用户名: 密码: 验证码:
汽车碰撞中胸部生物力学响应与损伤评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着汽车保有量的大幅增加、汽车动力性能的逐步提高以及高速公路的大量建设,交通事故中造成大量人员重伤与死亡。每年造成约15-60万人员受伤,约5-12万人员死亡,给国家造成巨大的经济财产损失,给家庭带来沉重的精神伤害。在交通事故所造成的损伤中胸部损伤的发生率仅次于颅脑损伤,在所有的损伤中胸部损伤AIS轻微到中度伤占13%,AIS严重与致命伤占29%,是交通事故造成重伤与死亡的主要原因之一。肋骨骨折是胸部损伤中最主要的损伤类型,肺、心脏、大动脉、肝在体内受到肋骨和胸骨的保护,但一旦受到损伤是很致命的。因此深入理解汽车碰撞过程中胸部的生物力学响应及影响损伤的相关因素,对于改善汽车安全性能,减小事故中人员的损伤具有十分重要的现实意义和工程应用价值。
     本论文利用生物力学有限元仿真分析方法对胸部在冲击作用下的力学响应与损伤进行仿真研究。对生物力学仿真过程中采用的非线性显式算法的基本原理、接触算法、时间步长控制、接触问题的迭代法进行了公式推导。对比了四面体单元与六面体单元在仿真计算中的优缺点,提出采用六面体单元对人体胸部主要组织进行建模的思路。概述了模型建立的方法与步骤。结合人体医学解剖结构,建立了肋骨、胸骨、椎骨、椎间盘、锁骨、肩胛骨、骨盆、皮肤、肌肉及上肢、下肢、头部等具有中国成年男性解剖特征的人体生物力学有限元模型。结合大量的国内外研究成果与文献资料对人体胸部组织所采用的材料参数与本构关系模型进行了定义与选取。模型验证参考了尸体实验(PHMS)数据与理论模型进行了前碰撞和侧面碰撞的仿真验证,通过对理论模型的计算与实验及仿真结果进行对比,碰撞中接触力、胸骨位移量、力-位移响应与实验吻合较好,同时模型在仿真过程中所表现出的胸部肋骨骨折与内脏的损伤情况与实验描述保持一致。本模型能模拟胸部肋骨骨折及软组织的损伤。可用于汽车碰撞安全中胸部的损伤机理、胸部肋骨骨折与内脏组织的损伤研究。
     通过材料实验与国内外在肋骨骨折生物力学领域已取得的研究成果,利用建立的有限元模型对肋骨皮质骨厚度、皮质骨弹性模量、极限应力、失效应变及不同年龄阶段肋骨参数进行了研究,深入探索了肋骨在冲击作用下胸部的整体响应与肋骨骨折损伤机理。揭示了汽车碰撞中影响老年阶段肋骨骨折严重性的主要原因与损伤规律。研究结果表明相同载荷作用下,皮质骨厚度越薄,肋骨骨折越严重,肋骨弹性模量对肋骨骨折影响不明显,肋骨极限应力、失效应变越小,骨折越严重。通过仿真分析可以看出汽车安全法规中用胸部变形量作为评估正面碰撞肋骨骨折的损伤非常有效,但是没有考虑年龄的影响,应完善老年阶段的胸部损伤法规标准,进一步提高汽车的安全性能,减少老年人在汽车碰撞过程中肋骨骨折的风险。
     利用建立与验证的人体生物力学有限元模型对胸部在不同冲击速度与不同冲击方向进行仿真分析,研究冲击载荷下人体胸部的生物力学响应并分析不同的损伤指数对胸部损伤的敏感性。结果表明冲击速度越大,胸部接触力、胸骨变形量、胸腔内部组织压力、椎骨加速度、胸部粘性指数VC等越大。通过对比各类损伤指数,相同速度下冲击位置的不同胸部产生的损伤不同,正面碰撞所产生的胸腔压力比侧面碰撞的压力大。侧面碰撞肋骨骨折比正面碰撞严重,不论正面还是侧面碰撞,胸部内脏组织中心脏处的压力最大,过大的心脏压力容易造成主动脉压力增加而产生主动脉破裂,是汽车碰撞事故中死亡的主要原因之一。通过对胸部正面与侧面碰撞中各参数与损伤评估指数进行比较,胸腔压力对于胸部内脏的损伤评估非常有效,可用于汽车碰撞法规中对内脏损伤的评估。
     最后,利用建立的有限元模型开展与方向盘碰撞的应用研究,研究不同转向管柱安装角与不同方向盘高度对胸部损伤的影响,得到了胸部碰撞方向盘产生的生物力学响应。结果表明,汽车碰撞事故中方向盘高度与人体头部与胸腹部的损伤严重性有直接关系,方向盘位置越高,造成头部、肋骨骨折、肺挫伤、心脏等胸部内脏组织的损伤越严重。当方向盘位置在胸部与腹部的中间位置对于肝脏、胃、膈肌的损伤比较严重而对胸部肋骨与内脏损伤较小。当方向盘位置在下腹部时肠、胃、腰椎产生的变形较大,而对胸骨肋骨与胸部内脏损伤较小。转向管柱安装角越大,接触力越小,变形量越大,胸腔压力越大,因此从满足法规的角度出发应增加转向管柱的安装角度减小接触力。但从内脏损伤的角度出发应在满足法规的前提下减小转向管柱的安装角,增加碰撞时胸部与方向盘的接触面积,减小内脏的损伤。
     本论文的研究成果表明人体生物力学有限元模型是一个非常有效的工具评估汽车碰撞安全中胸部损伤。对于改善汽车在正面与侧面的安全性具有重要的指导作用,本模型可用于现实世界的汽车碰撞中的胸部损伤评估与重构,汽车安全法规研究与假人的设计与开发。
In recent years, with the increase in vehicle ownership, vehicle dynamic performancegradually improved, a large number of highway construction, and highly energetic,trauma-like traffic accidents result in a higher rate of morbidity and mortality. Every yearabout15-60million people who were injured, about5-12million deaths causing hugeeconomic losses and made the family heavy spiritual harm. Traffic accidents resulted insevere injuries to the head and thorax more frequently than injury to other body regions. Inparticular, thorax injuries are common in vehicular accidents and is second only to headinjuries, thorax injuries account for13%of minor to moderate injuries and29%of all seriousto fatal injuries. Rib fractures are the most frequent lesions in traumatic thorax injury. Whilerespiratory diseases such as pneumonia, flail chest, and pneumo/hemothorax are regarded asthe leading complications associated with sternum and multiple rib fractures. Therefore, it isvery practical significance and value in engineering to increase understanding thoraxbiomechanical response and the factors influencing thoracic trauma may lead to improvedsafety features and a decrease in fatalities and injuries. Improving safety to minimize or avoidfatalities and injuries is a primary field of research for automotive designers and legislators.
