用户名: 密码: 验证码:
太白红杉(Larix chinesis Beissn.)居群遗传多样性和遗传结构的AFLP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太白红杉(Larix chinesis Beissn.)为松科(Pinaceae)落叶松属(Larix)植物,是我国的特有种,仅分布于陕西省境内秦岭山地高海拔地段,分布区极其有限,已被列为国家二级保护植物。太白红杉是秦岭山区分布最高的乔木树种,多以纯林群落分布于高海拔地段,是很重要的水源涵养林,同时在高山地区的水土保持,稳固山石,生态环境的改善都有重要的意义。所以,在自然物种的保存、特有居群的保护、科学研究、生态效益和经济效益等方面,都具有被保护和研究的价值。
     尽管已对太白红杉的遗传多样性进行了一些的研究,但是还存在一些问题:①由于研究手段的局限性,其结果不一致,如多态位点的比率、基因流、聚类结果等相差较大;②对作为太白红杉主要分布地的太白山居群研究还不深入;③太白红杉随海拔的升高在形态学上发生了显著的变化,是否其遗传多样性也发生了变化。这些问题都有待进一步的解决。
     本论文主要针对以上存在的3个问题,运用FISH-AFLP技术对光头山、牛背梁和太白山3个居群的太白红杉进行了生物多样性的分析。因为太白山居群面积最大并且生长状况最好,因此进行了重点的研究。
     通过对太白山、牛背梁、光头山3个居群,58份试验材料,8对引物的AFLP分析,得到如下结果:
     (1) 58个供试个体、8对引物所得到的总条带数总共为26509条;平均每个个体为457条;平均每对引物扩增条带为3314条;扩增带随着分子量的递增,数目显著减少。条带多集中于分子量70-300bp之间,分子量越小,材料扩增的条带越多。研究显示,不同的计数起点和终点的选择,对最终结果影响很大。
     (2) RAPD、SSR、ALLOZYME和AFLP四种方法比较显示,所测位点容量、多位点的比率、Shannon基因多样性指数、Nei的遗传距离进行的UPGMA聚类分析等方面差异较大,但总体所反映的太白红杉居群的遗传多样性水平和遗传结构是一致的,即太白红杉的遗传多样性水平较高,且主要分布在居群内部,居群之间的变异较小。
     (3)太白红杉自然居群遗传多样性和遗传结构:
     8对AFLP引物共检测了1728个位点,其中1123个位点具有多态性。光头山、牛背梁和太白山3个居群的多态带数(nιp)分别为688、615和1035。种水平多态位点百分率(P)达64.99%,作为地方种,太白红杉具有良好的遗传基础。
     太白红杉种水平等位基因数(A)为1.9878;种水平有效等位基因数(Ae)为1.2553。太白红杉种水平Shannon信息多样性指数(I)为0.2448;居群内遗传多样性(Hpop)为0.2012,居群内遗传多样性所占比率(%)(Hpop/Hsp)为0.8219。太白红杉种水平Nei遗传多样性指数(Ht)为0.1498,各居群的变化与Shannon信息多样性指数(I)的变化规律一致。居群内遗传多样性(Hs)为0.1310,基因分化系数(Gst)0.1236,即居群间的遗传多样性占12.36%。
     基因流(Nm)为3.7572>1,理论上,基因流可以抵制居群内遗传漂变的作用,防止居群之间的遗传分化的发生。
     太白红杉居群间的遗传一致度(I)较高,平均为0.9737;遗传距离(D)较小,平均为0.02677。结合居群间遗传多样性所占比率(%)((Hsp-Hpop)/Hsp)和基因分化系数(Gst),说明太白红杉居群间尽管存在一定的分化,但比较小。
     通过遗传距离的UPGMA聚类分析,牛背梁和光头山首先归并在一起,其次才与太白山聚类在一起。这与三者的地理位置是相吻合的。
     (4)对太白山居群不同海拔(<3200m,3200m-3300m,3300m-3400m和>3400m)个体的分析表明,尽管各个海拔段的植株的遗传多样性有一定的差距,但差距不大。
     综上所述,太白红杉显示了较高水平的遗传多样性,应该不是因为遗传多样性低而导致濒危;遗传结构分析显示,尽管各居群间有一定的变异,但变异较小,绝大部分的多样性集中于居群内部;太白山作为太白红杉生长分布的集中地区,该地区的居群最大,且具有最高的遗传多样性,应该重点保护。
Larix chinensis Beissn., an endemic species to China, belongs to the genus Larix Milland only distributes on several peaks of Qinling Mountains in Shaanxi Province. It hadbeen listed as second grade plant species of state in need of conservation.
