用户名: 密码: 验证码:
钢筋混凝土梁桥损伤识别方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通事业的发展,桥梁健康监测已成为近年来的研究热点,损伤识别是桥梁健康监测过程中的关键环节。本文以钢筋混凝土简支梁和连续梁桥为研究对象,通过理论分析、数值模拟分析和试验分析,针对超载造成的损伤问题,研究其识别方法。论文的主要工作和研究成果如下:
     (1)针对加载对钢筋混凝土梁桥造成的损伤,对常用的动力指纹方法进行了总结及敏感性分析,提出了基于柔度矩阵的β指标和η指标的损伤定位识别方法,经数值试验验证了其识别能力。
     (2)针对损伤程度的识别问题,本文提出了改进直接刚度法和截面工作状态评估方法。基于数值试验,通过与已有的直接刚度法和有限元程序计算结果的比较,验证了本文提出的改进直接刚度法的准确性。完成了两个跨度7m的钢筋混凝土梁的试验,应用本文提出的基于改进直接刚度法的截面工作状态评估方法对其进行了损伤程度的评估。
     (3)针对超载造成的损伤问题,本文建立了模态力面积与荷载归一化指标之间的关系,提出了基于模态力和有限元仿真计算的历史最大荷载识别方法,并将该方法应用于两个跨度7m的钢筋混凝土试验梁,验证了其准确性。
     (4)基于上述研究成果,提出了钢筋混凝土梁桥的损伤识别流程。完成了一个18m长3跨钢筋混凝土连续梁桥的模型试验,通过4种加载工况和10个荷载步模拟了车行荷载和超载问题,测试了每个荷载步后结构的动力性能,将本文提出的损伤识别流程应用于模型桥的损伤分析。结果表明,本文提出的方法可以有效地对模型桥各荷载步的损伤位置和损伤程度进行识别。
     (5)针对动测不敏感部位(如振型位移为0的支座处),本文研制开发了CFRP预警传感器和预应力CFRP预警传感器。试验测试结果表明,CFRP预警传感器对钢筋混凝土梁的开裂和钢筋屈服等关键点具有预警能力,预应力CFRP传感器可以有效的降低电阻突变信号的应变值,提高了其在低应变区间的敏感度。
With the development of the transportation, bridge health monitoring has become a hot research topic, in which damage identification is a key problem. In this dissertation, the damage identification of simple supported or continuous reinforced concrete (RC) girder bridges caused by overloading is studied through theoretical analysis, numerical simulation and experimental analysis. The main works and achievements are as follows:
     (1) The frequently used dynamic fingerprints are summarized and their sensitivities are analyzed for the damage identification of RC girder bridges.βindex andηindex based on flexibility matrix are proposed to detect damage position, and the feasibility of the proposed process is proved with numerical simulation.
     (2) To identify the damage degree, an improved direct stiffness determination (IDSD) method, together with a sectional service-state evaluation method, is proposed. The accuracy of proposed IDSD method is proved by the comparison with the results of existing direct stiffness determination method and finite element (FE) analysis. Two RC beams with a span of 7m are tested and their damage degrees are assessed with the proposed service-state evaluation method which is based on IDSD method.
     (3) For damage identification caused by overloading, the relationship between modal force area and Normalized Load Level index is established. The historical maximal load identification method is proposed which is based on the modal force and FE simulation. This method is successfully applied in two 7m RC beam experiments to assess the different load levels.
     (4) Based on the above works, the damage detection procedure of RC girder bridges is proposed. A continuous rigid frame concrete model bridge, which has 3 spans and a total length of 18m, is implemented in this work. Four load cases and ten different load steps are tested to simulate the vehicle load and different levels of overloading. After every load step, dynamic properties of the bridge are tested, and damage detection procedure is used to identify the damage of the model bridge. The results show that the proposed procedure in this dissertation is able to identify the damage position and damage degree effectively on every load step.