     The present study focuses on the dynamic response and injuries of the thorax by usingthe simulation analysis method. Elaboration and derives the basic theories and formulas usedin the simulation process. Especially for a non-linear calculation process using the explicitalgorithm basic principle, the contact algorithm, time step control, contact problems iterativemethod derivation of formulas. Comparing the advantages and disadvantages of thetetrahedral and hexahedral elements in the simulation, proposed the hexahedral elements formodeling the main tissue of the human body and method of establishing the human-bodybiomechanical model. An integrative medical Anatomical structure, a human bodybiomechanical model was developed. The model featured in great detail the main anatomicalcharacteristics of skeletal tissues, soft tissues, and internal organs, including the head, neck,shoulder, thoracic cage, abdomen, spine, pelvis, pleurae and lungs, heart, aorta, arms, legs,and other muscle tissues and skeletons. The material properties of all tissues in the humanbody model were obtained from literature. Material model can accurately simulate the rib fracture and soft tissue injury. Validations of the human body model have been made againstCadavers responses for frontal and side impact and for the mathematical lumped massmodel.The accuracy of the model response was investigated through experimental testing on(PMHS) during front thoracic and side pendulum impacts. The model well agreed with thefront thoracic and side pendulum impact tests and had a reasonable correlation during thefrontal thoracic pendulum impact test. The thorax response was excellent when theforce–time, compression–time, and force–compression were considered. The human bodymodel was validated for frontal and lateral impacts to the thorax. The responses well agreedwith those of human bodies sustaining impact loads. The model can also predict skeletalinjuries such as bone fractures and ligament ruptures. Overall, the predicted model responsereasonably well agreed with the experimental data and highlighted areas for futuredevelopments. The model can be used to further evaluate thoracic injury in real-worldcrashes.
     Through the in-depth analysis of material properties of the ribs, this paper uses theestablished and verified finite element (FE) model of the human thorax to investigate thesensitivity of structural responses and rib fractures to age-related rib material properties toprovide guidelines for the development of FE thorax models used in impact for biomechanicsand injury assessment. Age-related rib material properties were determined based on previousexperimental test results, research and age-related cortical bone material parameters (such ascortical bone thickness, elastic modulus, ultimate stress, failure strain rate), the cortical bonematerial parameters of young and elderly individuals, analysis of Sternal deformation underlow-speed frontal impact, and the number of fractured ribs. The results show that elasticmodulus changes under low-speed frontal impact, with less Sternal deformation resulting inless affected rib fractures. Lower ultimate stress corresponds with greater Sternal deformation,and more fractured ribs correspond with less failure strain. The degree of sternal deformationcorresponded with more fractured ribs. The older the patient, the greater was the sternaldeformation, the number of sternal fractures, and the number of fractured ribs.The simulationresults show that sternal deformation is a highly favorable index for assessing rib fractures. Incar crash safety regulations, the thorax deformation index for frontal crashes is76mm. Thisindex more accurately reflects rib fracture injury, and it can be adopted for different age groups. The evaluation criteria in this index should be changed to reduce rib fractures,thereby reducing the number of thorax injuries among the elderly in automobile collisions.
