用户名: 密码: 验证码:
树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为电力机车供电系统从接触网获取电能的关键部件,受电弓滑板材料的研究是当前弓网耦合系统研究的热点之一。目前国内外高速电气化线路上主要使用双润滑铜基粉末冶金滑板、铝包覆纯炭质滑板和铝包覆浸金属炭滑板,但在机车运行时上述滑板均存在不同程度的缺陷,且国内外相关研究者对滑板/铜高速载流磨损性能及其起弧、灭弧机理仍缺乏深入研究。为了克服现有滑板因自身材质的缺陷难以协调弓网耦合系统载流磨损过大等问题,进一步降低滑板的载流磨损率。本文基于树脂型功能材料的结构和性能具有良好可控性及其成型工艺相对简单等特点,开展了对树脂型滑板材料的制备、磨损性能及抗磨机理研究。
     (1)对树脂热压型滑板配方和制备工艺进行了研究。以热固性树脂作粘结剂,提出了采用三次压制-固化法制备树脂热压型滑板试样。研究了粘结剂种类及含量、石墨种类及含量、成型工艺等因素对树脂热压型滑板材料结构和性能的影响。研究表明,采用以聚双马来酰亚胺树脂(PBMI)/腰果壳油改性酚醛树脂(YM)作粘结剂,经过氧化处理的P鳞片石墨作润滑相制得的树脂热压型滑板试样具有良好的抗磨损性能,当改性粘结剂含量为10.5 mass%、P鳞片石墨含量为10 mass%时制得的树脂热压型滑板试样综合性能最佳。
     (2)模拟滑板/导线的工况条件,系统地研究了树脂热压型滑板/铜的常温变速磨损性能、热态磨损性能和载流磨损性能。研究表明,电流是影响树脂热压型滑板磨损率的最主要因素,其磨损率随载流密度的增加而增大。树脂热压型滑板试样的常温变速磨损率和环境温度为200℃时的热态磨损率均与Siemens炭滑板的磨损率基本相当;环境温度为350℃时的树脂热压型滑板试样的热态磨损率、载流条件下的载流磨损率均大于Siemens炭滑板的磨损率。
     (3)对树脂焙烧型滑板配方和制备工艺进行了研究。提出了采用镀锌石墨粉作灭弧介质和润滑剂,添加改性树脂作粘结剂,利用共混热压-炭化法制备树脂焙烧型滑板试样。研究了焙烧工艺制度、粘结剂种类及含量、镀锌石墨粉含量等因素对树脂焙烧型滑板材料结构和性能的影响。研究表明,在135~425℃升温速率为20℃/h、425~630℃升温速率为15℃/h、630℃保温4h的条件下,当PBMI/YM树脂含量为3~5 mass%、镀锌石墨粉含量为28 mass%时制得的树脂焙烧型滑板的抗磨损性能和导电性能最优。镀锌石墨粉的加入明显改善了石墨和金属铜的界面结合状态,降低了滑板的载流磨损率,当载流密度为285A/cm2、滑行速度为41.7m/s时,镀锌石墨-铜焙烧型滑板磨损率比未镀锌石墨-铜焙烧型滑板降低了约3.2倍。
     (4)模拟滑板/导线的工况条件,系统地研究了树脂焙烧型滑板/铜的载流磨损性能。研究表明,树脂焙烧型滑板的载流磨损率随载流密度和滑行速度的增加而增大。在未受流条件下,新型树脂焙烧型滑板的磨损率与Siemens炭滑板、Toyo浸金属炭滑板和株洲新方圆电碳有限公司某炭滑板(简称为国产某型号炭滑板)的磨损率基本相当;在载流密度为285A/cm~2、滑行速度为41.7m/s条件下,新型树脂焙烧型滑板的磨损率为1.51×10~(-5)mm~3/(N·m),是国产某型号炭滑板磨损率的91.7%,是Siemens炭滑板、Toyo浸金属炭滑板磨损率的1.53倍和1.42倍。
     (5)研究了树脂型滑板/铜的磨损特性及机理。研究表明,在未受流条件下,树脂热压型滑板/铜的磨损机理主要是低应力连续磨粒磨损和轻微的粘着磨损;随着环境温度的升高,其热态磨损机理发生由粘着磨损向伴随有轻微剥层磨损的热磨损转变。在载流条件下,树脂热压型滑板/铜的磨损机理主要是电弧侵蚀磨损、氧化磨损和粘着磨损的交互作用;而树脂焙烧型滑板/铜的磨损机理主要是电弧侵蚀磨损和氧化磨损的综合作用。
     (6)研究了在接触-分离条件下树脂型滑板/铜的电弧侵蚀过程及作用模型。研究表明,树脂热压型滑板依次经历了接触-分离起弧;燃弧时的聚合物热分解、炭质材料氧化和金属热熔融的相变;高温阶段的树脂炭化、液态金属流动及金属氧化物高温分解;恢复接触熄弧时的熔融金属冷凝及氧化物脱落等循环过程。树脂焙烧型滑板则依次经历了接触-分离起弧;软金属受热软化;炭质材料氧化、金属热熔融和气化的相变;金属冷凝及材料转移等循环过程。
     (7)探讨了灭弧介质的抗电弧侵蚀机理。分别研究了硅油浸渍剂对树脂热压型滑板/铜载流磨损性能和抗电弧侵蚀磨损性能的影响,软金属灭弧介质对树脂焙烧型滑板/铜载流磨损率和动态载流稳定性的影响。研究表明,在树脂热压型滑板中的硅油浸渍剂减缓了接触区接触电阻的波动,降低了接触点的瞬时高温和滑板的载流磨损率;树脂焙烧型滑板中的镀锌石墨、金属锡促进了滑板中的金属相间的界面冶金结合。在电弧侵蚀过程中,具有较高电离能的金属锌吸热蒸发,降低了电弧中的电子浓度。同时金属蒸气与铜基体形成的合金覆层降低了接触区的接触电阻,减小了电弧产生的几率,从而使得滑板的载流磨损率降低。此抗电弧侵蚀机理为树脂型滑板材料的抑弧研究和实际应用提供了科学依据。
As the key component, pantograph contact strip helps electric locomotive power supply system to obtain electrical energy from the contact wire, which has become a hot research point in the field of the coupling system of pantograph/catenary. At present, the contact strips, such as dual-lubricating copper matrix powder metallurgy contact strip, Al-coated pure carbon contact strip, Al-coated metal impregnation carbon contact strip, were mainly applied on high-speed electrification railway at home and abroad, which were limited by different shortcomings during the operation. Furthermore, few investigations and reports about the electrical sliding wear behavior of high speed were presented on arc starting and extinguishing mechanism of contact strip against copper. In order to resolve the problems that contact strip is difficult to coordinate the coupling system of pantograph/catenary due to material defect to avoid high abrasion with current and to reduce the wear rate of contact strip. Based on the structure and property of resin-type function composite well controlled and relatively simplicity in manufacture, the preparation process and wear behavior and anti-wear mechanism of the resin-type contact strip materials were investigated in this paper.