     L. chinensis is very important water-nurturing forest located in the top of the forest inMt. Qingling. And it also has the significant significance for the conservation of waterand soil, the stable stone, the ecological environment improvement. So it has theconservative and research value on the respect species conservation scientific research,ecology and economy.
     Though there have been some studies of the genetic diversity of L. chinensis, thereare also some questions need to study. Such as, the percentages of polymorphism, thenumber of migrants per generation and the results of UPGMA dendrogram are verydifferent in the former studies. As the largest and the best growing population of L.chinensis, Taibaishan population needs more thorough research. The L. chinensis hashad the remarkable change along with elevation elevating in the morphology, its geneticdiversity also has had whether the change. These questions all wait for the further study.
     This paper, using AFLP as the molecular maker technique, mainly deals with geneticstructure and genetic diversity in the three populations of Guangtoushan, Niubeiliangand Taibaishan, especially the study of the Taibaishan population.
     (1)Using eight pairs primer combinations, 58 individuals from three populations wereanalyzed with AFLP. The results indicate that the whole number of bands is 26509; theaverage number of each individual is 457; the average number of each primercombination is 3314. The bands mainly distributed among 70-300bp and the smaller ofbands, the larger of the number of the bands.
     The study shows that the results is very different if the different selection of length ofbands.
     (2)The results of the different methods of RAPD, SSR, ALLOZYME and AFLPindicate the sites of the number of polymorphic bands, the percentage of polymorphism,Shannon diversity index, UPGMA dendrogram based on Nei's (1978) genetic distanceare very different. But the whole genetic diversity and genetic structure are identical. The genetic diversity is high and the most genetic diversity is within population.
     (3)Using eitht pairs primer combinations, 58 individuals from three populations wereanalyzed with AFLP. 1728 bands were detected, and there were 1123 polymorphicbands among them. The numbers of polymorphic bands are respectively 688, 615, 1035in the Guangtoushan, Niubeiliang and Taibaishan population. The percentages ofpolymorphism are 64.99% at species level. As a local species, L. chinensis has a highergenetic diversity.
     Observed number of alleles and effective number of alleles are respectively 1.9878and 1.2553 at species level. Shannon diversity index is 0.2448 at species level. Thepartitioning of the diversity (Shannon's index) within and between populations of L.chinensis for eight primer combinations are respectively 0.2012 and 0.8219.Nei's indexis 0.1498 at species level of L. chinensis and within populations of Nei's index is 0.1310.The coefficient of gene differentiation is 0.1236. It shows that the most diversity arewithin populations.
     The number of migrants per generation is 3.7572. Theoretically, Nm is enough toresist the effect of genetic drift and prevent population from subdivision.
     The Nei (1978) genetic identity and genetic distance show that genetic identityamong population of L. Chinesis is very high with a mean of 0.9737, and the mean ofgenetic distance is 0.02677. They show that high genetic similarity was found amongpopulation of L. Chinesis. Dendrogram resulting from UPGMA method clusteringbased on Nei (1978) genetic distance shows that the Guangtoushan and Niubeiliangpopulation has higher similarity. This is identical with the geography distance of thepopulations.