     (5) In order to detect the damages located at the position where the displacement mode is unsensitive, CFRP alarm sensors and prestressed CFRP alarm sensors are developed. Test results show that CFRP alarm sensors have alarm abilities when the concrete cracks and the steel reinforcements yield. Prestressed CFRP alarm sensors are more sensitive in the low strain region, as they are able to reduce the strain when the resistance abrupt change.
引文
[1]欧进萍.重大工程结构的累积损伤与安全评定.走上21世纪的中国力学中国科协第9次青年科学家论坛.北京清华大学出版社1996 179-189.
    [2] Li Y D. Study on the assessment of existing bridge. Bridge Construction. 1997, 3: 18-21.
    [3]张汎,崔玉萍.旧桥的预测评估与维修加固. 2004北京国际桥梁结构评估研讨会, 2004, 1-5.
    [4]裴强,郭讯,张敏政.桥梁健康监测及诊断研究综述.地震工程与工程振动, 2003, 23(2): 61-67.
    [5]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断综述.地震工程于工程振动, 2002, 22(3): 82-90.
    [6]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展.同济大学学报, 1999, 27(2): 185-188.
    [7]韩大建,谢峻.大跨度桥梁健康监测技术的近期研究进展.桥梁建设, 2002(6): 69-73.
    [8]谢强,薛松涛.土木工程结构健康监测的研究现状与进展.中国科学基金, 2001(5): 285-288.
    [9]周智,欧进萍.土木工程智能健康监测与诊断系统.传感器技术, 2001, 20(11): 1-4.
    [10]秦权.桥梁结构的健康监测.中国公路学报, 2000, 13(2): 37-42.
    [11]黄方林,王学敏,陈政清,等.大型桥梁健康监测研究进展.中国铁道科学, 2005, 26(2): 1-7.
    [12] Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present, and future. Journal of Engineering Mechanics, ASCE, 1997, 123(9): 897-971.
    [13] Pines D, Aktan A E. Status of structural health monitoring of long-span bridges in the Unites States. Progress in Structural Engineering and Materials, 2002,4(4): 372-380.
    [14] Mufti A A. Structural health monitoring of innovative Canadian civil engineering structures. Structural Health Monitoring, 2002, 1(1): 89-103.
    [15] Fujino Y, Abe M. Structural health monitoring: current status and future. In: Boller C, Staszewski W J, eds. Proceedings of the 2nd European workshop on structural health monitoring. Lancaster: DEStech, 2004: 3-10.
    [16]邬晓光,徐祖恩.大型桥梁健康监测动态及发展趋势.长安大学学报(自然科学版). 2003, 23(1): 39-42.
    [17] Zong Z H, Wang T L, Huang D Z, et al. State-of-the-art report of bridge health monitoring. Journal of Fuzhou University: Natural Science, 2002, 30(2): 127-152.
    [18]张启伟.大型桥梁健康监测概念与监测系统设计.同济大学学报, 2001, 29(1): 65-69
    [19] Shahawy M A, Arocklasamy M. Field instrument to study the time-dependent behavior in Sunshine Skyway Bridge. PartⅠ. Journal of Bridge Engineering, ASCE, 1996, 1(2): 76-86.
    [20] Inaudi D, Rufenacht A, Von Arx B, et al. Monitoring of a concrete arch bridge during construction. In: Liu S C, Pines D J, eds. Proceedings of the Society of Photo-Optical Insturmention Engineers. San Diego:SPIE-INT Society Optical Engineering, 2002: 146-153.
    [21] Andersen E Y. Stuctural monitoring of the Great Belt East Bridge. In: Proceedings of the Third Symposium on Strait Crossing. Rotterdam: Balkema, 1994: 54-62
    [22] Muria V D, Cornez R, King C. Dynamic structural properties of cable stayed Tampico Bridge. Journal of Structural Engineering, ASCE, 1991, 117(11): 3396-3416.