     (1) The batch formula and preparation process of the resin hot-pressing type contact strip were investigated in this paper. With modified resin as bonding agent, three-step pressing and solidification technology was presented to prepare the resin hot-pressing type contact strip. The effects of the kinds and content of bonding and graphite, the moulding process on the structure and performance of the resin hot-pressing type contact strip were studied. The result showed that the resin hot-pressing type contact strip which was prepared with polybismaleimide resin (PBMI)/cashew nut oil phenol formaldehyde resin (YM) as bonding agent and P flake graphite as lubricating phase had perfect wear resistance. The combination property of the resin hot-pressing type contact strip was the best when the content of bonding agent is 10.5 mass% and the content of P flake graphite is 10 mass%.
     (2) The variable-speed wear behavior at room temperature, thermal wear behavior and electrical sliding wear behavior of the resin hot-pressing type contact strip against copper were studied systematically under laboratory conditions with a wear tester which simulated the train motion. The results showed that current is the most important factor which affects the wear rate of the resin hot-pressing type contact strip and the wear rate increases with the increase of current density. They also showed that variable-speed wear rate at room temperature and thermal wear rate of the resin hot-pressing type contact strip when initial ambient temperature is equal to 200℃are both equal to the Siemens carbon contact strip. And the thermal wear rate when initial ambient temperature is equal to 350℃, electrical sliding wear rate of the resin hot-pressing type contact strip are higher than those of Siemens carbon contact strip.
     (3) The batch formula and preparation process of the resin-calcination type contact strip were investigated in this paper. With Zn-coated graphite as the arc extinguishing agent and lubricating agent, modified resin as the bonding agent, the resin-calcination type contact strip was prepared by the methods of blending hot-pressing and carbonization technology. The effects of roasting technics, the kinds and content of bonding agents, the amount of Zn-coated graphite on the structure and property of the resin-calcination type contact strip were studied. The results showed that the resin-calcination type contact strip with the best properties of wear behavior and conductivity are those which was produced by using 3~5 mass% PBMI/YM resin and 28 mass% Zn-coated graphite at the heating rate 20℃per hour at 135~425℃, and at the heating rate 15℃per hour at 425~630℃and then keeping at 630℃for 4 hour. The results showed that the electroplating Zn on graphite greatly improve the interfacial combination between graphite and copper and remarkably decrease the wear rate of the contact strip. The wear rate of the former was only one-third of the latter with the current density of 285A/cm~2 and at the sliding velocity of 41.7m/s.
