用户名: 密码: 验证码:
玛纳斯河流域径流对气候变化的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近百年来全球气候正以前所未有的速度变暖,由此引发的冰川消融、极端气候、粮食减产、海平面上升、物种灭绝和空气污染等一系列问题越来越引起人们的关注。玛纳斯河发源于天山北坡依连哈比尔尕山冰川地带,是准噶尔内陆区冰川数量最多、规模最大的一条河流,冰川面积692.5km2,全长324km。作为新疆干旱区典型的内陆河,研究气候变化对流域径流变化的影响,对玛纳斯河流域生态环境、农业生产与居民生活的可持续发展起着至关重要的作用。
     本文以玛纳斯河为典型研究流域,采用水文模型模拟的方法,应用含融雪结构的新安江模型模拟研究区实测径流过程,并对其结果进行分析与检验,模拟精度较好,模拟径流过程基本符合实际径流过程的变化趋势,拟将其作为预测的基本模型。
     为研究流域气候变化的趋势,利用研究区实测水文资料(实测日平均气温及降水资料)对研究区气候特征进行分析,得出玛纳斯河流域肯斯瓦特水文站30年气温呈上升的趋势,其中1958~1979年气温呈缓慢波动下降的趋势,1980~1987年气温呈明显上升的趋势,气温平均升高幅度达1.2℃;降水量呈下降趋势,其中1958~1972年降水量变化不大,1980~1987年降水量逐渐减少,但下降幅度较小。本文选用研究区1983~1987年资料,以各年日平均气温、降水、蒸发以及径流作为输入,利用已建好的分布式水文模型来模拟不同气候情景下径流的形成过程,采用模拟方案为:降水不变,年均气温增加1℃和2℃;气温不变,年降水减少和增加20%。结果表明,在气温升高1℃的情况下,1983~1987年各年径流分别增加了29.80%、22.72%、28.58%、43.26%和36.54%,平均增幅为32.18%;在气温升高2℃的情况下,1983~1987年各年径流分别增加了57.72%、50.26%、61.79%、81.75%和24.33%,平均增幅为55.17%。当降水增加20%时,1983~1987年各年径流变化量分别为10.98%、-3.35%、5.97%、11.20%、16.22%;当降水减少20%时,各年径流变化量分别为1.01%、-14.85%、-8.26%、6.21%、2.01%。流域径流变化对气温变化基本呈正响应,即径流量随气温的升高呈现增多的趋势,而降水的增加与减少对径流的影响较小,各年径流总量变化不明显。由此得出,玛纳斯河流域年径流过程对气温变化的响应比对降水变化的响应更为显著。
The global climate is warming at an unprecedented rate in past century, a range of issues have been triggered such as melting of glaciers, extreme weather, food production, rising sea levels, species extinction and air pollution, this issues is more and more cause for concern. Manas river originates from glacier area of YiLianHabi Er Ga mountains that in the northern slope of Tianshan Mountain, it is the largest river which has the largest number of glaciers in Junggar Basin, the length of river is 324km, the area of glacier is 692.5km2. As a typical inland arid area in Xinjiang River, study of climate change impact on runoff change plays a vital role on local ecological environment, agricultural production and sustainable development.
     This article takes Manas river as the model research basin, uses the hydrology model simulation method, uses including Xin'an river model with the thaw structure to make a simulation of the runoff processes of the research area in 1958~1987, then to carry on the analysis and the examination to its result. The analogue result basically conforms to the trend of the actual runoff process.
     In order to study the variation trend of the basin climatic, we use the research area actual hydrological data (actual daily average temperature and precipitation data) to carry on the analysis to the climate character of the research area, to obtain the temperature rise tendency of the Kensiwate hydrological station in Manas river basin in 30 years. The results are:during 1958~1979, the temperature assumed the tendency which presents with slow undulation drop, during 1980~1987, there was a marked rise in temperature, the temperature average ascension scope reached 1.2℃; the precipitation assumes drop tendency, during 1958~1972, precipitation change was not obvious, during 1980~1987, precipitation reduced gradually, but the drop scope was small. This article selects the research area data in 1983~1987, using distributional hydrology model constructed to simulate the runoff forming process under different climate scenes. The simulation plan is:the precipitation is invariable, and the daily temperature increases 1℃and 2℃; the temperature is invariable, and the daily precipitation reduces and increases 20%.
     The results indicates that under the situation the temperature elevates every degree Celsius, the annual runoff during 1983~1987 separately increases 29.80%,22.72%,28.58%,43.26% and 36.54%, the average increase range is 32.18%; under the situation the temperature elevates every two degrees Celsius, the annual runoff during 1983~1987 separately increases 57.72%,50.26%,61.79%,81.75% and 24.33%, the average increase range is 55.17%. When the precipitation increases 20%, the annual runoff change during 1983~1987 respectively is 10.98%,-3.35%,5.97%,11.20%,16.22%; When the precipitation reduces 20%, the annual runoff change respectively is 1.01%,-14.85%,-8.26%,6.21%,2.01%.
