955-1960.
    9. (a) Li, W.; Xu, L.; Chen, J. Co_3O_4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors Adv. Funct. Mater. 2005, 15, 851-857;
    (b) Wang, X.; Chen, X.; Gao, L.; Zheng, H.; Zhang, Z.; Qian, Y. One-Dimensional Arrays of Co_3O_4 Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties J. Phys. Chem. B 2004, 108, 16401-16404;
    (c) Epling, W. S.; Hoflund, G. B.; Weaver, J. F.; Tsubota, S.; Haruta, M. Surface Characterization Study of Au/α-Fe_2O_3 and Au/Co_3O_4 Low-Temperature CO Oxidation Catalysts J. Phys. Chem. 1996, 100, 9929-9934;
    (d) Takada, S.; Fujii, M.; Kohiki, S.; Babasaki, T.; Degnchi, H.; Mitome, M.; Oku, M. Intraparticle Magnetic Properties of Co304 Nanocrystals Nano Lett. 2001, 1, 379-382;
    (e) Wang, Y.; Yang, C.; Schmidt, W.; Spliethoff, B.; Bill, E.; Schüth, F. Weakly Ferromagnetic Ordered Mesoporous Co_3O_4 Synthesized by Nanocasting from Vinyl- Functionalized Cubic la3d Mesoporous Silica Adv. Mater. 2005, 17, 53-56.
    10. (a) Feng, J.; Zeng, H. C. Reduction and Reconstruction of Co_3O_4 Nanocubes upon Carbon Deposition J. Phys. Chem. B 2005, 109, 17113-17119;
    (b) Natile, M. M.; Glisenti, A. New NiO/Co_3O_4 and Fe_2O_3/Co_3O_4 Nanocomposite Catalysts: Synthesis and Characterization Chem. Mater. 2003, 15, 2502-2510;
    (c) Rondinone, A. J.; Samia, A. C. S.; Zhang, Z. J. Superparamagnetic Relaxation and Magnetic Anisotropy Energy Distribution in CoFe_2O_4 Spinel Ferrite Nanocrystallites J. Phys. Chem. B 1999, 103, 6876-6880;
    (d) El-Shobaky, G. A.; Ghozza, A. M. Effect of ZnO doping on surface and catalytic properties of NiO and Co_3O_4 solids Mater. Lett. 2004, 58, 699-705.
    11. He, T.; Chen, D.; Jiao, X. Controlled Synthesis of Co_3O_4 Nanoparticles through Oriented Aggregation Chem. Mater. 2004, 16, 737-743.
    12. Audebrand, N.; Auffredic, J. -P.; Loüer, D. X-ray Diffraction Study of the Early Stages of the Growth of Nanoscale Zinc Oxide Crystallites Obtained from Thermal Decomposition of Four Precursors: General Concepts on Precursor-Dependent Microstructural Properties Chem. Mater. 1998, 10, 2450-2461.
    13. Pejova, B.; Isahi, A.; Najdoski, M.; Grozdanov, I. Fabrication and characterization of nanocrystalline cobalt oxide thin films Mater. Res. Bull. 2001, 36, 161-170.
    14. Ocana, M.; Gonzalez-Elipe, A. R. Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds Colloids Surf. A 1999, 157, 315-324.
    15. (a) Prascrthdam, P.; Mekasuwandumrong, O.; Phungphadung, J.; Kanyanucharat, A.; Tanakulrungsank, W. New Correlation for the Effects of the Crystallite Size and Calcination Temperature on the Single Iron Oxide Nanocrystallites Cryst. Growth Des. 2003, 3, 215-219;
    (b) Praserthdam, P.; Silveston, P. L; Mekasuwandumrong, O.; Pavarajarn, V.; Phungphadung, J.; Somrang, P. A New Correlation for the Effects of the Crystallite Size and Calcination Temperature on the Single Metal Oxides and Spinel Oxides Nanocrystal Cryst. Growth Des. 2004, 4, 39-43;
    (c) Zhang, Q.; Clark, C. G., Jr.; Wang, M.; Remsen, E. E.; Wooley, K. L. Thermally-Induced (Re)shaping of Core-Shell Nanocrystalline Particles Nano Lett. 2002, 2, 1051-1054.