     (4) The electrical sliding wear behavior of the resin-calcination type contact strip against copper was also studied systematically under laboratory conditions with a wear tester which simulated the train motion. The results showed that the electrical sliding wear rate of the resin-calcination type contact strip increases with the increase of current density and the sliding velocity. It also showed that the wear rate of the new resin-calcination type contact strip is approximately equal to Siemens carbon strip, Toyo metal impregnation carbon contact strip and Zhuzhou Xinfangyuan Electrical Carbon Co., Ltd. carbon strip (a certain type of domestic carbon contact strip) without current. The wear rate of the new resin-calcination type contact strip is 1.51×10~(-5)mm~3/(N·m), which is almost 0.917 times lower than a certain type of domestic carbon contact strip, 1.53 times that of Siemens carbon strip and 1.42 times that of Toyo metal impregnation carbon strip with the current density of 285A/cm~2 and at the sliding velocity of 41.7m/s.
     (5) The wear behavior and mechanism of resin-type contact strip were investigated in this paper. The results showed that the main wear mechanism of the resin hot-pressing type contact strip against copper without current is low stress grain abrasive and slightly adhesive wear. At elevated temperature, the wear mechanism evolves from adhesive wear to thermal wear with slight delamination wear. While arc erosion wear and oxidation wear are the dominate mechanisms of the resin hot-pressing type contact strip against copper with current, which is accompanied by adhesive wear during electrical sliding wear process. Moreover, the main wear mechanism of the resin-calcination type contact strip against copper is arc erosion wear and oxidation wear.
     (6) The arc erosion processes and function mechanism models of the resin-type contact strip with current were investigated in this paper when the contact between the contact strip and the copper disk was broken. The results showed that the arc discharge drive contact regions of the resin hot-pressing type contact strip to sequentially experience four cycle stages: arc generation when the contact was broken; the thermal decomposition of polymer during the stage of arc arising, the oxidation of carbon based materials, the phase transition of hot molten metal; the carbonization of resin at high temperature, the flow of molten metal, the thermal decomposition of metal-oxide; the solidification of molten metal during arc quenching and the shedding of oxide, etc. The resin-calcination type contact strip sequentially experienced the circulation processes such as: the occur of arc when the contact was broken; the soft metal softened; the oxidation of carbon based materials, the phase transition of hot molten metal and vaporization; the solidification of metal and material transfer, etc.
     (7) Arc erosion resistance mechanism of arc-extinguishing medium was investigated. The effects of impregnating agents with silicon oil on electrical sliding wear behavior and arc erosion wear resistance of the resin hot-pressing type contact strip and the resin-calcination type contact strip against copper were respectively studied in this paper. The effects of arc extinguishing medium with soft metal on electrical sliding wear rate and the dynamic stability with current of the resin-calcination type contact strip against copper were investigated as well. The results showed that silicone oil, as the impregnating agent in the resin hot-pressing type contact strip, could abirritate the fluctuation of contact resistance, lower the instantaneous high temperature of the contact point and the wear rate of contact strip with current. The Zn-coated graphite and the soft metal tin of the resin-calcination type contact strip can promote the forming metallurgical bonding structure of metal phase on the corresponding interface. In the courses of arc erosion, the evaporation related heat absorption of metallic zinc with high ionization energy and can decrease the electron concentration among the arc gap. Meanwhile, the cladding of formation between metal vapor and copper-matrix can reduce contact resistance at the contact zone and the probability of electric arc occurring, and thus reduce electrical sliding wear rate of the contact strip. These studies on arc erosion resistance mechanisms can provide a scientific basis for arc extinguishing researches and their practical applications of resin-type contact strip.