    [23] Chueng M S, Tadros G S, Brown T G, et al. Field monitoring and research on performance of the Confederation Bridge. Canadian Journal of Civil Engineering, 1997, 24(6): 954-962.
    [24]刘效尧,蔡键,刘晖.桥梁损伤诊断.北京:人民交通出版社, 2002
    [25]刘西拉.重大土木与水利工程安全性及耐久性的基础研究.土木工程学报, 2001, 34(6): 1-7
    [26]李爱群,缪长青,李兆霞.润扬长江大桥结构健康监测系统研究.东南大学学报:自然科学版, 2003, 33(5): 544-548.
    [27]何旭辉.南京长江大桥结构健康监测及其关键技术研究: [博士学位论文].长沙:中南大学, 2004.
    [28]邱法维,杜文博,钱稼茹,等.虎门大桥应变监测数据处理系统设计.桥梁建设, 2003(2): 66-69
    [29]刘正光.香港大型悬吊体系桥梁的发展.土木工程学报, 2005, 38(6): 59-68.
    [30]刘正光,黄钊猷.香港缆索桥结构健康监测系统. 2004北京国际桥梁结构评估研讨会, 2004, 22-25.
    [31] Steve E W, James W F. Assessment of an instrumented reinforced-concrete bridge with fiber-reinforced-polymer strengthening. Optical Engineering, 2007, 46(5), 051010: 1-10
    [32] Song G, Olmi C, Gu H. An overheight vehicle-bridge collision monitoring system using piezoelectric transducers. Smart Materials and Structures. 2007, 16: 462-468.
    [33]郭红仙,任宝双,钱稼茹.北京地区钢筋混凝土简支梁桥结构综合评估系统.清华大学学报(自然科学版). 2002, 42(6): 825-827.
    [34]黎洪萍,张磊.公路混凝土梁桥安全性能综合评价的研究.基建管理优化. 2007, 19(1): 21-25.
    [35]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯刚度估算.工业建筑. 2001, 31(1): 13-15.
    [36] Doeling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods. Journal of the Shock and Vibration Digest, 1998, 30(2): 91-105
    [37] Sohn H, Farrar C R, Hemez F M, et al. A review of structural health monitoring literature: 1996-2001. Technical Report Annex to SAMCO Summer Academy. Cambridge: Los Alamos National Laboratory, 2003.
    [38]瞿伟廉,黄东梅.大型复杂结构的两阶段损伤诊断方法.世界地震工程. 2003, 19(2): 72-78.
    [39]韩大建,王文东.基于振动的结构损伤识别方法的近期研究进展.华南理工大学学报(自然科学版), 2003, 31(1): 91-96.
    [40]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展.土木工程学报, 2003, 36(5): 106-110.
    [41]王利恒,周锡元,阎维明.结构损伤检测方法的一些新进展.四川建筑科学研究, 2005, 31(6): 59-64.
    [42] Doebling S W, Farrar C R, Prime M B, et al. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A Literature Review. Los Alamos National Laboratory Report, LA-13070-MS, 1996.
    [43] Baruch M, Bar Itzhack I Y. Optimum weighted orthogonalization of measured modes. American Institute of Aeronautics and Astronautics Journal, 1978, 16(4): 346-351.
    [44] Baruch M. Optimization procedure to correct stiffness and flexibility matrices using vibration test. American Institute of Aeronautics and Astronautics Journal, 1978, 16(11): 1208-1210.
    [45] Berman A. Mass matrix correction using an incomplete set of measured modes. American Institute of Aeronautics and Astronautics Journal, 1979, 17(10): 1147-1148.
    [46] Berman A, Nagy E J. Improvement of large analytical model using test data. American Institute of Aeronautics and Astronautics Journal, 1983, 21(8): 1168-1173.
    [47] Kabe A M. Stiffness matrix adjustment using mode data. American Institute of Aeronautics and Aeronautics Journal, 1985, 23(9): 1431-1436.