    16. (a) Yu, J. C.; Xu, A.; Zhang, L; Song, R.; Wu, L Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates J. Phys. Chem. B 2004, 108, 64-70;
    (b) Sun, J.; Shan, Z.; Maschmeyer, T.; Moulijin, J. A.; Coppens, M. O. ynthesis of tailored bimodal mesoporous materials with independent control of the dual pore size distribution Chem. Commun. 2001, 2670-2671.
    17. Weibel, A.; Bouchet, R.; Boulch, F.; Knauth, P. The Big Problem of Small Particles: A Comparison of Methods for Determination of Particle Size in Nanocrystailine Anatase Powders Chem. Mater. 2005, 17, 2378-2385.
    18. Lu, Y.; McLellan, J.; Xia, Y. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells Langmuir 2004, 20, 3464-3470.
    19. Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A. A General Method To Coat Colloidal Particles with Silica Langmuir 2003, 19, 6693-6700.
    20. He, T.; Chen, D.; Jiao, X.; Xu, Y.; Gu, Y. Surfactant-Assisted Solvothermal Synthesis of Co_3O_4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size Langmuir 2004, 20, 8404-8408.
    21. Zhang, Z.; Gong, Z.; Yang, Y. Electrochemical Performance and Surface Properties of Bare and TiO_2-Coated Cathode Materials in Lithium-Ion Batteries J. Phys. Chem. B 2004, 108, 17546-17552.
    22. Suryanarayanan, V.; Nair, A. S.; Tom, R. T.; Pradeep, T. Porosity of core-shell nanoparticles J. Mater. Chem. 2004, 14, 2661-2666.
    1. (a) Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V. L. Preparation of Macroporous Metal Films from Colloidal Crystals. J. Am. Chem. Soc. 1999, 121, 7957-7958;
    (b) Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R. Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips. Science 1999, 283, 46-49;
    (c) Caruso, F.; Caruso, R. A.; Mohwald, H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science 1998, 282, 1111-1114;
    (d) Dong, A. G.; Ren, N.; Tang, Y.; Wang, Y. J.; Zhang, Y. H.; Hua, W. M.; Gao, Z. General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates J. Am. Chem. Soc. 2003, 125, 4976-4977.
    2. (a) Salgueirino-Maceira, V.; Spasova, M.; Farle, M. Water-Stable, Magnetic Silica-Cobalt/Cobalt Oxide-Silica Multishell Submicrometer Spheres. Adv. Funct. Mater. 2005, 15, 1036-1040;
    (b) Jin, P.; Chen, Q.; Hao, L.; Tian, R.; Zhang, L.; Wang, L. Synthesis and Catalytic Properties of Nickel-Silica Composite Hollow Nanospheres J. Phys. Chem. B. 2004, 108, 6311-6314.
    3. Caruso, F.; Spasova, M.; Saigueirino-Maceira, V.; Liz-Marzan, L. M. Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates Adv. Mater. 2001, 13, 1090-1094.
    4. Xia, Y. D.; Mokaya, R. Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells J. Mater. Chem. 2005, 15, 3126-3131.
    5. Hosein, I. D.; Liddell, C. M. Homogeneous, Core-Shell, and Hollow-Shell ZnS Colloid-Based Photonic Crystals Langmuir 2007, 23, 2892-2897.
    6. (a) Hu, Y.; Chen, J. F.; Chen, W. M.; Lin, X. H.; Li, X. L. Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres. Adv. Mater. 2003, 15, 726-729;
    (b) Naik, S. P.; Chiang, A. S. T.; Thompson, R. W.; Huang, F. C. Formation of Silicalite-1 Hollow Spheres by the Self-assembly of Nanocrystals Chem. Mater. 2003, 15, 787-792.