引文
[1] Kubo S, Kato K. Effect of arc discharge on wear rate of Cu-impregnated carbon contact strip in unlubricated sliding against Cu trolley under electric current. Wear, 1998, 216 (2): 172-178
    [2] Oskar F. Perspectives for a future high-speed train in the Swedish domestic travel market. Journal of Transport Geography. 2008, 16(4): 268-277
    [3]迟春阳,周成学,王家襄等.电力机车滑板材料的发展.炭素, 1999, 4: 41-43
    [4] Aoki S, Kubo S. Present status and problems of contact strips for high speed vehicles’pantographs. J Jpn Soc Tribologists, 1993, 38: 853-859
    [5] Pritchard C, Williamson P K. The laboratory simulation of pantograph wear. Electric Contacts Colloquium Digest, 1979, 13: 91-93
    [6] Slade P G,“The arc and interruption,”in Electrical Contacts, Principles and Applications, P. G. Slade, Ed. New York: Marcel-Dekker, 1999, 433-486
    [7] He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear, 2001, 249(7): 626-636
    [8]华公平,丁春华.铁路机车受电弓碳滑板材料研究.金属热处理, 2008, 33 (2): 28-33
    [9] Yoshitada W. High-speed sliding characteristics of Cu-Sn-based composite materials containing lamellar solid lubricants by contact resistance studies. Wear, 2008, 264(7-8): 624-631
    [10]久保俊一,张孝仁,张芳.碳系受电弓滑板的开发.国外机车车辆工艺, 2000, 5: 23-25
    [11] US Patent. Pantograph slipper for current collectors. 5244065, 1993
    [12]陈振华,涂川俊,陈刚等.改性树脂基滑板制备及其热磨损性能研究.中国有色金属学报, 2007,17(11): 1785-1789
    [13]黄崇祺.轮轨高速电气化铁路接触网用接触线的研究.中国铁道科学, 2001, 22(1): 1-5
    [14]林修洲,朱旻昊,陈光雄等.高速电气化铁路弓/网系统的摩擦磨损研究进展.润滑与密封, 2007, 32 (2): 180-183
    [15]铁道部产品质量监督检验中心.TB/T2809-2005.《电气化铁道用铜及铜合金接触线》.北京:铁道部产品质量监督检验中心, 2005
    [16]胡建红,陈敬超,李强等.电力机车用滑动集电材料的研究及其选用.电工材料, 2004, 1: 38-42
    [17]潘连明,张国荣,钱中良等.电力机车受电弓滑板.机车车辆工艺, 2001, 3: 1-4
    [18]杨连威.高性能电力机车受电弓滑板的研究: [东北大学博士学位论文].沈阳:东北大学, 2005, 2-9
    [19]王泽华.复合材料在高速列车上的应用.机械工程材料, 2001, 25(10): 1-4
    [20]侯明,孙乐民,李爱娜.电力机车受电弓滑板的现状.粉末冶金技术, 2006, 24 (3): 223-226
    [21]戴春意,俞明昌.电力机车受电弓滑板的选用.机车电传动,1998, 3: 39-40
    [22]侯明,孙乐民,李爱娜等.电力机车受电弓滑板的现状.粉末冶金技术, 2006, 24 (3): 223-226
    [23] Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current. Wear, 1998,216(2):179-183
    [24] Suckchoon K. A study of friction and wear characteristics of copper-and iron-bases sintered material. Wear, 1993,162-164(2):1123-1128
    [25]涂川俊,陈振华,陈刚等.炭系电力机车受电弓滑板材料的研究进展.炭素技术, 2007, 26(4): 23-29
    [26]马行驰,何国求,陈成澍等.现代轨道交通摩擦集电材料及相关载流摩擦磨损研究进展.材料导报, 2007,21(3):63-66
    [27]卓钺,刘希从,文思维等.受电弓滑板用轻质高碳-石墨/铝复合新材料.机车电传动, 2003, S1: 37-38
    [28]高强,吴渝英,张国定等.炭纤维对铜-石墨复合材料性能的影响.中国有色金属学报, 2000, 10(S1): 97-101
    [29]陈宁.金属-碳复合材料导电弓滑板的耐磨性.国外机车车辆工艺, 1998, 6: 25-30
    [30]余明,张宝生,屈树岭.电力机车用新型碳基滑板材料的研制.机械工程材料, 1995, 19(2):32-37
    [31]鹤木,孝典(日).受电弓滑板用碳/金属纤维复合材料.国外机车车辆工艺, 1994, 6:11-13
    [32]韩绍昌,徐仲榆.碳/铜复合材料研究进展.机械工程材料,1999, 23(6): 6-8
    [33]金永平,郭斌,郑艾龙等.铜基受电弓滑板试件电阻率和磨损性能研究.哈尔滨工业大学学报,2003, 35(4):441-446
    [34] Guo B, Jin Y P, Yu B, et al. Material design and performance of powder metallurgy pantograph slider. Materials for Mechanical Engineering, 2004,28(3):31-33
    [35] Moustafa S F, EI-Badry S A, Sanad A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders. Wear, 2002, 253(7-8): 699-710
    [36]杨连威,姚广春,陆阳.新型高性能电力机车受电弓滑板的研究.材料导报, 2005,19(11):136-139
    [37] Jeitschko W, Nowotny H. Die Kristall. Structur von Ti3SiC2-Ein Neuer Komp; excarbid-Typ. Monatsch Chem, 1967, 98: 329-337
    [38]翟洪祥,汪长安. Ti3SiC2材料在受电弓滑板中的应用研究.机车电传动, 2003, S1: 43-45
    [39]刘建军,朱波,王成国.电力机车受电弓滑板的技木现状.机械工程师, 2003, 10: 23-24