    [48] Smith S W, Beattie C A. Secant-method matrix adjustment for structural models. American Institute of Aeronautics and Astronautics Journal, 1988, 26(1): 104-112.
    [49] Kammer D C, Optimum approximation for residual stiffness in linear system identification. American Institute of Aeronautics and Aeronautics Journal, 1988, 26(9): 104-112.
    [50] Lim T W. Submatrix approach to stiffness matrix correction using modal test data. American Institute of Aeronautics and Aeronautics Journal, 1990, 28(6): 1123-1130.
    [51] Smith S W, Beattie C A. Secant-method matrix adjustment for structural models. American Institute of Aeronautics and Aeronautics Journal, 1991, 29(1): 119-126.
    [52] Liu P L. Identification and damage detection of trusses using modal data. Journal of Structural Engineering, ASCE, 1995, 121(4): 599-608.
    [53] Zimmerman D C, Kaouk M. Structural damage detection using a mimimum rank update theory. Journal of Vibration and Acoustics, 1994, 116(2): 222-231.
    [54] Kaouk M, Zimmerman D C. Structural damage assessment using a generalized minimum rank perturbation theory. American Institute of Aeronautics and Astronautics Journal, 1994, 32(4): 836-342.
    [55] Kaouk M, Zimmerman D C, Simmermacher T W. Assessment of damage affecting all structural properties using experimental modal parameters. Journal of Vibration and Acoustics, 2000, 122(4): 456-463.
    [56] Kaouk M, Zimmerman D C, Structural damage assessment using measured modal data and no original analytical model. Proceedings of the 12th International Modal Analysis Conference, 1994: 731-737.
    [57] Kaouk M, Zimmerman D C. Structural health assessment using a partition model update technique. Proceedings of the 13th International Modal Analysis Conference. California, 1995: 1673-1679.
    [58] Zimmerman D C, Simmermacher T. Modal correction using molti staic load and vibration tests. American Institute of Aeronautics and Astronautics Journal, 1995, 33(11): 2182-2188.
    [59] Zimmerman D C, Kaouk M, Simmermacher T. Structural damage detection using frequency response fuctions. In: Proceedings of the 13th International Modal Analysis Conference. California, 1995: 179-184.
    [60] Doebling S W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification. American Institute of Aeronautics and Astronautics Journal, 1996, 34(12): 2615-2621.
    [61] Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. American Institute of Aeronautics and Astronautics Journal, 1968, 6(12): 2426-2429.
    [62] Chen G C, Karba J A. Analytical model improvement using modal test results. American Institute of Aeronautics and Astronautics Journal, 1980, 18(6): 684-690.
    [63] Haug E F. Choi K K. Structural design sensitivity analysis with generalized global stiffness and mass matrices. American Institute of Aeronautics and Astronautics Journal, 1984, 22(9): 1299-1303.
    [64] Norris M A, Meirovitch L. On the problem of modeling for parameter identification in distributed structures. International Journal for Numerical Methods in Engineering, 1989, 28: 2451-2463.
    [65] Nelson R B. Simplified calculation of eigenvector derivatives. American Institute of Aeronautics and Astronautics Journal, 1976, 14(9): 1201-1205.
    [66] Lin R M, Lim M K, Du H. Improved inverse eigensensitivity method for structural analytical model updation. Journal of Vibration and Acoustics, 1995, 117(1): 192-198.
    [67] Sanayei M, Onipede O. Damage assessment of structures using static test data. American Institute of Aeronautics and Astronautics Journal, 1991, 29(7): 1174-1179.
    [68] Sanayei M, Scampoli S F. Structural damage stiffness identification from static test data. Journal of Engineering Mechanics, ASCE, 1991, 117(5): 1021-1036.