    7. Fowler, C.; Khushalani, D.; Mann, S. Interfacial synthesis of hollow microspheres of mesostructured silica Chem. Commun. 2001, 2028-2029.
    8. Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Noncovalent Self-Assembly of Carbon Nanotubes for Construction of "Cages" Nano Lett. 2002, 2, 531-533.
    9. Cao, A.; Hu, J.; Liang, H.; Wan, L. Self-Assembled Vanadium Pentoxide (V_2O_5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries Angew. Chem. Int. Ed. 2005, 44, 4391-4395.
    10. Yi, H.; Song, H.; Chen, X. Carbon Nanotube Capsules Self-Assembled by W/O Emulsion Technique Langmuir 2007, 23, 3199-3204.
    11. Wang, J.; Song, A.; Jia, X.; Hao, J.; Liu, W.; Hoffmann, H. Two Routes to Vesicle Formation: Metal-Ligand Complexation and Ionic Interactions J. Phys. Chem. B. 2005, 109, 11126-11134.
    12. Cao, L.; Xu, F.; Liang, Y.; Li, H. Preparation of the Novel Nanocomposite Co(OH)_2/Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density Adv. Mater. 2004, 16, 1853-1857
    13. Li, W.; Zhang, S.; Chen, J. Synthesis, Characterization, and Electrochemical Application of Ca(OH)_(2-), Co(OH)_(2-), and Y(OH)_3-Coated Ni(OH)_2 Tubes J. Phys. Chem. B. 2005, 109, 14025-14032.
    14. Li, L.; Qian, H.; Ren, J. CdTe@Co(OH)_2 (core-shell) nanoparticles: aqueous synthesis and Characterization Chem. Commun. 2005, 4083-4085.
    15. Burneau, A.; Barres, O.; Gallas, J. P.; Lavalley, J. C. Comparative study of the surface hydroxyl groups of fumed and precipitated silicas Langmuir 1990, 6, 1364-1372.
    16. (a) Parlor, C, M.; Ritter, James A.; Amiridis, Michael D. Infrared spectroscopic study of sol-gel derived mixed-metal oxides J. Non-Cryst. Solids, 2001, 279, 119-125;
    (b) Zhu, Y.; Li, H.; Koltypin, Y.; Gedanken, A. Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication J. Mater. Chem. 2002, 12, 729-733;
    (c) Zhao, Z.; Geng, E; Bai, J.; Cheng, H. -M. Facile and Controlled Synthesis of 3D Nanorods-Based Urchinlike and Nanosheets-Based Flowerlike Cobalt Basic Salt Nanostructures J. Phys. Chem. C. 2007, 111, 3848-3852.
    17. (a) Jeevanandam, P.; Koltypin, Y.; Gedanken, A.; Mastai, Y. Synthesis of a-cobalt(Ⅱ) hydroxide using ultrasound radiation J. Mater. Chem. 2000, 10, 511-514;
    (b) Jayashree, R. S.; Vishnu Kamath, P. Electrochemical synthesis of a-cobalt hydroxide J. Mater. Chem. 1999, 9, 961-963.
    18. Lim, S.; Ciuparu, D.; Chen, Y.; Pfefferle, L.; Haller, G. L.Effect of Co-MCM-41 Conversion to Cobalt Silicate for Catalytic Growth of Single Wall Carbon Nanotubes J. Phys. Chem. B. 2004, 108, 20095-20101.
    19. Liang, Y.; Cao, L.; Kong, L.; Li, H. Synthesis of Co(OH)_2/USY composite and its application for electrochemical supercapacitors. J. Power Sour. 2004, 136, 197-200.