     (4)Analysis of the different altitude (<3200m, 3200m-3300m, 3300m-3400m and>3400m) of L. Chinesis in the Taibaishan population shows that this species changedlittle with the change of the altitude.
     In short, the result of this study shows that Larix chinesis Beissn. has a higher geneticdiversity, and it is most within populations. The population of Taibaishan has the highestdiversity and requires that priority is protected.
引文
[1] 郑万钧,傅立国.中国植物志(第七卷)[M].北京:科学出版社,1978:168-196.
    [2] 王战,张颂云.中国落叶松林[M].北京:中国林业出版社,1992.
    [3] 应俊生,张玉龙.中国种子植物特有属[M].北京:科学出版社,1994:26-31.
    [4] 狄维忠,于兆英.陕西省第一批国家珍稀濒危保护植物[M].陕西:西北大学出版社,1989:41-43.
    [5] 国家环境保护局,中国科学院植物研究所.中国珍稀濒危保护植物名录(第一册)[M].北京:科学出版社,1987.
    [6] 傅立国.中国植物红皮书—稀有濒危植物(第一册)[M].北京:科学出版社,1992.
    [7] 朱志诚.秦岭落叶松林的主要类型及其演变的初步分析[J].西北大学学报(自然科学版),1980,(4):57-64.
    [8] 朱志诚.秦岭太白山高山区冰蚀原生裸地植被演替的初步探讨[J].科学通报,1979,24(22):1041-1043.
    [9] 朱志诚.秦岭太白山顶植被的起源和发展[J].西北大学学报,1979,(1):156-169.
    [10] 朱志诚.秦岭植被的变迁[J].西北大学学报(自然科学版),1979,(2):76-85.
    [11] 朱显漠.陕西太白山岩生植物和原始成土过程[J].土壤学报,1963,11(1):1-9.
    [12] 尚华,崔金钟,李承森.松科早期球果研究的历史与现状[J].植物学通报,1999,16(1):28-36.
    [13] 王伏雄,钱南芬,张玉龙等.中国植物花粉形态(第二版)[M].北京:科学出版社,1997:20-25.
    [14] 石福臣,木佐贯博光,铃木和夫.中国东北落中松属植物亲缘关系的研究[J].植物研究,1998,18(1):55-62.
    [15] 周崟.中国落叶松属木材解剖性质及其归类的初步研究[J].林业科学,1962,2:97-116.
    [16] 周崟,姜笑梅.木材构造特征在裸子植物系统中的意义[J].植物分类学报,1992,30(5):405-414.
    [17] 王刚,徐阿生,蔡星星.太白红杉和西藏红杉的核型分析[J].复旦学报(自 然科学版),1998,37(4):481-484.
    [18] 王伯荪.植物群落学[M].北京:高等教育出版社,1988:161-180.
    [19] 陈存根,彭鸿.秦岭太白红杉林的群落学特征及类型划分[J].林业科学,1994,30(6):487-496.
    [20] 任毅等.秦岭大熊猫栖息地植物:佛坪自然保护区的植被[M].西安:陕西科技出版社,1998:346-415.
    [21] 阎桂琴,李珊,王祎玲,王戌梅,赵桂仿.太白红杉总DNA的提取及鉴定[J].西北大学学报(自然科学版),2001,31(1):54-56.
    [22] 胡雅琴,肖娅萍.太白红杉总DNA的快速提取方法[J].陕西师范大学学报(自然科学版),2005,33(2):85-86.
    [23] 胡雅琴.基于rbcL、matK基因序列探讨送客系统进化的可能行及rbcL、matK基因的SSCP分析[D].西安:陕西师范大学,2004.
    [24] 闫桂琴.太白红杉种群(居群)生态和遗传结构研究[D].西安:西北大学,2001.
    [25] 赵利锋.太白红杉自然居群遗传多样性和遗传结构的研究[D].西安:西北大学,2001.