    [69] Hemez F M, Farhat C. Structural damage detection via a finite element model updation methodology. the International Journal of Analytical and Experimental Modal Analysis, 1995, 10(3): 152-166.
    [70] Alvin K F. Finite element model update via Bayesian estimation and minimization of dynamic residuals. American Institute of Aeronautics and Astronautics Journal, 1997, 35(5): 879-886.
    [71] Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1998, 216(5): 791-808.
    [72] Cherki A, Lallemand B, Tison T, et al. Improvement of analytical model using uncertain test data. American Institute of Aeronautics and Astronautics Journal, 1999, 37(4): 489-495.
    [73]崔飞.桥梁参数识别与承载能力评估: [博士学位论文].上海:同济大学, 2000
    [74]崔飞,史家钧,袁万城.基于静态应变及位移测量的结构损伤识别法.同济大学学报. 2008, 28(1): 5-8.
    [75]纪晓东.大型复杂钢结构损伤诊断研究: [博士学位论文].北京:清华大学, 2007.
    [76] Zimmerman D C, Kaouk M. Eigenstructure assignment approach for structural damage detection. American Institute of Aeronautics and Astronautics Journal, 1992, 30(7): 1848-1855.
    [77] Lim T W, Kashangaki T A L. Structural damage detection of space truss structure using best achievable eigenvectors. American Institute of Aeronautics and Astronautics Journal, 1994, 32(5): 1049-1057.
    [78] Lim T W. Structural damage detection using constrained eigenstructure assignment. Journal of Guidance, Control and Dynamics, 1995, 18(3): 411-418.
    [79] Schulz M J, Pai P F, Abdelnaser A S. Frequency response function assignment technique for structural damage identification. In: Proceedings of the 14th International Modal Analysis Conference. Michigan, 1996: 105-111.
    [80] Cobb R G, Liebst B S. Structural damage identification using assigned partial eigenstructure. American Institute of Aeronautics and Astronautics Journal, 1997, 35(1): 152-158.
    [81] Li C, Smith S W. A hybrid approach for damage detection in flexible structures. Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, 1994, 285-295.
    [82] Kim H M, Bartkowicz T J. A two-step structural damage detection approach with limited instrumentation. Journal of Vibration and Acoustic, 1997, 119(2): 258-264.
    [83] Kim H M, Bartkowicz T J. An experiment study for damage detection using a hexagonal truss. Computers and Structures, 2001, 79(2): 173-182.
    [84] Lam H F, Ko J M, Wong C W. Localization of damage structural connections based on experimental modal and sensitivity analysis. Journal of Sound and Vibration, 1998, 210(1): 91-115.
    [85] Law S S, Shi Z Y, Zhang L M. Structural damage detection from incomplete and noixy modal test data. Journal of Engineering Mechanics, ASCE, 1998, 124(11): 1280-1288.
    [86] Shi Z Y, Law S S, Zhang L M. Structural damage detection from modal strain energy changes. Journal of Engineering Mechanics, 2000, 126(12): 1216-1223.
    [87] Messina A, Williams E J, Contursi T. Structural damage detection by a sensitivity and statistical-based method Journal of Sound and Vibration, 1998,216(5): 791-808.
    [88]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001
    [89] Kaminski P C. The approximation location of damage through the analysis of natural frequencies with artificial neural networks. Journal of Process Mechanical Engineering, 1995, 209(E2): 117-124.
    [90] Messina C, Willanms E J. Damage detection and localization using natural frequency change identification in engineering system. Proceedings of the International Conference. Swansea, UK, 1996, 195-215.
    [91] Barai S V, Pandey P C. Vibration signature analysis using artificial neural network. Journal of Computing in Civil Engineering, 1995, 9(4): 256-265.
    [92] Ko J M, Ni Y Q, Zhou X T, et al. Structural damage alarming in Ting Kau Bridge using auto-associative neural networds. Advances in Structural Dynamics, J. M. Ko and Y. L. Xu (eds.), Elseier Science Ltd., Oxford, UK, Vol.Ⅱ, 1021-1028.