    [40]李娜,张弘,于正平.受电弓滑板-接触导线摩擦磨损机理与特性分析.中国铁道科学, 1996, 17(4): 63-68
    [41]戴利民.滑板材料受流摩擦磨损性能的研究: [铁道科学研究院博士学位论文].北京:铁道科学研究院, 2001, 6-13
    [42]刘建军,朱波,王成国.炭纤维复合材料电力机车受电弓滑板的研制.工程塑料应用, 2003, 31(8):39-41
    [43]胡建红,陈敬超,李强等.电力机车用滑动集电材料的研究及其选用.电工材料, 2004, 1: 38-42
    [44] Matsuyama S. A short history of the materials for current collection pantograph slider and contact wire. Toyo Denki Giho, 2000, 106: 10-18
    [45]胡建红.铜基受电弓滑板成分优化及组织性能研究: [昆明理工大学硕士学位论文].昆明:昆明理工大学, 2004, 45-67
    [46] Matsuyama S. Electric contact tribological behavior of pantograph. Toyo Denki Giho, 1995, 91: 52-60
    [47]温诗铸.材料磨损研究的进展与思考.摩擦学学报, 2008, 28(1):1-5
    [48] [德]凯尔A,默尔W A,维纳里库E编.赵华人等译.电接触和电接触材料.北京:机械工业出版社,1993, 230-259
    [49]刘毅斌.滑动电接触的摩擦磨损机理与试验研究: [北京交通大学硕士学位论文].北京:北京交通大学, 2005, 8-13
    [50] Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions. Wear, 1961, 4: 345-355
    [51] Rabinowicz E. Friction and wear of materials. John Wilet and Sons, New York, 1965
    [52] Archard J F. Contact and rubbing of flat surface. J. Appl. Phys., 1953, 24: 981-988
    [53]温诗铸,黄平.摩擦学原理(第二版).北京:清华大学出版社, 2002, 319-330
    [54]克拉盖尔斯基ИВ等著,汪一麟等译.摩擦磨损计算原理.北京:机械工业出版社, 1982
    [55] Chenje T W, Simbi D J, Navara E. The role of corrosive wear during laboratory milling. Minerals Engineering, 2003, 16(7): 619-624
    [56] He D H, Manory R, Sinkis H. A sliding wear tester for overhead wires and current collectors in light rail systems. Wear, 2000, 239(1): 10-20
    [57] Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current. Wear, 2001, 249(5-6): 409-414
    [58] He D H, Manory R, Grady N. Wear of railway contact wires against current collector materials. Wear, 1998, 215(1-2): 146-155
    [59] Dow T A, Kannel J W. Thermomechanical effects in high current density electrical slip rings. Wear, 1982, 79 (1): 93-105
    [60] Lawson D K, Dow T A. The sparking and wear of high current density electrical brushes. Wear, 1985 (102): 105-125
    [61] Turner M J B, Swinnerton B R G. Sparking and arcing in electrical machines. Proc Inst Electr Eng, 1966, 113(8):1376-1386
    [62] Azevedo C R F, Sinatora A. Failure analysis of a railway copper contact strip. Engineering Failure Analysis, 2004, 11(6): 829-841
    [63] Jia S G, Liu P, Ren F Z, et al. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways. Wear, 2007,262(7-8): 772-777
    [64]戴南山.高速受流性能探讨.电力机车技术, 2001, 24(1):17-18
    [65] Klapas D, Hackam R. Wear in a simulated power collection system for railways. Electric Contacts Colloquium Digest. 1979, 13: 81-83
    [66] Jia S G, Liu P, Ren F Z, et al. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding. Materials Science and Engineering A, 2005, 398 (1-2): 262-267
    [67]张敏,凤仪.电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响.摩擦学学报, 2005, 25(4): 328-332
    [68]郝广平,翟文杰,齐毓霖.外加电压对边界润滑下钢/铜摩擦副摩擦磨损的影响.润滑与密封, 2003, 28(2): 37-38
    [69]李鹏,张永振,孙乐民.受电摩擦磨损的研究现状.河南科技大学学报,2002 , 23(4):34-37
    [70]张钦钊,李强,王爱香,等.铜-石墨自润滑触头材料的研究进展.材料导报, 2005, 19(2): 43-46
    [71]戴利民,林吉忠,丁新华.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响.中国铁道科学, 2002,23(2):111-117
    [72]陶宁.压力对炭纤维-铜-石墨复合材料电刷摩擦系数的影响.矿冶工程, 2001, 21(4):16-20
    [73]凤仪,张敏,徐屹.外加载荷对碳纳米管-银-石墨复合材料电磨损性能的影响.中国有色金属学报, 2005,15(10):1483-1488
    [74]程礼椿.电接触理论及应用.北京:机械工业出版社, 1988, 46-47
    [75]吴积,钱清泉.受电弓与接触网系统电接触特性.中国铁道科学, 2008, 29 (5): 106-109
    [76] Holm R. Electric contacts theory and application. 4th edition. Berlin: Springer Verlag, 1967