    [26] 俞晓敏.太白红杉胚胎学及其遗传多样性研究[D].西安:西北大学,2004.
    [27] Xiao-Min Yu, Qing Zhou, Zeng-Qiang Qian, Shan Li, and Gui-Fang Zhao. Analysis of Genetic Diversity and Population Differentiation ofLarixpotaninii var. chinensis Using Microsatellite DNA [J]. Biochemical Genetics, 2006, 44 (11/12): 491-501.
    [28] 李俊清,李景文,崔国发.保护生物学[M].北京:中国林业出版社,2002:15.
    [29] 丁圣彦.生态学[M].北京:科学出版社,2004:255-256.
    [30] 王洪新,胡志昂.植物繁育系统、遗传结构和遗传多样性的保护[J].生物多样性,1996,4(2):92-96.
    [31] 杨世杰.植物生物学[M].北京:科学出版社,2000:378-379.
    [32] 李俊清,李景文,崔国发.保护生物学[M].北京:中国林业出版社,2002:130-131
    [33] Tanksiey S D, Orton T. Isozyme in plant genetics and breeding (PartB) [M]. Amsterdam: Elsevier, 1983.
    [34] 沈法富,刘风珍,于元杰.分子标记在植物遗传育种的应用[J].山东农业大学学报,1997,28(1):83-91.
    [35] 张鲁刚.中国白菜分子标记遗传图谱的构建及QTL定位研究[D].杨凌:西北农林科技大学,1998.
    [36] 曹越.植物遗传研究与分子标记技术[J].青海农林科技,2004(2),21-22.
    [37] Prentice HC, Maim J U, Mateu-Andres I, Segarra-Moragues JG. Allozyme and chloroplast DNA variation in island and mainland populations of rare Spanish endemic, Silene hifacensis (Caryophyllaceae).).Conservation Genetics, 2003, 4(5): 543-555.
    [38] 赵宣,周志钦,林启冰,潘开玉,洪德元.芍药属牡丹组(Paeonia sect.Moutan) 种间关系的分子证据:GPAT基因的PCR-RFLP和序列分析[J].植物分类学 报,2004,42(3):236-244.
    [39] 张利,周永红,郑有良,刘世贵.仲彬草属物种细胞质基因组PCR-RFLP分析[J].草业学报,2006,15(3):115-122.
    [40] Williams J G, Kubelik A R, Livak J, el al. DNA Polymorphisms Amplified by Arbitary Primers are Useful as Genetic Markers [J]. Nucleic Acid Research, 1990, 18 (22):6531-6535.
    [41] Maldonado A P, Adamec L, Suda J, Mes T H M, Storchova H. Genetic variation within the endangered species Aldrovanda vesicuIosa (Droseraceae) as revealed by RAPD analysis. Aquatic Botany, 2003, 75 (1), 159-172.
    [42] 张文标,金则新,李钧敏.濒危植物香果树自然居群遗传多样性的RAPD分析[J].浙江大学学报(农业与生命科学版),2007,33(1):61-67.
    [43] 刘丽,朱永青,王幼芳.鼠尾藓不同居群间形态及RAPD分析[J].云南植物研究,2006,28(6):570-574.
    [44] 原俊凤,张霞,王绍明.新疆野生啤酒花群体遗传多样性的RAPD分析[J].2006,23(4):562-567.
    [45] 张金渝,虞泓,张时刚,丁长春.多叶重楼遗传多样性的RAPD分析[J].草地学报,2006,14(3):517-522.
    [46] 李雪萍,何正权,陈发菊,梁宏伟,李凤兰.神农架4个珙桐居群遗传多样 性的RAPD分析[J].北京林业大学学报,2006,28(3):66-70.
    [47] 赵庆芳,李巧峡,马世荣,崔燕,王刚.青藏高原东部矮生嵩草遗传多样性的RAPD研究[J].生态学报,2006,26(8):2494-2501.