     This paper uses the established and verified finite element (FE) model of the humanthorax to investigate the sensitivity of different impact speeds and different impact directionto provide guidelines for the development of FE thorax models used in impact forbiomechanics and injury assessment. The results showed that the greater the impact velocity,the contact force of the chest, the deformation of the sternum, chest internal organizationpressure, the acceleration of the vertebrae, chest viscosity index VC greater. By comparingthe various types of damage, the same speed impacts the different position of the internaltissue damage different, frontal impact chest pressure greater than in side impacts. Ribfractures in the side impact more serious than Frontal Impact, whether front or side impact,the maximum pressure on the heart. Excessive heart pressures likely to cause increased aorticpressure and aortic rupture. Through parameters compared with indices of damageassessment on the front and side impact of thorax, thorax pressure is effective for the damageassessment of the internal organs in the thorax, can be used in automobile collisionregulations for the internal organs damage assessment.
     Finally, this paper uses the established and verified finite element (FE) model of thehuman thorax to investigate the sensitivity of different angles and different steering wheelheight in impact for biomechanics and injury assessment. The results showed that the higherthe steering wheel position, rib fractures, pulmonary contusion, heart and other internalorgans of the chest injury is more serious. When the steering wheel position in the middle ofthe chest and abdomen, the liver, stomach, diaphragm injury is more serious and ribs andinternal organs of the chest with less damage. When the steering wheel position in theabdomen, intestines, stomach produces large compressive deformation, while the Sternal ribsand the chest visceral injury are small. Steering column mounting angle, the contact force issmaller, the greater the deformation, the greater the pressure chest, Therefore, from the pointof view to meet regulations should increase the mounting angle of the steering columnreduces the contact force. But from the viewpoint of visceral injury shall meet the regulationsof the mounting angle of the steering column reducing the pleural pressure decrease,increasing the collision contact area between the chest and the steering wheel, reducing damage to the internal organs.
     The results from this study suggested that the numerical finite element model developedhere in could be used as a powerful tool for improving front and side impact automotivesafety. The model can be used to evaluate thoracic injury in real world crashes andautomotive safety regulations and dummy design and development.
引文
[1] Scurfield, Richard, et al.,World report on road traffic injury prevention[J].2004.
    [2]中华人民共和国公安部交通管理局.2010年道路交通事故统计年报[M].2012.
    [3] Ruan J, El-Jawahri R, Chai L, et al. Prediction and analysis of human thoracic impactresponses and injuries in cadaver impacts using a full human body finite elementmodel[J]. Stapp car crash journal,2003,47:299-321.
    [4] Viano D C, Lau I V, Asbury C, et al. Biomechanics of the human chest, abdomen, andpelvis in lateral impact[J]. Accident Analysis&Prevention,1989,21(6):553-574.
    [5] Yang K H, King A I. Development of an anthropomorphic numerical surrogate for injuryreduction (ANSIR)[J]. Journal of Mechanics in Medicine and Biology,2004,4(04):447-461.
    [6]朱海涛,孙振东,白鹏,等.汽车正面碰撞中乘员的胸部伤害分析[J].交通标准化,2009,11:010.
    [7] Anderson A E, Peters C L, Tuttle B D, et al. Subject-specific finite element model of thepelvis: development, validation and sensitivity studies[J]. Transactions of theASME-K-Journal of Biomechanical Engineering,2005,127(3):364-373.
    [8] Zhou Q, Rouhana S W, Melvin J W. Age effects on thoracic injury tolerance[C]//SAEPUBLICATION P-305. PROCEEDINGS OF THE40TH STAPP CAR CRASHCONFERENCE, NOVEMBER4-6,1996, ALBUQUERQUE, NEW MEXICO, USA(SAE TECHNICAL PAPER962421).1996.
    [9] Roberts S B, Chen P H. Elastostatic analysis of the human thoracic skeleton[J]. Journal ofbiomechanics,1970,3(6):527-545.
    [10] Andriacchi T, Schultz A, Belytschko T, et al. A model for studies of mechanicalinteractions between the human spine and rib cage[J]. Journal of biomechanics,1974,7(6):497-507.
    [11] Sundaram S H, Feng C C. Finite element analysis of the human thorax[J]. Journal ofBiomechanics,1977,10(8):505-516.
