用户名: 密码: 验证码:
产絮凝剂微生物强化处理校园污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物强化技术是指向生物处理系统中投加具有特定功能的微生物或营养物质或与基质结构相似的物质以提高微生物的活性或诱导微生物产生相应的酶系统,从而改善原系统处理效果的方法。生物强化技术应用于生活污水的生物处理过程,可以提高污水处理效果,改善污泥性能,减少污泥产生。目前,本项技术的研究重心主要集中在针对生活污水水质筛选和构建对于污水水质有降解作用的高效菌剂,增加系统生物量以及强化对特定污染物的降解作用,从而改善系统性能。因此,筛选出有效菌株,合成高效菌剂实现对污水进行高效处理,低成本地获得再生水,改善污泥性能正是本课题的意义所在。
     菌种A9和C3均为东北大学环境工程研究所实验室保藏菌种。针对这两株产絮凝剂微生物及其混合制成的菌剂,本课题作了大量的研究工作。
     第一阶段。首先,对以模拟生活污水为培养基的单菌种以及由它们配置合成的混合菌剂的驯化进行了实验研究。由于模拟生活污水的成分相对比较固定,便于摸索规律,因此,试验先采用模拟生活污水进行研究。结果表明,两株菌种能以模拟生活污水中的物质为营养物质,菌体细胞同时分泌微生物絮凝剂。MBFC3对于高岭土悬浮液的絮凝率可达85.2%,而MBFA9对于高岭土悬浮液的絮凝率可达93.4%。随着模拟生活污水中的营养物质被利用,模拟生活污水的COD值明显下降。其次,又分别作了单菌种以及混合菌剂强化活性污泥处理模拟生活污水的效果研究,并以COD去除率、污泥指数、活性污泥絮凝性为考查指标。结果表明,产絮凝剂微生物A9和C3与活性污泥联用可以强化活性污泥对模拟生活污水的处理效果,与单纯使用活性污泥相比,可以提高模拟生活污水的COD去除率,并提高活性污泥的沉降性和絮凝性。对混合菌剂强化处理模拟生活污水进行了实验研究,考察了单菌种接种比例以及混合菌剂用量对处理效果的影响。
     第二阶段。对混合菌剂强化沈阳北部污水处理厂污泥和沈阳沈水湾污水处理厂污泥处理校园污水进行了实验研究。分别进行了污泥和混合菌剂的驯化以及不同反应时间,不同溶解氧值,不同混合菌剂用量对污水处理效果的影响研究。结果表明,产絮凝剂微生物A9和C3合成的混合菌剂,能够以实际校园污水中的污染物为营养物质将其降解,提高COD去除率2%-10%,条件实验结果表明:当反应时间为8小时左右,溶解氧浓度为3.5-4mg/L,菌剂与污水比为1/250-1/200时,与对照污泥比较,最终COD去除率可提高2%-10%,达到85%左右,污泥指数可80左右降到50左右,污泥的絮凝性可由50%左右提高达到68%左右。
Bioaugmentation technology is the methods of adding a specific function microbial or nutrients or similar substrate structure substances into biological treatment system to enhance microbial activity or induce microbial to produce the corresponding enzyme system, thereby improving the effectiveness of the system treatment. Bioaugmentation technology used in sewage biological treatment processes can improve sewage treatment effectiveness,improve the performance of sludge and reduce sludge. Currently, the technical research mainly concentrated on screening and synthesizing the effectiveness microbial inoculums with degradation acting against quality of sewage and increase systems biomass andstrengthen the disposal of specific pollutants, thereby improving system performance. Therefore, screening effective bacteria and synthesizing the effectiveness microbial inoculums achieve an efficient sewage treatment, low-cost access to renewable water, improvement of sludge performance is the significance of this issue.
     A9 and C3 were Preservation bioflocculant-producing microbes of Laboratory for Environmental Engineering Institut in northestern university. Aimming at the bioflocculant-producing microbes (A9 and C3)and mixture of them, the subject made a lot of research work.
     The first stage. First, the domestication of single bioflocculant-producing microbes and mixture of them in use of synthetic domestic sewage as culture medium was studied by this experiment. Because of the synthetic domestic sewage components were relatively fixed, easier explorating the regulation, therefore, we used synthetic domestic sewage to study. The results showed that both single bioflocculant-producing microbes can use the material of synthetic domestic sewage as nutrients and secret microbes flocculant. The kaolin suspension flocculation rate of MBFC3 was 85.2%, while the kaolin suspension flocculation rate of MBFA9 was 93.4%. With synthetic domestic sewage nutrients to be used,The COD of synthetic domestic sewage decreased significantly. Secondly, the effect of single bioflocculant-producing microbes and mixture of them augmentatation treatment of synthetic domestic sewage were studied, using removal rate of chemical oxygen demand,sludge index and flocculability of activated sludge setting as index. The results showed that single bioflocculant-producing microbes and mixture of them adding into activated sludge can strengthen the treatment effect. Compared to the use of activated sludge only, which can improve synthetic domestic sewage removal of COD, enhanced the activated sludge of flocculation and sedimentation. In the process of this experiment, we studied the proportion of the two single bioflocculant-producing microbes and the amount of mixture effect.