    [77]戴利民.滑板材料受流摩擦磨损性能的研究: [铁道部科学研究院博士学位论文].北京:铁道部科学研究院, 2001, 46-103
    [78]王其平.电器电弧理论.北京:机械工业出版社, 1991
    [79] Kubo S, Kato K. Effect of arc discharge on the wear rate and wear mode of a copper impregnated metallized carbon contact st rip sliding against a copper disk. Tribology International, 1999, 32(7): 367-378
    [80] Asai H. Transfer Diagram. Electric contacts and its application. The 8th ICECP, Tokyo, 1976
    [81]吴细秀,狄美华,李震彪等.电触头侵蚀研究概述.低压电器,2003, 5: 6-11
    [82]堵永国,杨广,张家春等.电弧作用下AgMeO触头材料的物理冶金过程分析.电工技术学报, 1998, 13(8): 52-56
    [83] Wu X X, Li Z B. Model on sputter erosion of electrical contact material. Proceeding of 48th IEEE Holm Conference on Electric Contact, 2002, 29-34
    [84] Marshall R A. The mechanism of current transfer in high current sliding contacts. Wear, 1976, 37: 233- 240
    [85] Lu C T, Bryant M D. Thermoelastic evolution of contact area in mound temperatures in carbon graphite electrical contract. Wear ,1994,174 :137-146
    [86]贾明汉,丁任宽.浅谈电化铁路开通初期的弓线磨耗.西铁科技, 1997, 3:15-17
    [87]陈绚,吴柏秋.高速受流质量标准的讨论.机车电传动, 2000, 1: 40-43
    [88] Cenna A A, Doyle J, N.W. Page, et al. Wear mechanisms in polymer matrixcomposites abraded by bulk solids. Wear, 2000, 240(1-2): 207-214
    [89]龚文化,曾黎明,李向雨.聚合物基减摩耐磨复合材料研究.武汉理工大学学报, 2004,26(5):32-34
    [90]浦玉萍,吕广庶,王强.高分子基自润滑材料的研究进展.航空学报, 2004, 25(2): 180-186
    [91]滕杰.高速列车用铝基复合材料制动盘及其闸片的制备、摩擦磨损性能及机理研究: [湖南大学博士学位论文].长沙:湖南大学, 2006, 120-129
    [92]涂川俊,陈振华,夏金童等.聚合物基电接触材料低压受流磨损性能研究.炭素技术, 2007, 26(6): 25-30
    [93]刘军.铜基复合材料受电弓滑板制备及其摩擦磨损性能研究: [湖南大学硕士学位论文].长沙:湖南大学, 2007, 29-38
    [94]铁科技[2008]118号.电力机车受电弓滑板制造特许证实施细则.铁道技术监督, 2008, 36(10): 69-80
    [95]张文美,刘杰,张冰冰等.一种新型导电摩擦材料的研究.功能高分子学报, 2002, 15(1): 40-42
    [96]吴培熙,沈健.特种性能树脂基复合材料.北京:化学工业出版社, 2003, 397-399
    [97]方科,任永杰,张洋.高性能摩阻材料用酚醛树脂.北京化工大学学报, 1999, 26(4):33-35
    [98]赵景丽,李河清.国内提高环氧树脂耐热性的研究进展.工程塑料应用, 2005, 33(8):68-70
    [99] Liu Y L, Chen Y J. Novel thermosetting resins based on 4-(N-maleimidophenyl) glycidylether: II. Bismaleimides and polybismaleimides. Polymer, 2004, 45(6): 1797-1804
    [100] Xian G J, Zhang Z. Sliding wear of polyetherimide matrix composites: II. Influence of graphite flakes. Wear, 2005,258(5-6): 783-788
    [101]顾澄中,胡福增,吴叙勤.摩阻材料中基体树脂的共混改性研究.非金属矿,1995, 14(2):58-60
    [102]王建方.炭纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究: [国防科学技术大学博士学位论文].长沙:国防科学技术大学, 2003, 107- 109
    [103] Mordike B L, Kielbinski M, Kielbinski M. Effect of tungsten content on the properties and structure of cold extruded Cu-W composite materials. Powder Metallurgy International, 1991, 23(2): 91-95
    [104] Lee P K. High-current brush material development. IEEE Transaction on Components Hybrids and Manufacturing Technology, 1980, 3(1):4-8
    [105]张允诚,胡如南,向荣.电镀手册.北京:国防工业出版社, 1997, 50-53
    [106]胡忠良.高阻电刷材料的制备及其磨损行为与机理的研究: [湖南大学博士学位论文].长沙:湖南大学,2008, 50-57
    [107]陈振华,刘耀宗,陈刚等. SiCp/Al复合材料制动盘用树脂基摩擦材料研究.湖南大学学报, 2005, 32 (6):73-77
    [108]戴利民,林吉忠,丁新华.受电弓滑板受流摩擦中体温升的模拟计算分析.铁道学报, 2002,24(5):56-61
    [109] Wessling B. Electrical conductivity in heterogeneous. Polymer Systems.V (1): Further Experimental vidence for a phase transintion at the criticle volume concentration. Polym Eng Sci,1991,31(16):1200-1206
    [110]潘贻珊,张佐光,孙志杰等. ODPA/PMDA共聚PMR聚酰亚胺树脂.复合材料学报, 2003,20(5): 7-10
    [111]陈建林,万隆,刘小磐等.二元胺改性双马来酰亚胺树脂的固化工艺.热固性树脂, 2005,20(5): 1-4