    [12] Plank G R, Eppinger R H. An improved finite element model of the humanthorax[C]//THE THIRTEENTH INTERNATIONAL TECHNICAL CONFERENCE ONEXPERIMENTAL SAFETY VEHICLES, NOVEMBER4-7,1991, PARIS, FRANCE.VOLUME2.1993.
    [13] Plank G R, Kleinberger M, Eppinger R H. Finite element modelling and analysis ofthorax/restraint system interaction[C]//Proceedings: International Technical Conferenceon the Enhanced Safety of Vehicles. National Highway Traffic Safety Administration,1995,1995:210-219.
    [14] Huang Y, King A I, Cavanaugh J M. Finite element modeling of gross motion of humancadavers in side impact[C]//SAE PUBLICATION P-279. PROCEEDINGS OF THE38TH STAPP CAR CRASH CONFERENCE, OCTOBER31-NOVEMBER4,1994,FORT LAUDERDALE, FLORIDA, USA (SAE TECHNICAL PAPER942207).1994.
    [15] Hui-chang K W. Development of a side impact finite element human thoracic model[D].Wayne State University,1995.
    [16] HAPPEE R H. A mathematical human body model for frontal and rearward seatedautomotive impact loading[C]//SAE PUBLICATION P-337. PROCEEDINGS OF THE42ND STAPP CAR CRASH CONFERENCE, NOVEMBER2-4,1998, TEMPE,ARIZONA, USA (SAE TECHNICAL PAPER983150).1998.
    [17] Howard M, Thomas A, Koch W, et al. Validation and application of a finite elementpedestrian humanoid model for use in pedestrian accidentsimulations[C]//PROCEEDINGS OF THE2000INTERNATIONAL IRCOBICONFERENCE ON THE BIOMECHANICS OF IMPACT, SEPTEMBER20-22,2000,MONTPELLIER, FRANCE.2000.
    [18] Furusu K, Watanabe I, Kato C, et al. Fundamental study of side impact analysis using thefinite element model of the human thorax[J]. JSAE Review,2001,22(2):195-199.
    [19] Iwamoto M, Kisanuki Y, Watanabe I, et al. Development of a finite element model of thetotal human model for safety (THUMS) and application to injuryreconstruction[C]//Proceedings of the International IRCOBI Conference.2002.
    [20] Jost R, Nurick G N. Finite Element Simulation of the Biomechanical Response of theHuman Body[C]//PROCEEDINGS OF THE2001INTERNATIONAL IRCOBICONFERENCE ON THE BIOMECHANICS OF IMPACT, OCTOBER10-12,2001,ISLE OF MAN (UK).2001.
    [21] LIZEE E, Robin S, Song E, et al. Development of a3D finite element model of thehuman body[M].1998.
    [22] Astier V, Thollon L, Arnoux P J, et al. Development of a finite element model of theshoulder: application during a side impact[J]. International Journal of Crashworthiness,2008,13(3):301-312.
    [23]胡辉莹,钟世镇,张美超,等.人体胸廓三维有限元模型的建立及应力分析研究[J].中国急救医学,2007,27(12):1098-1100.
    [24]张治纲.用于爆炸防护分析的人体胸部有限元模型研究[D].第三军医大学,2008.
    [25]雷旦.应用于汽车碰撞安全研究的人体胸部有限元模型的建立与仿真验证[D].华南理工大学,2011.
    [26] Han Y, Yang J, Mizuno K, et al. A study on chest injury mechanism and the effectivenessof a headform impact test for pedestrian chest protection from vehicle collisions[J].Safety Science,2012,50(5):1304-1312.
    [27]周芬.汽车碰撞人体腹部有限元模型构建与关键技术研究[D].华南理工大学,2012.
    [28]兰凤崇,蔡志华,陈吉清,等.汽车碰撞中胸-腹部的生物力学响应与损伤评价[J].华南理工大学学报(自然科学版),2012,40(12).
    [29]蔡志华,兰凤崇,陈吉清,等.基于汽车碰撞损伤的人体胸部有限元模型构建与验证[J].医用生物力学,2013,1:008.
    [30] Eggers A, Zhu F, Yang K H, et al. Predictions of neck load due to combined compressionand lateral bending[J]. International Journal of Vehicle Safety,2005,1(1):118-128.
    [31] Yang K H, King A I. Development of an anthropomorphic numerical surrogate for injuryreduction (ANSIR)[J]. Journal of Mechanics in Medicine and Biology,2004,4(04):447-461.
    [32]施磊.车辆碰撞事故中人体头部生物力学响应仿真模拟研究[D].华南理工大学,2011.
    [33]李凡.基于真实车辆—行人交通事故的颅脑损伤风险分析研究[D].湖南大学,2009.
    [34] Nahum, Alan M., and John Melvin,.Accidental injury: biomechanics and prevention[M].Springer,2002.