     The second stage. the mixture of two single bioflocculant-producing microbes adding into the Shenyang Northern sewage treatment plant sludge and Shenyang shenshuiwan sewage treatment plant sludge augmentation treatment campus sewage were studied by this experiment. the domestication of sludge and different reaction time, different dissolved oxygen values, the amount of mixture of two single bioflocculant-producing microbes treatment effects was studied. The results showed that mixture of two single bioflocculant-producing microbes was able to use the pollutants in the sewage as nutrients to degrade, increased the COD removal 2%~10%, While enhanced the activated sludge of flocculation and sedimentation. Through the results of the condisition experiment came to the conclusion that the best reaction time was about eight hours, the best dissolved oxygen concentration was 3.5~4mg/L, the best amount of mixture of two single bioflocculant-producing microbes and sewage proportion was 1/250~1/200. Under the best conditions, the COD removal may eventually increase 2%~10% reach about 85%, sludge index could from around 80 reach around 50, the flocculability of activated sludge could from about 50%reach about 68%.
引文
[1]姜文来.我国水环境之忧[J].科技潮,2004,20(9):17-18.
    [2]王建龙.复台生物反应器处理废水的研究及进展[J].工业水处理,1997,17(1):58-60.
    [3]水资源评价活动—国家评价手册.(UNESCO)国际教科文和世界气象组织 (WMO)联合出版,1998:2-3.
    [4]国家环境保护总局编.2000中国环境状况公报[M].北京:科学出版社,2000:3-10.
    [5]中华人民共和国水利部.2000年中国水资源公报[N].人民日报,北京:2001.10.11.
    [6]成福云.水资源短缺:21世纪中国面临的严峻挑战[J].中国减灾.2000,10(1):28-30.
    [7]杨林梅.生物接触氧化法处理城镇污水的发展前景[J].太原科技,2001,2(1):15.
    [8]沈耀良.废水生物处理新技术[M].北京:中国环境科学出版社,1999:2-7.
    [9]张国良.21世纪中国水供求[M].北京:中国水利水电出版社,1999:20-51.
    [10]孟令春,孙其美.生物接触氧化处理生活污水[J]工业水处理,2000,20(11):42.
    [11]刘鸿志.国外城市污水处理厂的建设及运行管理[J]世界环境,2000,24(8):31-34.
    [12]国家环保局编.水污染防治及城市污水资源化技术[M].北京:科学出版社,2001:113-120.
    [13]邓勇我国城市污水处理产业化发展现状及对策[J].2005,19(8):27-29.
    [14]Wllfe, P. History of wastewater treatment in world water[M].北京:科学出版社,1999.
    [15]Bever Stein Teichmann著.现代德国除磷脱氮技术[M].袁国文编译.青岛:中等城市污水处理培训中心,2000:69-70.
    [16]孙炜,熊振湖,刘春,等.生物强化及在环境污染物生物治理中的进展[J]天津城市建设学院学报,2006:3(8):8-21.
    [17)杨居川,杨健生物强化技术在废水处理中的研究进展[J] 中国资源综合利用,2006,10(10).