    [93]徐宜桂,史铁林等.神经网络及其在结构动力分析中的应用研究.计算力学学报, 1998, 15(2): 210-215.
    [94]郭国会.钢筋混凝土结构破损评估的神经网络方法研究: [硕士学位论文].长沙:湖南大学, 1998
    [95]陆秋海等.利用模态试验参数识别结构损伤的神经网络法.工程力学, 1999, 16(1): 36-42
    [96]王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定.振动工程学报, 2000, 13(1): 138-141.
    [97]王柏生,丁皓江,倪一清.模型参数误差对用神经网络进行结构损伤识别的影响.土木工程学报, 2000, 33(1): 50-55.
    [98]王柏生,倪一清,高赞明.用概率神经网络进行结构损伤位置识别.振动工程学报, 2001, 14(1): 60-64.
    [99]王柏生,倪一清,高赞明.青马大桥桥板结构损伤位置识别的数值模拟.土木工程学报, 2001, 34(3): 67-73.
    [100] Wu Z S, Yang C Q, Harada T, et al. In-situ Damage detection of concrete beams reinforced with hybrid CFRP sheets by DC electrical resistance measurement. In: Wu Z S, Masato Abe, eds. Proc. of 1st International Conference on Structure Health Monitoring and Intelligent Infrastructure. Tokyo Japan: 2003, 853-860.
    [101] Wu Z S, Yang C Q, Tobe Y H. Self-Diagnosis of concrete beams reinforced with hybrid CFRP rods. In: F K Chang, eds. Proc. of 4th International Workshop on structure health monitoring. Stanford, CA: 2003a, 155-162.
    [102] Yang C Q, Wu Z S. Theoretical/experimental investigation on electrical resistance change of continuous carbon tows. In: Wu Z S, Masato Abe, eds. Proc. of 1st International Conference on Structure Health Monitoring and Intelligent Infrastructure. Tokyo Japan: 2003, 1295-1300.
    [103]张新越. FRP筋及其混凝土构件的力学性能与感知特性: [硕士学位论文].哈尔滨:哈尔滨工业大学, 2002.
    [104]王勃,欧进萍,张新越,等. CFRP筋及其加筋混凝土梁感知性能试验与分析.哈尔滨工业大学学报. 2007, 39(2): 220-224.
    [105] Vandiver J K. Detection of structural failure on fixed platforms by measurement of dynamic response. Proceedings of the 7th annual offshore technology conference, 1975, 243-252.
    [106] Adams R D, Walton D, Flitcroft J E, et al. Vibration testing as a nondestructive test tool for composite materials. In: Composite Reliability, ASTM STP 580. Philadelphia: American Society for Testing Materials, 1975: 159-175.
    [107] Biswas M, Pandey A K, Samman M M. Diagnostic experimental spectral/modal analysis of a highway bridge. the International Journal of Analytical and Experimental Modal Analysis, 1990,5(1): 33-42.
    [108] Loland O, Dodds C J. Experiences in developing and operating integrity monitoring system in North sea. Proceedings of the 8th Annual Offshore Technology Conference, 1976, Volume 2: 313-319.
    [109] Vandiver J K. Detection of structural failure on fixed platforms by measurements of dynamic response. Proceedings of the 7th Annual Offshore Technology Conference, 1975, Volume 2: 243-252.
    [110] Doebling S W, Farrar C R, Prime M B, et al. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:A Literature Review .Los Alamos National Laboratory Report, LA-13070-MS .1996.
    [111] Hearn G, Testa R B. Modal analysis for damage detection in structures .Journal of Structural Engineering, ASCE. 1991, 117(10): 3042~3063.
    [112] Stubbs N, Osegueda R. Global nondestructive damage evaluation in solid. International. Journal of Analytical and Experimental Modal analysis.1990, 5(2): 6779.