    [35] L'Abbe R J, Dainty D A, Newman J A. An experimental analysis of thoracic deflectionresponse to belt loading[C]//Proceedings of the7th International IRCOBI Conference onthe Biomechanics of Impacts, Cologne, September8,9,10,1982.1982(HS-036505).
    [36] Kent R, Lessley D, Sherwood C. Thoracic response to dynamic, non-impact loadingfrom a hub, distributed belt, diagonal belt, and double diagonal belts[J]. Stapp car crashjournal,2004,48:495.
    [37] Kent R, Ivarsson J, Maltese M R. Experimental Injury Biomechanics of the PediatricThorax and Abdomen[M]//Pediatric Injury Biomechanics. Springer New York,2013:221-285.
    [38] Vezin P, Bruyere-Garnier K, Bermond F, et al. Comparison of Hybrid III, Thor-alpha andPMHS Response in Frontal Sled Tests[J]. Stapp car crash journal,2002,46:1.
    [39] Shaw G, Parent D, Purtsezov S, et al. Impact response of restrained PMHS in frontalsled tests: skeletal deformation patterns under seat belt loading[J]. Stapp Car CrashJournal,2009,53:1-48.
    [40] Zhang L, Yang K H, Dwarampudi R, et al. Recent advances in brain injury research: anew human head model development and validation[J]. Stapp Car Crash Journal,2001,45:369.
    [41] Hardy W N, Foster C D, Mason M J, et al. Investigation of Head Injury MechanismsUsing Neutral Density Technology and High-Speed Biplanar X-ray[J]. Stapp Car CrashJournal,2001,45:337.
    [42] Vezin P, Verriest J P. Development of a set of numerical human models forsafety[C]//19th International Technical Conference on the Enhanced Safety of Vehicles,Washington DC, United States.2005:6-9.
    [43] Oshita F, Omori K, Nakahira Y, et al. Development of a finite element model of thehuman body[C]//7th International LS-DYNA Users Conference.2002,14(2):205-212.
    [44] Watanabe R, Miyazaki H, Kitagawa Y, et al. Research of collision speed dependency ofpedestrian head and chest injuries using human FE Model (THUMS Version4)[J].Accident Reconstruction Journal,2012,22(1):31-40.
    [45] Forbes P A. Development of a Human Body Model for the Analysis of Side ImpactAutomotive Thoracic Trauma[D]. University of Waterloo,2005.
    [46] Vavalle N A, Moreno D P, Rhyne A C, et al. Lateral impact validation of a geometricallyaccurate full body finite element model for blunt injury prediction[J]. Annals ofbiomedical engineering,2013:1-16.
    [47] Zhou Q, Rouhana SW, Melvin J W. Age effect on thoracic injury tolerance [C].40thStapp Car Crash Conf, Society of Automotive Engineers. Warrendale,1996:13-30
    [48]黄世霖,张金换,王晓冬.汽车碰撞与安全[M].清华大学出版社,2000.
    [49]马春生,黄世霖,张金换,等.汽车正面碰撞法规中乘员保护指标探讨[J].公路交通科技,2004,21(1):94-97.
    [50] Durbin D R, Chen I, Smith R, et al. Effects of seating position and appropriate restraintuse on the risk of injury to children in motor vehicle crashes[J]. Pediatrics,2005,115(3):e305-e309.
    [51] Mertz H J, Irwin A L, Melvin J W, et al. Size, weight and biomechanical impact responserequirements for adult size small female and large male dummies[J]. Training,1989,2013:11-06.
    [52] Cavanaugh J M, Zhu Y, Huang Y, et al. Injury and response of the thorax in side impactcadaveric tests[C]//Stapp Car Crash Conference,37th,1993, San Antonio, Texas, USA.1993(P-269).
    [53] Viano DC. Biomechanical responses and injuries in blunt lateral impact[C].33rd StappCar Crash Conference, Warrendale, Society of Automotive Engineers,1989.pp113–142,SAE Paper no:892432.
    [54] Patrick L M, Mertz H J, Kroell C K. Cadaver knee, chest and head impactloads[C]//Proceedings of the11th Stapp Car Crash Conference.1967:168-182.
    [55] Lobdell T E, Kroell C K, Schneider D C, et al. Impact response of the human thorax[J].Human Impact Response Measurement and Simulation,1973:201-245.
    [56] Kroell C K, Schneider D C, Nahum A M. Impact tolerance and response of the humanthorax II[C]//Stapp Car Crash Conference Proceedings.1974(SAE#741187).
    [57] Viano D C, Lau I V. A viscous tolerance criterion for soft tissue injury assessment[J].Journal of Biomechanics,1988,21(5):387-399.
    [58]吴时兵.汽车侧碰假人力学性能分析及其标定系统开发[D].湖南大学,2007.
    [59]蒋维城,丁刚毅. ANSYS/LS-DYNA算法基础和使用方法[M].北京:北京理工大学,1998
    [60]李娜.汽车碰撞中人体头颈部损伤有限元模型研究[D].中南大学,2010.