    20. Cao, L.; Xu, F.; Liang, Y.; Li, H. Preparation of the Novel Nanocomposite Co(OH)_2/ Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density Adv. Mater. 2004, 16, 1853-1857
    (1) (a) Marinakos, S. M.; Novak, J. P.; Brousseau, L. C., Ⅲ; House, A. B.; Edeki, E. M.; Feldhaus, J. C.; Feldheim, D. L. Gold Particles as Templates for the Synthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and Guest Encapsulation J. Am. Chem- Soc. 1999, 121, 8518-8522;
    (b) Kim, S. -W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions J. Am. Chem. Soc. 2002, 124, 7642-7643;
    (c) Xu, X.; Asher, S. A. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals J. Am. Chem. Soc. 2004, 126, 7940-7945;
    (d) Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Preparation of Mesoseale Hollow Spheres of TiO-2 and SnO_2 by Templating Against Crystalline Arrays of Polystyrene Beads Adv. Mater. 2000, 12, 206-209;
    (e) Schmidt, H. T.; Ostafin, A. E. Liposome Directed Growth of Calcium Phosphate Nanoshells Adv. Mater. 2002, 14, 532-535;
    (f) Ding, Y.; Hu, Y.; Jiang, X.; Zhang, L.; Yang, C. Polymer-Monomer Pairs as a Reaction System for the Synthesis of Magnetic Fe_3O_4-Polymer Hybrid Hollow Nanospheres Angew. Chem., Int. Ed. 2004, 43, 6369-6372;
    (g) Putlitz, B.; Landfester, K.; Fischer, H.; Antonietti, M. The Generation of "Armored Latexes" and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes Adv. Mater 2001, 13, 500-503.
    (2) (a)Velikov, K. P.; van Blaaderen, A. Synthesis and Characterization of Monodisperse Core-Shell Colloidal Spheres of Zinc Sulfide and Silica Langmuir. 2001, 17, 4779-4786;
    (b) Lu, L.; Sun, G.; Xi, S.; Wang, H.; Zhang, H.; Wang, T.; Zhou, X. A Colloidal Templating Method To Hollow Bimetallic Nanostructures Langmuir. 2003, 19, 3074-3077.
    (3) (a) Imhof, A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells Langmuir. 2001, 17, 3579-3585;
    (b) Tissot, I.; Reymond, J. P.; Lefebvre, E; Bourgeat-Lami, E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles Chem. Mater. 2002, 14, 1325-1331.
    (4) Lynch, D. E.; Nawaz, Y.; Bostrom, T. Preparation of Sub-micrometer Silica Shells Using Poly(1-methylpyrrol-2-ylsquaraine)Langmuir. 2005, 21, 6572-6575.
    (5) Li, X. -L.; Lou, T. -J.; Sun, X. -M.; Li, Y. -D. Highly Sensitive WO_3 Hollow-Sphere Gas Sensors Inorg. Chem. 2004, 43, 5442-5449.
    (5) (a) Ma, Y.; Qi, L.; Ma, J.; Cheng, H. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions Langmuir. 2003, 19, 4040-4042;
    (b) Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries J. Am. Chem. Soc. 2003, 125, 5652-5653;
    (c) Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure J. Am. Chem. Soc. 2007, 129, 1534-1535;
    (d) Liu, G.; Yang, H.; Zhou, J.; Law, S. -J.; Jiang, Q.; Yang, G. Preparation of Magnetic Microspheres from Water-in-Oil Emulsion Stabilized by Block Copolymer Dispersant Biomacromolecules. 2005, 6, 1280-1288;
    (e) Du, J.; Chen, Y. Preparation of Organic/Inorganic Hybrid Hollow Particles Based on Gelation of Polymer Vesicles Macromolecules. 2004, 37, 5710-5716.
    (6) (a) Titirici, M. -M.; Antonietti, M.; Thomas, A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach Chem. Mater. 2006, 18, 3808-3812;
    (b) Sun, X. M.; Li, Y. D. Ga_2O_3 and GaN Semiconductor Hollow Spheres Angew. Chem., Int. Ed. 2004, 43, 3827-3831.