    [113]谢峻.基于振动的桥梁结构损伤识别方法研究: [博士学位论文].华南理工大学. 2003.
    [114]刘晶波,结构动力学讲义, 2003.
    [115] Samman M M, Biswas M, Pandey A K. Employing pattern recognition for detecting cracks in a bridge model. The Internal Journal of Analytical and Experimental Modal Analysis, 1991, 6(1): 35-44.
    [116] Biswas M, Samman M M, Pandey A K, et al. Modified chain code computer vision techniques for interrogation of vibration signatures for structural fault detection. Journal of Sound and Vibration . 1994,175(1):89-104.
    [117] Samman M M, Biswas M. Vibration testing for nondestructive evaluation of bridges.Ⅰ:theory. Journal of Structural Engineering, ASCE, 1994, 120(1): 269-289.
    [118] Samman M M, Biswas M. Vibration testing for nondestructive evaluation of bridges.Ⅱ:results. Journal of Structural Engineering, ASCE, 1994, 120(1): 290-306.
    [119] Allemany R J, Brown D L. A Correlation Coefficient for Modal Vector Analysis, Proc. of the 1st IMAC, 1982, 110-116.
    [120] Wolff T, Richardson M. Fault Detection in Structures from Changes in Their Modal Parameters, Proc. of the 7th IMAC, 1989, 87-94.
    [121] Lieven N A J, Ewins D J. Spatial correlation of mode shapes, the coordinate modal assurance criterion (COMAC). Proceedings of the 6th International Modal Analysis Conference, 1988, 1: 690-695.
    [122] Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 1991, 145(2): 321-332.
    [123]李德葆,陆秋海,秦权.承弯结构的曲率模态分析.清华大学学报(自然科学版), 2002, 42(2): 224-227.
    [124] Mannan M A, Richardson M H. Detection and location of structural cracks using FRF measurements. Proceeding of the 8th International Modal Analysis Conference 1990, Volumn 1: 652-657.
    [125] Pandey A K, Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration, 1994, 169(1): 3-17.
    [126] Raghavendrachar M, Aktan A E. Flexibility by multireference impact testing for bridge diagnostics. Journal of Structural Engineering, ASCE, 1992, 118 (8): 2186~2202.
    [127]赵媛,陆秋海.简支梁桥多位置损伤的检测方法.清华大学学报(自然科学版), 2002, 42(4): 434-438.
    [128]孙国,顾元宪.连续梁结构损伤识别的改进柔度阵方法.工程力学, 2003, 20(4): 50-54.
    [129]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社, 2003
    [130] Maeck J, De Roeck G. Dynamic bending and torsion stiffness derivation from modal curvatures and torsion rates. Journal of Sound and Vibration, 1999, 225(1): 153-170.
    [131] Yiska G. Identification of the stiffness distribution in statically indeterminate beams. Journal of Sound and Vibration, 2007, 304: 918-931.
    [132] Maeck J, De Roeck G. Damage assessment using vibration analysis on the z24-bridge. Mechanical Systems and Signal Processing, 2003, 17(1), 133-142
    [133]汪训流.配置高强钢绞线无粘结筋混凝土柱复位性能的研究: [博士学位论文].北京:清华大学, 2006
    [134]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟.工程力学, 2007, 24(12): 76-81.
    [135] Anun P, Worsak K N. Health monitoring of highway bridges based on a Global Flexibility Index. Engineering Structures, 2005, 27: 1385-1391.
    [136] Huth O, Feltrin G, Maeck J, et al. Damage identification using modal data: experiences on a prestressed concrete bridge. Journal of Structural Engineering, ASCE, 2005, 131(12): 1898-1910.
    [137] Law S S, Zhu X Q. Nonlinear characteristics of damaged concrete structures under vehicular load. Journal of Structural Engineering, ASCE, 2005, 131(8): 1277-1285.