    [61]蔡志华,兰凤崇,陈吉清,等.汽车交通事故中头部损伤评估模型的构建与验证[J].汽车工程,2012(9):782-786.
    [62]蔡志华.行人在汽车碰撞事故中下肢损伤的有限元仿真研究[D].华南理工大学,2009.
    [63]张林.运动对骨力学性能的影响-骨生物力学研究进展[J].中国运动医学杂志,2002,21(1):85-88.
    [64]崔家仲,谭宗柒,张建国.骨的力学特性[J].中医正骨,2004,16(6):16-17.
    [65] Kleinman P K, Schlesinger A E. Mechanical factors associated with posterior ribfractures: laboratory and case studies[J]. Pediatric radiology,1997,27(1):87-91.
    [66] Li Z, Kindig M W, Kerrigan J R, et al. Rib fractures under anterior–posterior dynamicloads: Experimental and finite-element study[J]. Journal of biomechanics,2010,43(2):228-234.
    [67] Kemper A R, Kennedy E A, McNally C, et al. Reducing chest injuries in automobilecollisions: rib fracture timing and implications for thoracic injury criteria[J]. Annals ofbiomedical engineering,2011,39(8):2141-2151.
    [68] Kindig M, Li Z, Kent R, et al. Effect of intercostal muscle and costovertebral jointmaterial properties on human ribcage stiffness and kinematics[J]. Computer methods inbiomechanics and biomedical engineering,2013(ahead-of-print):1-15.
    [69] Deck C, Willinger R. Improved head injury criteria based on head FE model[J].International Journal of Crashworthiness,2008,13(6):667-678.
    [70] Kleiven S, Hardy W N. Correlation of an FE model of the human head with local brainmotion-consequences for injury prediction[C]//SAE CONFERENCE PROCEEDINGS P.SAE;1999,2002:123-144.
    [71] Roth S, Raul J S, Willinger R. Biofidelic child head FE model to simulate real worldtrauma[J]. Computer methods and programs in biomedicine,2008,90(3):262-274.
    [72] Horgan T J, Gilchrist M D. Influence of FE model variability in predicting brain motionand intracranial pressure changes in head impact simulations[J]. International Journal ofCrashworthiness,2004,9(4):401-418.
    [73] Kimpara H, Nakahira Y, Iwamoto M, et al. Investigation of anteroposterior head-neckresponses during severe frontal impacts using a brain-spinal cord complex FE model[J].Stapp car crash journal,2006,50:509-544.
    [74] Wolters C H, Anwander A, Tricoche X, et al. Influence of tissue conductivity anisotropyon EEG/MEG field and return current computation in a realistic head model: asimulation and visualization study using high-resolution finite element modeling[J].NeuroImage,2006,30(3):813-826.
    [75] Zhu F, Mao H, Dal Cengio L A, et al. Development of an FE model of the rat headsubjected to air shock loading[J]. Stapp car crash journal,2010,54:211.
    [76] Lobdell, T.F. Impact response of the human thorax. In Proceedings of the Symposium onHuman Impact Response, Human Impact Response: Measurement and Simulation,General Motors Research Laboratories, Plenum Press, New York–London.
    [77] Neathery R F, Lobdell T E. Mechanical simulation of human thorax underimpact[C]//Proceedings: Stapp Car Crash Conference. Society of Automotive EngineersSAE,1973,17.
    [78] Viano D C, Lau I V, Asbury C, et al. Biomechanics of the human chest, abdomen, andpelvis in lateral impact[J]. Accident Analysis&Prevention,1989,21(6):553-574.
    [79] Viano D C, King A I, Melvin J W, et al. Injury biomechanics research: an essentialelement in the prevention of trauma[J]. Journal of Biomechanics,1989,22(5):403-417.
    [80] Kroell C K, Schneider D C, Nahum A M, Impact tolerance and response of the humanthorax[C], SAT Publication PT-45, SAE Paper No.710851.
    [81] Kroell, Schneider, Nahum, Impact tolerance and response of the human thorax II, inbiomechanics of impact injury and injury tolerances of the thorax-shoulder complex[C],SAE Publication PT-45, SAE Paper No.741187.
    [82]杨济匡.汽车与行人碰撞中的损伤生物力学研究概览[J].汽车工程学报,2011,1(2):81-93.
    [83] Cavanaugh J M. The biomechanics of thoracic trauma[M]//Accidental Injury. SpringerNew York,1993:362-390.
    [84] Yee W Y, Cameron P A, Bailey M J. Road traffic injuries in the elderly[J]. Emergencymedicine journal,2006,23(1):42-46.
    [85] Youn Y, Han W H, Hong S J, et al. A Study of Thoracic Injury Criteria for ElderlyKorean Occupant[C]//International Technical Conference on the Enhanced Safety ofVehicles21st Proceedings.2009.
