用户名: 密码: 验证码:
齿轮形廓磨棱设备及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械加工水平的提高,齿轮倒棱在齿轮加工中已经成为了一道很重要的加工工序。它对减少齿轮热处理造成的损伤如热裂纹等具有明显的减少作用,并且适当的棱角对齿轮的传动性能也有很大的改善。但目前的齿轮倒棱设备主要针对模数小于6mm的小齿轮,对于模数在6mm以上的大尺寸齿轮倒棱,没有专用的加工设备,其理论研究也很不成熟。现在大齿轮齿端面倒棱均用手工进行加工。产品的质量难以保证,工人的劳动强度很大。本文针对目前大齿轮倒棱设备和理论研究的缺乏进行相关问题的研究。
     首先,进行倒棱工艺研究,针对模数在3~10mm的齿轮端面倒棱,采用片状砂轮磨棱,研制专用磨棱机床。针对模数在10mm以上的齿轮,采用锥状砂轮磨棱。设计相应的磨头机构,并采用Pro/Engineer等设计软件对机构建模。采用ADAMS软件对所设计机构进行运动仿真,实现了运动学的可视化。
     其次,以锥砂轮磨头机构为研究对象,研究了砂轮结构尺寸及安装位置对工序尺寸的影响。通过空间几何关系的计算,建立了齿轮磨棱时各个位置的磨棱角度数学模型。之后以一个齿轮为例,计算出采用锥砂轮磨棱所能达到的磨棱角度和磨棱尺寸,在Pro/Engineer软件中对得到的磨棱带建模仿真。再次,本文还在平面磨削力模型的基础上,对磨棱磨削力进行一定程度的建模计算。
     最后,在已加工制造出的磨棱机床基础上,采用片状砂轮对实际齿轮磨棱对所给出的磨棱磨削力进行初步的研究。
Along with the enhancement of machine-finishing level, gear chamfering had already become a very important working process in gear cutting. It can reduce damages after heat treatment, for example heat crack, obviously. Further more, transmission performance of gear improved a lot thanks to suitable edges and corners. Present gear chamfering equipments dealt mainly with pinions whoes modulus is smaller than 6mm.For those gears whose modulus is above 6mm, however, there is no such dedicated processing equipment. Theory on gear chamfering is still in its infancy. Manual method is now mainly used on big gear chamfering. Product quality is difficult to be guaranteed; meanwhile the work intensity is very heavy. In this paper, the current edge gear grinding equipment and the lack of theoretical research related issues.
     First, study gear chamfering. For gears whoes modulus is between 3~10mm, develop new dedicated equipment using laminated grinding wheel. For gears whose modulus is above 10mm,use pyramidal grinding wheel to process. Design the corresponding wheel head organization using software like Pro/Engineer. Do simulation on the mechanism with ADAMS.
     Next, take the awl grinding wheel wheelhead organization as study object, study influences of the grinding wheel structure size and installing position. Establish model of gear chamfering based on spatial geometry relations. Then take one gear as example, calculate degree and size of the edge after gear chamfering. Use Pro/Engineer to do the belt modeling simulation. Further more, this article raises a model of grinding force.
     Finally, carry on experiments on the machine tool using laminated grinding wheel to research grinding strength which gives to conduct the preliminary research.
引文
1秦巍.简单实用的齿轮倒棱机.机械制造. 1997,41(1)
    2王志壮.斜齿轮倒棱工艺与设备设计.机械. 1991,18(3):32~36
    3姚祖扬.浅谈YB9332D型半自动齿轮倒角机倒棱加工的应用及凸轮的设计.机械制造与自动化. 1994,2:12~13, 33
    4马云.齿轮加工机床的发展趋势.精密制造与自动化. 2007,3:4~8
    5 Werner. G, Konig. W. Influence of Work Material on Grinding Forces. Annals of the CIRP. 1978,27(1):243~248
    6 Opitz. H, Konig. W, Werner. G. Kinematics and Mechanics in Grinding with Regard to the Machining Process. New Development in Grinding. 1972
    7 Connolly. R, Rubenstein. C. The Mechanics of Continuous Chip Formation in Orthogonal Cutting, MTDR 1968
    8 Greenhow. J. N, Rubenstein. C. The Dependence of Cutting Force on Feed and Speed in Orthogonal Cutting with Worn Tools, MTDR 1969
    9 Rubenstein. C. The Mechanics of Grinding, MDTR 1972
    10 Malkin. S, Part 1-Attritious Wear & Part 2-Fracture Wear. Trans of the ASME, Journal of Engineering for Industry. 1971,93:1120~1133
    11李力均,傅杰才.磨削力的数学模型的研究.机械工程学报. 1981,17 (4):31~41.