    [112] Pieter S, Gustaaf S.The lubricity of graphite flake inclusions in sintered polyimides affected by chemical reactions at high temperatures. Carbon, 2008, 46(7): 1072-1084
    [113] Liu Z J, Guo Q G, Shi J L, et al. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon, 2008,46(3):414-421
    [114]杨威锋.固体自润滑材料及其研究趋势.润滑与密封, 2007, 32(12): 118- 122
    [115]汤中华,张海坡,邹志强.热梯度CVI C/C材料的结构与性能.中国有色金属学报, 2003, 13(3): 651-657
    [116]黄发荣,焦杨声.酚醛树脂及其应用.北京:化学工业出版社, 2003, 85
    [117]李宗猛,潘振华,毛协民.呋喃树脂硬化过程中呋喃环反应行为的研究.铸造,1997, 46(7):12-15
    [118] Rhee S K. Wear equation for polymers sliding against metal surfaces. Wear, 1970, 16(6): 413-445
    [119] Gao P Z, Xiao H N, Wang H J, et al. A study on the oxidation kinetics and mechanism of three-dimensional (3D) carbon fiber braid coated by gradient SiC. Materials Chemistry and Physics, 2005, 93(1):164-169
    [120]李江鸿,熊翔,巩前明等.不同基体炭C/C复合材料的摩擦磨损性能.中国有色金属学报, 2005, 15(3):446-451
    [121] Suh N P. An overview of the delamination theory of wear. Wear, 1977, 44(1): 1-16
    [122]涂川俊,陈振华,夏金童等.硅油浸渍对树脂基滑板/铜抗电弧侵蚀磨损性能的影响.中国有色金属学报, 2008,18(8): 1479-1486
    [123] Bouchoucha A, Kadiri E K, Robert F, et al. Metals transfer and oxidation of copper-steel surfaces in electrical sliding contact. Surface and Coatings Technology, 1995, 76-77(2), 521-527
    [124] Hu Z L, Chen Z H, Xia J T. Study on surface film in the wear of electrographite brushes against copper commutators for variable current and humidity. Wear, 2007, 264(1-2): 11-17
    [125] Kang S, Brecher C. Cracking mechanisms in AgSnO2 contact materials and their role in the erosion process. IEEE Trans. on CHMT, 1989, 12 (1): 32-38
    [126]郭凤仪,苗盛章,赵然.电弧力对触头表面形貌特征的影响.辽宁工程技术大学学报, 1999,18(2):140-143
    [127] Yasar I, Canakci A, Arslan F. The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current. Tribology International, 2007, 40(9): 1381-1386
    [128] Tu C J, Chen Z H, Chen D, et al. Tribological behavior and wear mechanism of the resin binder contact strip against copper with electrical current. Trans.Nonferrous.Met.Soc.China, 2008,18(5):1157-1163
    [129] Casstevens J M, Rylander H G, Eliezer Z. Friction and wear properties of two types of copper-graphite brushes under severe sliding conditions. Wear, 1978, 50(2): 371-381
    [130] Kato H, Takamaa M, Iwai Y, et al. Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide. Wear, 2003,255(1-6): 573-578
    [131] Krishnakumar I M, Mathew Beena. A comparison of rigid and flexible crosslinked polymer-supported peptide synthesis. European Polymer Journal, 2002, 38(9): 1745-1752
    [132]王继刚,郭全贵,刘朗等.酚醛树脂基胶粘剂的高温粘接性能.材料工程, 2004,(12):12-15
    [133] Tu C J, Chen D, Chen Z H, et al. Improving the tribological behavior of graphite/Cu matrix self-lubricating composite contact strip by electroplating Zn on graphite. Tribology Letters, 2008, 31(2):91-98
    [134] Tu J P, Qi W X, Yang Y Z, et al. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy. Wear, 2001, 249(10-11):1021-1027
    [135] Liu J F, Li R D. Current status and development of zinc matrix composites reinfoced by particulates. Foundry, 2007, 56(8):784-788
    [136] Mayr, O. Beitrage zur theorie des statischen und des dynamischen lichtbogens. Archiv fur Elektrotechnik, 1943,37(12):588-608
    [137]徐屹,凤仪,王松林等.电流密度对CNTs-Ag-G复合材料接触电压降和磨损性能的影响.摩擦学学报, 2006, 26(5):484-488
    [138] Feng Y, Zhang M, Xu Y. Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites. Carbon, 2005, 43(13): 2685-2692