    [48] 丁鸽,丁小余,沈洁,唐风,刘冬扬,贺佳,李雪霞,褚必海.铁皮石斛野生居群遗传多样性的RAPD分析与鉴别[J].药学学报,2005,40(11):1028—1032.
    [49] 刘传虎,周兆喜,周云,姚家玲.不同居群龙须草RAPD分析及其分类研究[J].西北植物学报,2006,26(5):915-920.
    [50] 史全芬,杨佳,李晓东,李新伟,李建强.水杉栽培居群的遗传多样性研究[J].云南植物研,2005,27(4):403-412.
    [51] Vos P, Pene H, Marjo B. AFLP: A new technique for DNA fingerprinting [J]. Nucleic Acid Research, 1995,23 (21): 4407-4414.
    [52] 李珊,赵桂仿.AFLP分子标记及其应用[J].西北植物学报,2003,23(5):830-836.
    [53] 翁跃进.AFLP—一种DNA分子标记新技术[J].遗传,1996,18(6):30-31.
    [54] 许风华,康明,黄宏文,江明喜.濒危植物毛柄小勾儿茶片断化居群的遗传多样性[J].植物生态学报,2006,30(1):157-164.
    [55] 张磊,黄蓓蓓,开国银,郭美丽.中国红花遗传多样性的AFLP分子标记[J].药学学报,2006,41(1):91-96.
    [56] 李作洲,龚俊杰,王瑛,黄宏文.水杉孑遗居群AFLP遗传变异的空间分布[J].生物多样性,2003,11(4):265-275.
    [57] 王淑霞,胡运乾,周浙昆.灰背栎遗传多样性和遗传结构的AFLP指纹分析[J].云南植物研究,2005,27(1):49-58.
    [58] Shuguang Jian, Yang Zhong, Nian Liu, Zezheng Gao, Qiang Wei, Zhenua Xie and Hai Rein Genetic variation in the endangered endemic species Cycas fairylakea (Cycadaceae) in China and implications for conservation [J]. Biodiversity and Conservation. 2006, 15:1681-1694.
    [59] Xiaowei Ni, Yelin Huang, Lin Wu, Renchao Zhou, Shulin Deng, Darong Wu, Bosun Wang, Guohua Su, Tian Tang & Suhua Shi. Genetic diversity of the endangered Chinese endemic herb Primulina tabacum (Gesneriaceae) revealed by amplified fragment length polymorphism (AFLP) [J]. Genetica, 2006, 127:177-183.
    [60] Mizianty M., Bieniek W., Czech A., Strzalka W., and Szklarczyk M. Variability and structure of natural populations of Elymus caninus (L.) L. and their possible relationship with Hordelymus europaeus (L.) Jess, ex Harz as revealed by AFLP analysis[J]. Plant Systematics and Evolution. 2006, 256:193-200.
    [61] Barbosal A.M.M., Geraldi I.O., Benchimol L.L., Garcia A.A.F., Souza Jr C.L. & Souza A.P. Relationship of intra- and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers [J]. Euphytica, 2003,130: 87-99.
    [62] Richard S. Dodd, Nasser Kashani. Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae) [J]. Theor Appl Genet 2003,107:884-892.
    [63] Fanizza G., Chaabane R., Lamaj F., Ricciardi L., Resta P. AFLP analysis of genetic relationships among aromatic grapevines (Vitis vinifera). Theor Appl Genet, 2003,107:1043-1047.
    [64] Breyne P., Rombaut D., Van Gysel A., Van Montagu M., Gerats T. AFLP analysis of genetic diversity within and between Arabidopsis thaliana ecotypes [J]. Mol Gen Genet, 1999, 261: 627-634.
    [65] Nayani Surya Prakash, Marie-Christine Combes, Stephane Dussert, Somanna Naveen and Philippe Lashermes. Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs [J]. Genetic Resources and Crop Evolution, 2005, 52: 333-343.