    12 Badger. J. A, Torrance. A A. A Comparison of Two Models to Predict Grinding Forces from Wheel Surface Topography. International Journal of Machine Tools & Manufacture. 2000, 40:1099~1120
    13 Challen. J. M, Oxley. P. L. B. An Explanation of the Different Regimes of Friction and Wear Using Asperity Deformation Models. Wear. 1978,53:229~243
    14 Williams. J. A, Xie. Y. The Generation of Wear Surfaces by the Interaction of Parallel Grooves. Wear. 1992,155:363~379
    15 Xie. Y, Williams. J. A. The Generation of Worn Surfaces by the Repeated Interaction of Parallel Grooves. Wear. 1993,164:864~872
    16 Xie. Y, Williams. J. A. The Prediction of Friction and Wear When a Soft Surfaces Slides against a Harder Rough Surface. Wear. 1996,196:21~34
    17 Hecker. R. L, Liang. S. Y, Wu X J, et al. Grinding Force and Power Modeling Based on Chip Thickness Analysis. Int J Adv Manuf Technol,2004
    18韩力群编著.人工神经网络设计及应用.化学工业出版社, 2002
    19黄伟,谢红梅. BP神经网络及其在磨削力序列预测中的应用.金刚石与磨料磨具工程. 2001,2(122):42~43
    20姚春燕,彭伟.基于神经网络的回归分析及其在磨削力预测中的应用.磨床与磨削. 1998,3:38~40
    21 Fuh. K. H, Wang. S. B. Force Modeling and Forecasting in Creep Feed Grinding Using Improved BP Neural Network. International Journal of Machine Tools & Manufacture, 1997,37(8):1167~1178
    22仇君,梁式,庞庭阶.磨削力的灰色预测模型.广西大学学报(自然科学版). 1997,22(2):155~157
    23刘晓莉.齿轮倒棱工艺.机械传动. 2007,100~105
    24 http://www.jwfu.com/products/9475/84524.html
    25母果资.基于Solidworks的电机三维CAD系统研究与开发. 2005.3,13~14
    26孙江洪,黄小龙,罗坤. Pro/Engineer2001虚拟设计与装配.中国铁道出版社. 2003.3
    27 http://www.oberchina.com/lfb_c.htm
    28郑建荣. ADAMS虚拟样机技术入门与提高.机械工业出版社. 2002.4
    29李军,邢俊文,覃文洁. ADAMS实例教程.北京理工大学出版社. 2002.7
    30尹泽明,丁春利.精通MATLAB 6.清华大学出版社. 2002.6
    31王国强,张进平,马若丁.虚拟样机技术在ADAMS上的实现.西北工业大学出版社. 2002.6:40~45
    32魏永庚.六自由度并联机床结构参数设计及实验用软件的研究.哈尔滨工业大学博士论文. 2005:92~93
    33倪进峰,徐诚. Pro/E与ADAMS的复杂模型传递方法.机械工程师. 2004,9: 15~16
    34纪校娟, Tripod机构的运动学和静力学分析.哈尔滨工业大学硕士论文. 2008:34~35, 37~38
    35韩荣第,王扬,张文生.现代机械加工新技术.北京:电子工业出版社. 2003
    36贺长生,石玉祥,丁宁.外圆纵向磨削力的研究.煤矿机械. 2006.2:239~240
    37李伯民,赵波.现代磨削技术.机械工业出版社. 2003
    38王知行,刘廷荣主编.机械原理.高等教育出版社. 2000,128
    39马尔金.S著.蔡光起,巩亚东,宋贵亮,译.磨削技术理论与应用.东北大学出版社.
    40樊瑜瑾,余贵华,纳铿等.磨削过程模拟及磨削机理研究.制造技术与机床. 1999,3:21~25; 1999, 4: 33~34
    41中山一雄.金属切削加工理论.李云芳,译.机械工业出版社, 1985
    42陈勇平.平面磨削力建模及其应用研究.中南大学硕士论文. 2007.5,
    43易了.工程陶瓷高效深磨磨削力和磨削能的特征及形成机理研究. 2006.5.
    44任敬心,康仁科,史兴宽.难加工材料磨削.国防工业出版社. 1999, 29
    45司尧化,翟振辉,侯锁军.圆柱齿轮切削加工的精细化分析.煤矿机械. 2004.7, 77~78
    46哈尔滨工业大学,上海工业大学.圆柱齿轮加工.上海科技出版社
    47王龙山,李国发.磨削过程模型的建立及其计算机仿真.中国机械工程2002, 13(1):1~4
    48 Suto. T, Sata. T. Simulation of Grinding Process Based on Wheel Surface Characteristic. Bull. Japan Soc. Prce. Engg. 1981:15, 27~34
    49 Chen. Xun, W. Brian Rowe. Analysis and Simulation of The Grinding Process. Int.J.MTM. 1996,36(8):871~906
    50 Kim. J, Park. S. Simulation of the Shift Force for a Manual Transmission. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering. 2002,217(7):573~582
    51 Szadkow shi A. Shiftability and Shift Quality Issues in Clutch Transmission System (section 2). SAE. 1991,618~628
    52 Nyamaqoudar, Basavarai. Chamfering and Deburring External Parallel Axis Gears. Gear Technology. 1996,13(6):25~31
    53 Abdel. H. N, Barton. D. C, Crolla D A, et al. Performance of Multicone Synchronizers for Manual Transmissions. Jurnal of Automobile Engineering. 2000,214(1):55~66
    54 Krupin. B. B. An Automatic Machine for Chamfering. Manufacturing Engineering. 2002,133(1):18~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700