    [139] Guo F Y, Chen Z H, Zhang L L, et al. The mechanisms of cracks formation of silver-based contact materials under arc and making pressure. Journal of Coal Science & Engineering, 2004, 10(1): 73-77
    [140]胡道春,孙乐民,上官宝等.载流摩擦磨损中电弧侵蚀的研究现状.腐蚀与防护, 2008, 29(3):163-166
    [141]吴积钦,钱清泉.弓网系统电弧侵蚀接触线时的热分析.2008,30(3): 31-34
    [142]孙明,王其平.银金属氧化物触头材料电弧侵蚀的新型物理-数学模型.西安交通大学学报, 1995, 25(3):13-18
    [143]雷栋,吴广宁,张雪原等.高速铁路弓网电弧抑制方法的研究.电气化铁道, 2008, 5: 1-4
    [144]堵永国,张为军,胡君遂.电接触与电接触材料(六).电工材料,2006, 3: 49-54
    [145]堵永国,杨广,张家春等.电弧作用下AgMeO触头材料的物理冶金过程分析.电工技术学报, 1998, 13(4):52-56
    [146] Abouei V, Saghafian H, Kheirandish S. Effect of microstructure on the oxidative wear behavior of plain carbon steel. Wear, 2007, 262 (10): 1225-1231
    [147] Bouchoucha A, Zaidi H, Kadiri E K, et al. Influence of electrical filed on the tribological behaviour of electro dynamical copper/steel contacts. Wear, 1997, (203-204): 434-441
    [148] Soldera F, Lasagni A, Mücklich F, et al. Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations. Computational Materials Science, 2005,32(1): 123-139
    [149]王新华,张嗣伟,王德国.石油钻机盘式刹车块材料的磨损机制研究.润滑与密封, 2008, 33(2):5-8
    [150] Nagai H, Rossignol F, Nakata Y, et al. Thermal conductivity measurement of liquid materials by a hot-disk method in short-duration microgravity environments. Materials Science and Engineering A, 2000, 276(1): 117-123
    [151] Rabe J G, Schmidt W F, Klein W. Physico-chemical investigation of the behavior of silicone oils under the influence of high voltage stress. Journal ofElectrostatics, 1979, 7: 253-266
    [152] Li D H, Jiang J S, Wu J, et al. Experimental research and statistical analysis on the dielectric properties of lunar soil simulators. Chinese Academy of Sciences, 2005, 50(10): 1034-1043
    [153]李云新.试论开关电器的灭弧条件和措施.煤炭技术, 1999, 18(5): 6-7
    [154] Shao W Z, Zhen L, Li Y C, et al. Oxidized film on Cp/Cu-Cd electrical contact material. Transactions of Nonferrous Metals Society of China, 2005, 15(2):251-255
    [155] Nagai H, Rossignol F, Nakata Y, et al. Thermal conductivity measurement of liquid materials by a hot-disk method in short-duration microgravity environments. Materials Science and Engineering A, 2000, 276(1):117-123
    [156] Koller L, Bizjak M, Pozun K, et al. Cleaning of contacts for electronic components. Vacuum, 1997, 48(7-9):779-783
    [157]王俊勃,张燕,杨敏鸽等. Fe掺杂对纳米复合Ag-SnO2电接触合金电弧演化行为的影响.稀有金属材料与工程, 2006, 35(12):1954-1958
    [158] Uecker A. Lead-free carbon brushes for automotive starters. Wear, 2003, 255(7-12):1286-1290
    [159]堵永国,张为军,鲍小恒等. AgMeO触点材料成分与组织的优化设计理论.电工材料,2006, 4: 8-14
    [160] Rong M Z, Wang Q P. Surface dynamics and it's reaction to the effect of breaking arc of AgMeO contacts. Piscataway: IEEE, In:16th ICEC, Loughborough, 1992
    [161] Jeannot D, Pinard J, Ramoni P, et al. Physical and chemical properties of metal oxide additions to Ag-SnO2 contact materials and predictions of electrical performance. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A., 1994,17(1): 17-23
    [162]徐坚,熊惟皓,傅江华等.第二相氧化物对银基触头材料熔池影响的模拟分析.中国有色金属学报,2008, 18(7): 1323-1329
    [163] Benjemaa N, Doublet L, Morin L, et al. Break arc study for the new electrical level of 42 V in automotive application. Proc. 47th IEEE Holm Conf. On EC. Montreal: 2001, 50-55
    [164]荣命哲.电接触理论.北京:机械工业出版社, 2004, 119-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700