    [66] Guthridge K.M., Dupall M.P., Kolliker R., Jones E.S., Smith K.F. & Forster J.W. AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.) [J]. Euphytica, 2001,122:191-201.
    [67] Steiger D.L., Nagai C, Moore P. H., Morden C.W., Osgood R.V., Ming R. AFLP analysis of genetic diversity within and among Coffea arabica cultivars [J]. Theor Appl Genet, 2002,105:209-215.
    [68] Bell C. J., Ecker J. H. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis [J]. Cenorreics, 1994, 19:137-144.
    [69] Akkaya M.S., Bhagwat A.A., Cregan P.B. Length polymorphism of simple sequence repeat DNA in soybean [J]. Genetics, 1992, 132:1131-1139.
    [70] Ma Z.Q., Roder M.S., Sorrells M.E. Frequencies. and sequence charateristics of di-,tri-and tetra-nucleotide microsatellites in wheat [J]. Cenome, 1996, 39: 123-130.
    [71] Broun P., Tanksley S.D. Characterization and genetic mapping of simple repeat sequence in the tomato genome [J].Mol Cen Genet, 1996, 250(1):39-49.
    [72] Guiford P., Prakash S., Zhu J.M., Rikkerink E., Gardiner S., Basset H., and Foster R. Microsatellites in Malusxdomestica (apple): abundance, polyrmophism and cultivar identification [J]. Theor Appl Genet, 1997, 94:249-254.
    [73] 姜志磊,杨欣明,王瑞,高爱农,李立会.基于SSR的梭罗草遗传多样性分析[J].植物遗传资源学报,2005,6(3):315-318.
    [74] 栗琪,李作洲,黄宏文.猕猴桃野生居群的SSR分析初报[J].武汉植物学研究,2004,22(2):175-178.
    [75] 李晨,潘大建,毛兴学,涂从勇,周汉钦,范芝兰,李晓方.用SSR标记分析高州野生稻的遗传多样性[J].科学通报,2006,51(5):551-558.
    [76] 王英,康明,黄宏文.用分子标记揭示植物随机大居群中亚居群的遗传结构—茅栗自然居群空间遗传结构的SSR分析[J].植物生态学报,2006,30(1):147-156.
    [77] Zietkiewice E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-Anchored polymerase chain reaction amplification [J]. Genomics, 1994, 20:176-183.
    [78] 袁昭岚,沈颂东,黄鹤忠等.SSR和ISSR分子标记技术及其在遗传多态性方面的应用[J].水产养殖,2005,26(2):10-11.
    [79] 钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性[J].植物学报,2000,42(7):741-750.
    [80] 罗群,马丹炜,王跃华.川乌遗传多样性的ISSR鉴定[J].中草药,2006,37(10):1554-1557.
    [81] 金则新,李钧敏,李增鸿.浙江仙居长叶榧自然居群遗传多样性的ISSR分析[J].北京林业大学学报,2007,29(1):53-59.
    [82] 陈俊秋,慈秀芹,李巧明,李捷.樟科濒危植物思茅木姜子遗传多样性的ISSR分析[J].生物多样性,2006,14(5):410-420.
    [83] 夏婧,郭友好.邓氏马先蒿遗传多样性的ISSR分析[J].武汉植物学研究,2006,24(6):565-568.
    [84] 彭云滔,唐绍清,李伯林,刘燕华.野生罗汉果遗传多样性的ISSR.分析[J].生物多样性,2005,13(1):36-42.
    [85] 杨淑达,施苏华,龚洵,周仁超.滇牡丹遗传多样性的ISSR分析[J].生物多样性,2005,13(2):105-111.
    [86] 栾珊珊,范眸天,龚洵.栌菊木遗传多样性研究[J].云南农业大学学报,2006,21(6):704-706.