    [86] Tamura A, Watanabe I, Miki K. Elderly human thoracic FE model development andvalidation[C]//19th International Technical Conference on the Enhanced Vehicle Safety.2005.
    [87] Gayzik F S, Yu M M, Danelson K A, et al. Quantification of age-related shape change ofthe human rib cage through geometric morphometrics[J]. Journal of biomechanics,2008,41(7):1545-1554.
    [88] Carter D R, Beaupré G S, Beaupre G S. Skeletal function and form: mechanobiology ofskeletal development, aging, and regeneration[M]. Cambridge University Press,2007.
    [89] Nirula R, Allen B, Layman R, et al. Rib fracture stabilization in patients sustaining bluntchest injury[J]. The American surgeon,2006,72(4):307-309.
    [90] Sirmali M, Türüt H, Top u S, et al. A comprehensive analysis of traumatic rib fractures:morbidity, mortality and management[J]. European journal of cardio-thoracic surgery,2003,24(1):133-138.
    [91] Kleinman P K, Marks S C, Adams V I, et al. Factors affecting visualization of posteriorrib fractures in abused infants[J]. American Journal of Roentgenology,1988,150(3):635-638.
    [92]官凤娇.冲击载荷下的生物组织材料参数反求及损伤研究[D].湖南大学,2011.
    [93]田明俊.智能反演算法及其应用研究[D].大连理工大学,2005.
    [94] Kemper A R, McNally C, Kennedy E A, et al. Material properties of human rib corticalbone from dynamic tension coupon testing[J]. Stapp car crash journal,2005,49:199-230.
    [95] Kemper A R, McNally C, Pullins C A, et al. The biomechanics of human ribs: materialand structural properties from dynamic tension and bending tests[J]. Stapp car crashjournal,2007,51:235.
    [96] Subit D, de Dios E P, Valazquez-Ameijide J, et al. Tensile material properties of humanrib cortical bone under quasi-static and dynamic failure loading and influence of the bonemicrostucture on failure characteristics[J]. arXiv preprint arXiv:1108.0390,2011.
    [97] Zioupos P, Wang X T, Currey J D. The accumulation of fatigue microdamage in humancortical bone of two different ages[J]. Clinical Biomechanics,1996,11(7):365-375.
    [98] Zioupos P, Currey J D. Changes in the stiffness, strength, and toughness of humancortical bone with age[J]. Bone,1998,22(1):57-66.
    [99] Zioupos P. Recent developments in the study of failure of solid biomaterials andbone:‘fracture’and ‘pre-fracture’toughness[J]. Materials Science and Engineering: C,1998,6(1):33-40.
    [100] Zioupos P, Currey J D, Hamer A J. The role of collagen in the declining mechanicalproperties of aging human cortical bone[J]. Journal of Biomedical Materials Research,1999,45(2):108-116.
    [101] Zioupos P. Ageing human bone: factors affecting its biomechanical properties and therole of collagen[J]. Journal of Biomaterials Applications,2001,15(3):187-229.
    [102] Pithioux M, Subit D, Chabrand P. Comparison of compact bone failure under twodifferent loading rates: experimental and modelling approaches[J]. Medical engineering&physics,2004,26(8):647-653.
    [103] Li Z, Kindig MW, Subit D, Kent RW.Influence of mesh density, cortical thickness andmaterial properties on human rib fracture prediction. Medical engineering&physics.32:998-1008,2010.
    [104] Kent R, Lee S H, Darvish K, et al. Structural and material changes in the aging thoraxand their role in crash protection for older occupants[J]. Stapp car crash journal,2005,49:231.
    [105] Lau A, Oyen M L, Kent R W, et al. Indentation stiffness of aging human costalcartilage[J]. Acta Biomaterialia,2008,4(1):97-103.
    [106] Weyant M J, Fullerton D A. Blunt thoracic trauma[C]//Seminars in Thoracic andCardiovascular Surgery. WB Saunders,2008,20(1):26-30.
    [107] Deguchi T, Nasu M, Murakami K, et al. Quantitative evaluation of cortical bonethickness with computed tomographic scanning for orthodontic implants[J]. Americanjournal of orthodontics and dentofacial orthopedics,2006,129(6):721. e7-721. e12.
    [108] Parfitt A M. Age-related structural changes in trabecular and cortical bone: cellularmechanisms and biomechanical consequences[J]. Calcified Tissue International,1984,36(1): S123-S128.
    [109] Thompson D D. Age changes in bone mineralization, cortical thickness, and haversiancanal area[J]. Calcified tissue international,1980,31(1):5-11.
    [110] Miyamoto I, Tsuboi Y, Wada E, et al. Influence of cortical bone thickness and implantlength on implant stability at the time of surgery—clinical, prospective, biomechanical,and imaging study[J]. Bone,2005,37(6):776-780.