     The runoff of river basin in temperature changing is positively response, namely with a temperature rise, the runoff presents the trend of increased, and the influence of precipitation increase or decrease on runoff is small, the total quantity of annual runoff does not change significantly. From this study, we obtain that in Manas river basin the annual runoff process has obvious response to the change of temperature than to the precipitation.
引文
[1]水利部应对气候变化研究中心.气候变化权威报告—IPCC报告[J].中国水利,2008(2):38-40.
    [2]李莉,王杰,王旭.气候变化对我国水文水资源系统的影响研究[J].地下水,2009,29(3):8-56.
    [3]柳葳,许有鹏,黄云.气候变暖对新疆降水和径流影响分析[J].干旱区地理,2005,28(5):597-602.
    [4]胡汝骥,姜逢清,王亚俊.新疆气候由暖干向暖湿转变的信号及影响[J].干旱区地理,2002,25(3):194-200.
    [5]詹道江,叶守泽.工程水文学[M].北京:水利水电出版社,2000.
    [6]管华.水文学[M].科学出版社,2010.
    [7]夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展,2006,21(3):256-261.
    [8]WMO. Inter comparison of conceptual models used in operational hydrological forecasting[R]. Operational Hydrology Report No.7, WMO-Publ., No.429, Geneva, Switzerland:WMO,1975.
    [9]WMO.Inter comparison of models of snowmelt runoff.[R]. Operational Hydrology Report No.23, WMO-No.646, Geneva, Switzerland:WMO,1986.
    [10]WMO. Real-time inter comparison of hydrological models[R]. Technical Report to Chy No.23,WMO/TD-No.255, Geneva, Switzerland:WMO,1987.
    [11]WMO. Simulated real-time inter comparison of hydrological models[R]. Operational Hydrology Report No.38, WMO No.779. Geneva, Switzerland.:WMO,1992.
    [12]Askew. A.J. Real-time inter comparison of hydrological models. In:Symposium on Surface Water Modeling [C]. IAHS, Proc. Baltimore Symp,May,1989,181:125-132.
    [13]Serban.P,Askew.A.J. Hydrological forecasting and updating procedures [J]. IAHS,1991,201:357-369.
    [14]赵人俊.流域水文模拟——新安江模型与陕北模型[M].北京:水利电力出版社,1984.
    [15]Crawford N H,Linsley R K. Digital simulation in hydrology:Stanford Watershed ModelⅣ[R].Palo Alto, Calif.,Stanford Univ.,1966.
    [16]W.C.Boughton.A Mathematical Catchment Model for Estimating Runoff[J]. Hydrol(New Zealand),1968,Vol.7.
    [17]Burnash R J C, Ferral R L, McGuire R A. A generalized streamfiow simulation system:conceptual models for digital computers[R]. Sacramento, California:Joint Fed.-State River Forecast Center, 1973.
    [18]Sugawara M. The flood forecasting by a series storage type model[C]. Symposium Floods and their Computation,1967.
    [19]Freeze R, Harlan R. Blueprint for a physically-based,digitally-simulated hydrologic response model[J]. J.Hydrol.,1969,9(3):237-258.
    [20]董艳萍,袁晶瑄.流域水文模型的回顾与展望[J].水力发电,2008,34(3):20-23
    [21]Beven K,Lamb R,Quinn P, et al. Computer models of watershed hydrology[M]. Colorado:Water Resources Publications,1995.
    [22]Abbott M B, et al. Introduction to the European hydrological system-Systeme Hydrologique Europeen,'SHE',1:History and philosophy of a physically-based, distributed modelling system[J]. J. Hydrol.,1986,87 (1-2):45-49.
    [23]王中根SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [24]姜卉芳.融雪径流模拟及其在切德克流域的应用[J].八一农学院学报,1987(1):67-75.
    [25]赵人俊,王佩兰.流域水文模型参数的客观优化方法[J].水文,1993(4):21-24.
    [26]赵串串.国内外流域水文模型应用进展[J].环境科学与管理,2007,32(10):17-21.
    [27]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997,17(5):5-10.
    [28]郭生练,熊立华.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版),2001,34(1):1-5.
    [29]郭生练,熊立华.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [30]任立良.流域数字水文模型研究[J].河海大学学报,2000,28(4):1-6.
    [31]夏军.分布式时变增益流域水循环模拟[J].2003,58(5):789-796.
    [32]俞鑫颖,刘新仁.分布式冰雪融水雨水混合水文模型[J].河海大学学报,2002,30(5):23-27.
    [33]熊立华,郭生练,田向荣.基于DEM的分布式流域水文物理模型及应用[J].水科学进展,2004,15(4):517-520.