    [87] 宾晓芸,唐绍清,周俊亚,宋洪涛,黎尊谊.金花茶遗传多样性的ISSR分析[J].武汉植物学研究,2005,23(1):20-26.
    [88] 张萍,董玉芝,魏岩,胡成志.利用ISSR标记对新疆梭梭遗传多样性的研究[J].西北植物学报,2006,26(7):1337-341.
    [89] 阮成江,何祯祥,周长芳.植物分子生态学[M].北京:化学工业出版社,2005:17-28.
    [90] Cummings M.P, Clegg M.T. Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild in wild barley (Hordeum vulgate ssp. Spontaneum): An evaluation of the background selection of hypothesis [J]. Proc Natl Acad Sci USA, 1998, 95:5637-5642.
    [91] Olsen K. M., Schaal B. A. Evidence on the origin of cassava: phylogeography of Manihot esculenta [J]. Proc Natl Acad Sci USA, 1999, 96:5586-5591.
    [92] Weising K., Nybom H., Wolff K., Meyer W. DNA fingerprinting in plants and fugi [M]. Boca Raton: CRC Press, 1995: 51-55.
    [93] 王中仁.植物等位酶分析[M].北京:科学出版社,1996:145-163.
    [94] Hamrick J.L., Godt M.J.W. Allozyme diversity in plant species. Brown. A.H.D., Clegg M.T., Kaher, A.L., Weir B.S. Plant population genetics, breeding and genetic resources[c]. Sunderland: Sinauer, 1989: 43-63.
    [95] 葛颂,王海群,张灿明,洪德元.八面山银杉林的遗传多样性和群体分化[J].植物学报,1997,39(3):266-271.
    [96] Mcneilly T., Antonovics J. Evolution in closed adjacent populations. Ⅳ. Barriers to gene flow [J]. Heredity, 1968, 23:215-218.
    [97] Taylor D.R., Aarssen L.W. Competitive relationships among genotypes of three Perennial grasses: Implications for species coesistence [J]. Amer. Natur, 1990, 136:105-327.
    [98] 苏晓华,张倚纹,郑先武等.利用RAPD分析大青杨天然群体的遗传结构[J].林业科学,1997,33(6):504-511.
    [99] Waser N.M. Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers [J]. Ecology, 1978, 59:934-944.
    [100] Galen C., Kevan P.G. Scent and color, floral poplymorphisms and pollination biology in Polemnium viscosum Nutt [J]. The American Midleland Naturalist, 1980,104: 281-289.
    [101] Wright, S. Evolution in Mendelian population [J]. Genetics, 1931, 16:97-159.
    [102] Karron J.D. Patterns of genetic variation and breeding systems in rare plant species. Falk D.A., Holsinger. Genetics and conservation of rare plant[c]. New York: Oxford University Press, 1991: 87-98.
    [103] Karron J.D., Linhart Y.B., Chaulk C.A., Robertson C.A. Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae) [J]. Am. J. Bot., 1988, 75:1114-1119.
    [104] Loveless M.D., Hamrick J.L. Ecological determinant of genetic structure in plant populations [J]. Ann. Rev. Evol. Syst, 1984, 15: 65-95.
    [105] El-Kassaby Y.A. Genetic variation within and among conifer population: A review and evaluation of methods. Fineschi S., Maluolti M.E., Cannata F, Hattemer H.H. Biochemical Markers in the Population Genetics of Forest trees [c]. The Hague: SPB Academic Publishing, 1991:61-76.
    [106] Hamrick J.L., Godt M.J.W. Allozyme diversity in plant species. Brown A.H.D.,Plant population genetics, breeding and genetic resources[c]. Sunderland: Sinauer, 1990: 43-63.
    [107] 杨一平. 红松群体内和群体间同工酶变异的研究[J]. 林业科学, 1989, 25(3): 201-208.
    
    [108] Slatkin M. Gene flow in natural populations [J]. Ann. Rev. Ecol. Syst, 1985, 16:393-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700