    (7) (a) Caruso, E; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach Chem. Mater. 2001, 13, 109-116;
    (b) Hyeon, T.; Chung, Y.; Park, J.; Lee, S. S.; Kim, Y. -W.; Park, B. H. Synthesis of Highly Crystalline and Monodisperse Cobalt Ferrite Nanocrystals J. Phys. Chem. B. 2002, 106, 6831-6833;
    (c) Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process J. Am. Chem. Soc. 2001, 123, 12798-12801;
    (d) Yu, S. -H.; Yoshimura, M. Direct Fabrication of Ferrite MFe_2O_4 (M = Zn, Mg)/Fe Composite Thin Fills by Soft Solution Processing Chert Mater. 2000, 12, 3805-3810;
    (e) Hyeon, T. Chemical synthesis of magnetic nanoparticles Chem. Commun. 2003, 927-934;
    (f) Yu, S.; Yoshimura, M. Ferrite/Metal Composites Fabricated by Soft Solution Processing Adv. Funct, Mater. 2002, 12, 9-15;
    (g) Li, X. -H.; Zhang, D. -H.; Chen, J. -S. Synthesis of Amphiphilic Superparamagnetic Ferrite/Block Copolymer Hollow Submicrospheres J. Am. Chem. Soc. 2006, 128, 8382-8383;
    (h) Lee, D. K.; Kim, Y. H.; Kang, Y. S.; Stroeve, P. Preparation of a Vast CoFe_2O_4 Magnetic Monolayer by Langmuir-Blodgett Technique J. Phys. Chem. B. 2005, 109, 14939-14944;
    (i) Su, C. -H.; Sheu, H. -S.; Lin, C.-Y.; Huang, C. -C.; Lo, Y. -W.; Pu, Y. -C.; Weng, J. -C.; Shieh, D. -B.; Chen, J. -H.; Yeh, C. -S. Nanoshell Magnetic Resonance Imaging Contrast Agents J. Am. Chem. Soc. 2007, 129, 2139-2146.
    (8) Caruso, F.; Schuler, C.; Kurth, D. G. Core-Shell Particles and Hollow Shells Containing Metallo-Supramolecular Components Chem. Mater. 1999, 11, 3394-3399.
    (9) Olsson, R. T.; Salazar-Alvarez, G.; Hedenqvist, M. S.; Gedde, U. W.; Lindberg, F.; Savage, S. J. Controlled Synthesis of Near-Stoichiometric Cobalt Ferrite Nanoparticles Chem. Mater. 2005, 17, 5109-5118.
    (10) (a) Manova, E.; Kunev, B.; Paneva, D.; Mitov, I.; Petrov, L. Mechano-Synthesis, Characterization, and MagneticProperties of Nanoparticles of Cobalt Ferrite, CoFe_2O_4 Chem. Mater. 2004, 16, 5689-5696;
    (b) Huang, X.; Chen, Z. A study of nanocrystalline NiFe_2O_4 in a silica matrix Materials Research Bulletin. 2005, 40, 105-113.
    (11) Titirici, M. -M.; Antonietti, M.; Thomas, A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach Chem. Mater. 2006, 18, 3808-3812.
    (12) Shaft, K. V. P. M.; Gedanken, A.; Prozorov, R.; Balogh, J. Sonochemical Preparation and Size-Dependent Properties of Nanostructured CoFe_2O_4 Particles Chem. Mater. I998, 10, 3445-3450.
    (13) Lee, D. K.; Kim, Y. H.; Kang, Y. S.; Stroeve, P. Preparation of a Vast CoFe_2O_4 Magnetic Monolayer by Langmuir-Blodgett Technique J. Phys. Chem. B. 2005, 109, 14939-14944.
    (14) Mooney, K.; Nelson, J.; Wagner, M. Superparamagnetic Cobalt Ferrite Nanocrystals Synthesized by Alkalide Reduction Chem. Mater. 2004, 16, 3155-3161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700