    [34]王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65.
    [35]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科技进展,2004,24(2):55-58.
    [36]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005,20(2):300-305.
    [37]李致家,姚成,汪中华.基于栅格的新安江模型的构建和应用河海大学学报(自然科学版)[J].2007(2):131-134.
    [38]刘卓颖,倪广恒,雷志栋,等.黄土高原地区中小尺度分布式水文模型[J].清华大学学报(自然科学版),2006,46(9):1546-1550.
    [39]侯磊,姜卉芳,穆振侠.山区水文模型降雨输入方法的改进[J].新疆农业大学学报,2008(3):82-85
    [40]穆振侠,石启中,姜卉芳.基于RS和GIS的融雪型新安江模型参数的确定[J].人民黄河,2009(1):38-40
    [41]景少波,姜卉芳,穆振侠.含融雪结构的新安江模型在叶尔羌河流域的应用[J].新疆农业大学学报,2010,33(3):250-254.
    [42]王顺久.全球气候变化对水文与水资源的影响[J].气候变化研究进展,2006,2(5):223-227.
    [43]US National Academy of Sciences Climate Climatic Change and Water Supply. Washington D C.:National A-cademy Press,1977.
    [44]Waggoner.Climate Change and U.S. Water Resources. New York:John Wiley,1990.
    [45]郑爽.气候变化坎昆会议成果及分析[J].能源与环境,2011,33(2):31-32.
    [46]Small,E.E.,Sloan,L.C.,Hostetler,S.W.&Giorgi,F.Simulating the water balance of the Aral Sea with a coupled regional climate-lake model.J.GeophRes.1999,104:6583-6602.
    [47]S. W.Hostetler,P.J.Bartlein,P.U.Clark,E.E.Small&A.M.Solomon. Simulated influences of Lake Agassiz on the climate of central North America 11,000 year ago. Nature 2000,405:334-337.
    [48]蓝永超,康尔泗,仵彦卿,等.气候变化对河西内陆干旱区出山径流的影响[J].冰川冻土,2001,23(3):276-282.
    [49]张济世,蓝永超,康尔泗,等.气候变化对洮河流域水资源的影响[J].中国沙漠,2003,23(3):263-267.
    [50]施雅风.气候变化对西北华北水资源的影响[M].济南:山东科学技术出版社,1995.
    [51]张建云.短期气候异常对我国水文水资源的影响评估[J].水科学进展,1996,7(增刊):1-3.
    [52]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119.
    [53]张建云,王国庆,刘九夫.国内外关于气候变化对水的影响的研究进展[J].人民长江,2009,40(8):39-41.
    [54]刘吉峰,许卓首,王玲.黄河流域气候与水资源演变特点研究[J].中国水利,2009,13:25-53
    [55]伏洋,肖建设,校瑞香,等.气候变化对柴达木盆地水资源的影响——以克鲁克湖流域为例[J].冰川冻土,2008(6):998-1006.
    [56]丁永健,秦大河.冰冻圈变化与全球变暖:我国面临的影响与挑战[J].中国基础科学,2009(3):4-10.
    [57]殷承义.应对气候变化措施国际研讨会在上海世博会意大利馆举行[J].上海环境科学,2010,29(5).
    [58]南京水利科学研究院.水利部应对气候变化研究中心成功举办ACCC项目水文模拟技术交流与培训研讨会[J].水利水运工程学报,2010(4).
    [59]穆振侠,姜卉芳.全球气候变化对高寒山区融雪径流的影响及其敏感性分析[J].中国农村水利水电,2010(4):8-15.
    [60]周晓浩,魏萍.玛纳斯河流域水文特征浅析[J].安徽农学通报,2008,14(23):61-62.
    [61]李慧.玛纳斯河流域气温与降水变化特征分析[J].甘肃水利水电技术,2010,46(2):3-5.
    [62]徐素宁,杨景春,李有利.近50 a来玛纳斯河流量变化及对气候变化的响应[J].地理与地理信息科学,2004,20(6):65-68.
    [63]郝军.玛纳斯河径流与洪水特征分析及演变规律研究[J].水利科技与经济,2010,16(10):1170-1172.
    [64]唐湘玲.新疆玛纳斯河流域气候变化及其对径流量的影响研究[D].新疆:新疆师范大学,2005:2-4.
    [65]樊明兰.基于DEM的分布式水文模型在中尺度径流模拟中的应用研究[D].四川:四川大学,2004:14-22.
    [66]张超,郑钧,张尚弘,等ArcG is 9.0中基于DEM的水文信息提取方法[J].水利水电技术,2005,36(11):1-4.
    [67]张利平,陈小凤,赵志鹏,等.气候变化对水文水资源影响的研究进展[J].地理科学进展,2008,27(3):60-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700