    [18].宫小燕,王竟,周集体.絮凝剂产生菌筛选及其培养条件优化.环境科学研究.199912(4):9-11
    [19]Nam .J.K. Bioflocculant produced by Aspergillus sp. JS-42. Biosci Biotech Biochem. 1996,60(2):325~327
    [20]Kurane R. Screening for and characteristics of microbial flocculants. Biol. Chem.. 1986,50(9):2031~2307
    [21].甘莉,孟召平,常志华,等.絮凝剂产生菌的研究新进展.化学与生物工程.2005,(5):4-6
    [22]Nakatnura J. Screening, isolation, and some properties of microbiol cell flocculants. Agri Biol Chem.1976,40(2):377~383
    [23]Takagi H, Kadowaki K.Flocculant produced by Paecilomyces sp. taxonomic studies and culture conditions for production. Agric Bio Chem.1985,49(5):55~58
    [24]Ryuichiro Kurane, Kyroshi Takeda, Tomoo Suzuki. Screening for and characteristics of microbiol flocculants. Agricultural and Biological Chemistry.1986 50(9):2301~2307
    [25]Shihi L. Production if biopolymer flocculant from bacillus lichenifortnis and its flocculantion properties. Bioresource Technology.2001,78:267~272
    [26]Salehizadeh H.Extra cellular biopolymer flocculants Recent rends and biotechnological importance. Biotechnology Advances.2001,19:317~385
    [27]邓述波,胡筱敏,罗茜.微生物絮凝剂处理淀粉废水的研究.工业水处理.1999(5):8-10
    [28]叶晶菁,谭人伟.微生物絮凝剂产生菌分离选育及提取鉴定.北京化工大学学报.2001,28(1):11-17
    [29]王镇,王孔星,谢裕敏,等.几株絮凝剂产生菌的特性研究.微生物学报.1995,35(2):121-129
    [30].康茹,张通,支文瑞.生物絮凝剂产生菌的筛选及絮凝活性研究.内蒙古工业大学学报(自然科学版).2002,21(2):98-102
    [31].李智良,张本兰,装健.微生物絮凝剂产生菌的筛选及相关废水絮凝效果试验.应用与环境生物学报.1997,3(1):67-70
    [32].庄益源,戴树桂,宋文华.新型絮凝剂凝集水中染料的研究.环境工程与生态工程.1997,1:1-3
    [33].肖琳.高效微生物絮凝剂产生菌X-1的分离和絮凝性研究.第一届全国环境化学学术讨论会论文集.
    [34]Kurane R, Biochem.Matsuvama H.Production of a bioflocculant by mixed culture.Biotechnol,Biochem 1994, (58):253~257
    [35].康建雄.短梗霉多糖絮凝剂的研究.适用技术.1996,12:3-5
    [36].尹华,彭辉,贾宗剑.微生物絮凝剂产生菌的筛选及其絮凝除浊性能.城市环境与城市生态.2000,13(1):8-10
    [37]陈坚环境生物技术应用与发展.北京.中国轻工业出版社.2001
    [38].张本兰.新型高效、无毒水处理剂—微生物絮凝剂的开发与应用.工业水处理.1996,16(1):7-8
    [39].黄民生,史宇凯,株莉.微生物絮凝剂的研制及其絮凝条件.环境科学.200021(1):23-26
    [40].庄益源,戴树桂,李彤.生物絮凝剂对水中染料絮凝效果的探讨.水处理技术.1997,23(6):349-353
    [41].张永波.微生物絮凝剂--聚铝复合絮凝法强化一级处理低浓度城市污水的试验研究.武汉人学.2000
    [42].胡筱敏,邓述波,牛力东,等.一株芽胞杆菌所产絮凝剂的研究.环境科学研究.2001,14(1):36-40
    [43].徐斌,田肠,王竟,等.假单胞菌GX41利用鱼粉废水产絮凝剂的研究.微生物学通报.2001,28(3):68-72
    [44]Oh H.M., Lee S.J. Park M.H. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. Am49. Biotechnology Letters.2001,23:1229~1234
    [45].卢文玉,张通,田春.天然碱泥分离用生物絮凝剂产生菌的分离与鉴定.工业微生物.2002,32(2):10-12
    [46].马放,刘俊良,李淑更,等.复合型微生物絮凝剂的开发.中国给水排水.2003,19(4):1-4
    [47].何宁,李寅,陈坚.蛋白聚糖类生物絮凝剂REA-11发酵和絮凝条件.过程工程学报.2001,2(1):63-66
    [48].陈燕,李寅,赵丽菁,等.环境和营养条件对煤油生物降解的影响.应用与环境生物学报.2002,8(2):184-189
    [49]孟范平.有效微生物菌群对生话污水中有机物的降解能力的研究[J]中南林学院报,1997,(4):8-3
    [50]彭永臻.SBR法的五大优点[J]中国给水排水,1993,9(2):29-31
    [51]贾建慧.产微生物絮凝剂优良菌的筛选及絮凝性研究[M]西安建筑科技大学,2006.0622-23
    [52]Bo Jin, Britt-Marie Wilen, Paul Lant. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chemical Engineering Journal,2003,95:221-234
    [53]杨瑞崧微生物絮凝剂MBFA9培养基优化研究[M]东北大学资源与土木工程学院,2004.01.13-14
    [54]罗虹,顾平,杨造燕.应用投加粉末活性炭的膜生物反应器处理生活污水的研究[J].重庆环境科学,2002,24(3):28-31
    [55]刘忠臣.SBR法有机物降解的动力学研究[M].天津大学理学院,2006,01,13-14
    [56]高春娣,王淑莹,彭永臻,等.DO对有机物降解速率及污泥沉降性能的影响[J].中国给水排水[J]2001,17(5)14-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700