    [138]纪晓东,钱稼茹,徐龙河.两层钢支撑框架模型损伤定位试验.工程力学, 2007, 24(1): 62-66.
    [139]荆龙江,项贻强.基于柔度矩阵法的大跨斜拉桥主梁的损伤识别.浙江大学学报(工学版), 2008, 42(1): 164-169.
    [140]孙宗光,钟阳,刘春泽等.斜拉桥损伤识别的模态柔度指标分析,公路交通科技, 2006, 23(11): 48-59.
    [141]刘嫦娟,孙宗光,牛振龙.悬索桥损伤指标的适用性分析.建材技术与应用, 2007, 1: 1-3.
    [142]林立香,滕海文,霍达等.基于曲率模态比值的城市公路桥梁损伤识别.河南科学, 2005, 23(6): 896-899.
    [143]王锋,郑玉芳.基于模态应变能法识别混凝土梁结构损伤的数值及试验研究.福州大学学报(自然科学版), 2007, 35(5): 713-719.
    [144]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社, 2005
    [145] Sanayei M, Saletnik M J. Parameter estimation of structures from static strain measurements,Ⅰ: Formulation. Journal of Structural Engineering, ASCE, 1996, 122(5): 555-562.
    [146] Sanayei M, Saletnik M J. Parameter estimation of structures from static strain measurements,Ⅱ: error sensitivity analysis. Journal of Structural Engineering, ASCE, 1996, 122(5): 563-572.
    [147] Hajela O J, Soeiro F J. Recent developments in damage detection based on system identification methods. Structural Optimization, 1990, 2: 1-10.
    [148] Banan Mo R, Banan Ma R. Hjelmatad K D. Parameter estimation of structures from static response,Ⅰ: Computational aspects. Journal of Structural Engineering, ASCE, 1994, 120(11): 3243-3258.
    [149] Banan Mo R, Banan Ma R. Hjelmatad K D. Parameter estimation of structures from static response,Ⅱ: Numerical simulation studies. Journal of Structural Engineering, ASCE, 1994, 120(11): 3259-3283.
    [150] Banan Mo R, Banan Ma R. Hjelmatad K D. Time-domain parameter estimation algorithm for structures,Ⅱ: Numerical simulation studies. Journal of Structural Engineering, ASCE, 1995, 121(3): 435-447.
    [151]袁颖.桥梁结构损伤识别方法的相关问题研究: [博士学位论文].大连:大连理工大学, 2005.
    [152]中华人民共和国交通部. JTG D60-2004.公路桥涵设计通用规范.北京:人民交通出版社, 2004.
    [153]王振宇.高强轻骨料混凝土的长期变形和力学性能研究: [硕士学位论文].北京:清华大学, 2005.
    [154]叶列平,冯鹏. FRP在工程结构中的应用与发展.土木工程系学报, 2006, 39(3):25-37.
    [155]王勃,何政,张新越,等.纤维聚合物筋在土木工程中的应用.建筑技术, 2003, 34(2): 134- 135.
    [156]欧进萍,周智,王勃. FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用.高技术通讯, 2005, 15(4): 23-28.
    [157] Bakis C E, Nanni A, Tcrosky J A, et al. Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Composites Science and Technology, 2001, 61: 815-823
    [158] Abry J C, Choi Y K, Chateauminois A, et al. In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Composites Science and Technology, 2001, 61: 855-864
    [159] Muto N, Arai Y, Shin S G, et al. Hybrid composites with self-diagnosing function for preventing fatal fracture . Composites Science and Technology, 2001, 61:875-883
    [160]沈烈,益小苏.一个单向碳纤维增强树脂基复合材料导电结构模型.复合材料学报, 1998, 15(3): 66- 70.
    [161] Chung D D L. Strain sensors based on the electrical resistance change accompanying the reversible pull-out of conducting short fibers in a less conducting matrix. Smart Materials and Structures, 1995, 4: 59- 61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700