    [111] Pattimore D, Thomas P, Dave S H. Torso injury patterns and mechanisms in car crashes:an additional diagnostic tool[J]. Injury,1992,23(2):123-126.
    [112] Hayakawa H, Fischbeck P S, Fischhoff B. Traffic accident statistics and riskperceptions in Japan and the United States[J]. Accident Analysis&Prevention,2000,32(6):827-835.
    [113]刘宝松,王正国,翁格文,等.胸部撞击时心脏的动力学响应及心脏损伤[J].中华创伤杂志,1999,15(2):96-98.
    [114] Dyer D S, Moore E E, Ilke D N, et al. Thoracic aortic injury: how predictive ismechanism and is chest computed tomography a reliable screening tool? A prospectivestudy of1,561patients[J]. The Journal of Trauma and Acute Care Surgery,2000,48(4):673-683.
    [115] Williams J S, Graff J A, Uku J M, et al. Aortic injury in vehicular trauma[J]. The Annalsof thoracic surgery,1994,57(3):726-730.
    [116] Richens D, Field M, Neale M, et al. The mechanism of injury in blunt traumatic ruptureof the aorta[J]. European Journal of Cardio-Thoracic Surgery,2002,21(2):288-293.
    [117]王正国.交通事故伤[J].中国危重病急救医学,1999,11(6):325-326
    [118]麻晓林,杨志焕,王正国,等.209例肝脏损伤的院内救治[J].中华创伤杂志,2002,18(2):100-102.
    [119] Viano D C, Lau I V. A viscous tolerance criterion for soft tissue injury assessment[J].Journal of Biomechanics,1988,21(5):387-399.
    [120] Yang J. Review of injury biomechanics in car-pedestrian collisions[J]. InternationalJournal of Vehicle Safety,2005,1(1):100-117.
    [121] Roberts J C, Merkle A C, Biermann P J, et al. Computational and experimental modelsof the human torso for non-penetrating ballistic impact[J]. Journal of Biomechanics,2007,40(1):125-136.
    [122]钟志华.汽车碰撞安全技术.北京:机械工业出版社,2003.
    [123] Abbas A K, Hefny A F, Abu-Zidan F M. Seatbelts and road traffic collision injuries[J].World J Emerg Surg,2011,6:18.
    [124] Cameron M. World Report on Road Traffic Injury Prevention[J].2004.
    [125] Bean J D, Kahane C J, Mynatt M, et al. Fatalities in Frontal Crashes Despite Seat Beltsand Air Bags–Review of All CDS Cases–Model and Calendar Years2000-2007–122Fatalities[R].2009.
    [126]黄世霖,张金换.我国的汽车安全法规及碰撞安全技术[J].商用汽车,2002,11.
    [127]颜长征,王欣,覃祯员,等.汽车转向机构对驾驶员伤害的试验与仿真分析[J].汽车技术,2011(002):38-42.
    [128]王登峰,曾迥立.汽车吸能转向机构与驾驶员碰撞的仿真与试验[J].汽车工程,2003,25(1):20-24.
    [129]张晓云,金先龙,葛龙,等.面向国家标准的汽车转向机构安全性仿真[J].系统仿真学报,2003,15(2):228-230
    [130]王煊,李宏光,赵航等.现代汽车安全.北京:人民交通出版社,1998.
    [131]胡敬文.关注碰撞中易受伤害人群:用于损伤生物力学研究的有限元人体模型最新进展[J].汽车安全与节能学报,2012,3(4):295-307.
    [132]林小哲.汽车吸能转向机构的设计与碰撞仿真[D].浙江大学,2008.
    [133]徐伟全.方向盘致胸腹部创伤76例救治分析[J].中国医药科学,2012,2(12):218-218.
    [134]王建柏,高劲谋,胡平.道路交通事故致胸部损伤813例救治体会[J].创伤外科杂志,2011,13(3):202-204.
    [135]张志勇,郭梦和.116例胸部交通伤的损伤特点及救治分析[J].创伤外科杂志,2000,2(1):13-14.
    [136]周烽强,李校传,何相锋.298例交通事故致胸部损伤救治体会[J].中国煤炭工业医学杂志,20003(2):177~178.
    [137]胡远志,曾必强,谢书港,基于LS-DYNA和Hyperworks的汽车安全仿真与分析,清华大学出版社
    [138]曾迥立.汽车吸能防伤转向机构碰撞的仿真与试验研究[D].吉林大学,2002.
    [139]陈会.转向机构对驾驶员伤害的试验分析[J].客车技术与研究,2011,3:021.
    [140]李文强,高茜,傅剑华.防止汽车转向机构对驾驶员伤害的规定新标准及其解读[J].汽车科技,2012(4):76-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700