用户名: 密码: 验证码:
川西坳陷中段沙溪庙组沉积相与储层评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西坳陷位于四川盆地西部,是四川盆地西部晚三叠世以来陆相盆地的深坳陷部分,具备多套烃源层、多个烃源区、多期油气生成、多期油气成藏同时又经历了多个构造期调整和破坏,纵向上发育的多套生储盖组合孕育了多层含气层系。
     “十五”以来,西南油气分公司在川西坳陷中段中深层的天然气勘探中取得了显著的成效,但浅中层勘探程度愈来愈高,勘探难度愈来愈大,同时新场、洛带等浅中层气藏稳产形势严峻。
     本次论文针对研究区沙溪庙组气藏本身所具有的低孔渗、低丰度以及研究区圈闭形成历史复杂的特点,从基础资料入手,在研究区沙溪庙组层序地层研究的基础上,利用多种方法结合,系统研究了沙溪庙组沉积相特征、对研究区沙溪庙组储层特征分区进行了评价,并进一步综合分析了研究区沙溪庙组天然气成藏主控因素。
     取得的主要认识及创新性成果如下:
     (1)在前人研究基础上,通过露头、钻井、地震不同级别层序界面的识别以及层序结构和叠加样式的研究,结合沉积旋回特征,将研究区沙溪庙组划分为3个长期和8个中期旋回,实现了全区沙溪庙组的等时划分对比。
     (2)在川西地区首次利用泥岩颜色权值研究沉积古地貌。上沙溪庙组沉积中期合兴场-知新场地区泥岩颜色权值较两侧高,说明此时合兴场-知新场地区相对处于氧化环境,沉积水体较两侧浅,即知新场-龙宝梁构造带已开始形成,进一步佐证沙溪庙组沉积时期龙门山向盆内推覆和应力传递过程。
     (3)运用单因素分析方法,在砂岩厚度、砂地比、泥岩颜色特征、重矿物特征、轻矿物特征以及露头、测井古流向分析的基础上,结合单井相、剖面相、测井相和地震相研究,综合分析了物源的变迁、沉积相展布特征和沉积演化。
     1)沙溪庙期主要有以龙门山北段变质岩为主要母岩和以龙门山中段花岗岩等酸性岩浆岩为主要母岩的2大物源,古流向分别为北东东向南西西方向和由西北向东南方向。
     2)沙溪庙期龙门山中段物源沉积体系具贫长石、高石英的轻矿物特征,龙门山北段物源沉积体系相对具富长石、低石英的轻矿物特征;
     3)下沙溪庙组主要为三角洲前缘-湖相沉积体系,上沙溪庙组主要为三角洲平原(洪泛平原)-三角洲前缘-湖相沉积体系,反映了沙溪庙组沉积时期龙门山逐渐向盆内推覆。
     (4)将储层沉积物源、沉积速率、古地貌等宏观分析与储层岩石学特征、成岩作用、孔隙演化等微观研究紧密结合,研究了影响储层物性的主要成岩作用类型、强度与沉积特征的关系,初步建立了沙溪庙组相对高孔渗储层的地质预测方法。即古地貌较低的、沉积速率中等、富长石的水下分流河道砂体和河口坝砂体相对更好。
     (5)分区分层位完善了川西地区沙溪庙组储层参数的测井计算模型,对储层流体响应特征进行了进一步总结,完善了储层的流体判别方法和评价标准。沙溪庙组气层的测井响应特征为“三低二高”,即低自然伽玛、低中子、低密度、高声波、高电阻率。
     (6)采用盆地模拟软件,恢复出晚白垩世末、早白垩世末、蓬莱镇期末的沙溪庙组古构造形态。从沙溪庙组、遂宁组沉积末到早白垩世末,川西坳陷中段沙溪庙组的构造形态呈南高北低;晚白垩世末,川西中段彭县-崇州地区变成坳陷,孝泉-新场-合兴场-丰谷隆起出现。洛带、中江、大邑等地区在晚白垩世末、早白垩世末、蓬莱镇期末处于继承性高部位。
     (7)总结了弱形变区浅中层成藏模式-幕式成藏模式,明确指出了幕式成藏模式具有近源成藏的特点,即弱形变区下侏罗统勘探前景更好;完善了烃源断层成藏模式的主控因素,即储层与烃源断层接触面的大小是油气横向运移和聚集的基础,由此提出勘探部署应注重地震异常与断层配置的描述。
West Sichuan Depression, located in western Sichuan Basin, is deep depression part of the basin since the Late Triassic. West Sichuan Depression have developed many sets of hydrocarbon source beds, a number of hydrocarbon source area, multi-phase oil and gas generation and accumulation, also have accompanied several tectonic adjustments and destruction episodes, so there were several sets of source-reservoir-cap system in vertical.
     Since 11th five-year plan, Exploration and Production Research Institute of Southwest Branch Company has achieved remarkable success in deep formation gas exploration in Middle West Sichuan Depression, but as exploration degree and difficulty of shallow and middle formation is getting higher and higher, stable yield situation of shallow gas reservoirs, such as Xinchang, Luodai gas fields is becoming more pessimistical.
     Shaximiao gas reservoir itself has a low porosity and permeability, low abundance, as well as traps in the study area characterized by the formation of a complex history. Based on sequence stratigraphy studies and combined use of various other methods, the paper systematically studied Shaximiao sedimentary facies characteristics, and evaluated different block reservoir characteristics of Shaximiao formation, then comprehensively analyzed Shaximiao formation accumulation controlling factors.
     The main access to knowledge and innovative results are as follows:
     (1) On the basis of previous research, the outcrop, drilling, seismic sequence boundary identification at different levels and sequence structure and stacking pattern studies, combined with sedimentary cycle characteristics of the study area, the Shaximiao formation is divided into 3 long and 8 intermediate-term cycles, and isochronous comparison of Shaximiao formation over whole study region is achieved
     (2) Depositional paleotopography was studies by using of the color weight value for shale in the West Sichuan depression for the first time. The shale color weight value of central zhixinchang and hexingchang region is higher than that of it both sides in middle period of upper Shaximiao deposition, this indicates the area remain at a relatively oxidizing environment, water depth was relatively shallow, that is, the structural belt has begun to take place, and this also further proved Longmen Mountains to napping toward the basin and Stress Transfer during period of Shaximiao deposition.
     (3) By single-factor analysis methods, such an the thickness of sandstone, ratio of sand to mud, shale color weight value, heavy and light mineral characteristics, outcrops and logging paleocurrent, as well as by comprehensive analysis on the single-well phase, profile phase, logging phase and seismic facies, the material source changes, sedimentary evolution and distribution of sedimentary facies of Shaximiao formation was systematically studied , the results are as follows:
     1) There are two primary provenances of Shaximiao formation: one is the northern section of the Longmen Mts metamorphic rocks, and the other is central section of Longmen Mts acid igneous rocks, the two main paleoflow was to the NEE and SE respectively.
     2)The northern section of Longmen Mts provenance-depositional system was poor feldspar, high-quartz light mineral characteristics during period of Shaximiao , by contrary, the central section of Longmen Mts provenance-depositional system is charactered with feldspar-rich, low-quartz light mineral.
     3) Two different facies Association were identified in shaximiao formation, the lower Shaximiao formation mainly Consists of prodelta and lacustrine depositional systems, the upper shaximiao formation are formed by the delta plain、prodelta and lacustrine depositional systems. This show that the Longmen Mts thrusts push over towards basin during Shaximiao period gradually.
     (4) Based on the macro-analysis of provenance, deposition rate, paleotopography and the micro-analysis of reservoir rock characteristics, diagenesis, porosity evolution, the effects of the main diagenetic type,intensity and sedimentary on reservoir quality are studied, and also the geological prediction method about relatively high porosity and permeability is also established initially. The Predicted results show that the underwater distributary channel and mouth bar sands body which are relatively low paleotopography, moderate deposition rate and feldspar-rich are relatively better. (5) Shaximiao reservoir parameters of logging calculation model is improved based on different area and strata in western Sichuan basin, the logging response characteristics of reservoir fluid was further summarized, and reservoir fluid checking Method and evaluation criteria are improved. The logging response characteristics of Shaximiao gas reservoir are low natural gamma, low-neutron, low-density, high-sound waves and high resistivity.
     (6) By basin modeling, shaximaio formation palaeostructure is recovered at the end of the Late Cretaceous, Early Cretaceous, and Penglaizhen period respectively. From period of the Shaximiao and Suining deposition to the end of Early Cretaceous, the Shaximiao structure shapes was higher in the South than in the north; Late Cretaceous, the Peng xian- Chongzhou region of middle West Sichuan Depression was a depression, and xiaoquan - xinchang - hexiangchang - Feng Gu structural uplift occurred. Luodai-zhongjiang- Dayi regions at the end of Late Cretaceous、Early Cretaceous and Penglaizhen period was the inherited structure high.
     (7) Accumulation model—episodic accumulation model of the shallow and mid formation with weak deformation is summed up, the model clearly points out that the episodic accumulation model is charactered with near-source accumulation, namely, the Lower Jurassic with weak deformation is the better exploration prospects; Controlling factors of the source -fault of hydrocarbon accumulation mode is improved , namely, size of contact surface between reservoir and source fault is the basic factor that affects lateral migration and accumulation of oil and gas, so exploration should focus on the seismic anomaly and fault configuration description.
引文
[1]陈亮,彭仕宓,聂昌谋.胡状集油田胡十二块剩余油微观形成机研究[J].断块油气田,1997,4(4):43-45.
    [2]陈亮,黄述旺,牛艳平.胡十二块注水前后储集层参数模型的建立[J].断块油田,1999,6(2):26-29.
    [3]曾流芳,赵国景,张子海,等.疏松砂岩油藏大孔道形成机理及判别方法[J].应用基础与工程科学学报,2002,10(3):56-64.
    [4]刘森,熊廷柱,刘俊霞,等.五参数注水剖面测井在中原油田的应用[J].测井技术,2002,26(6):78-82.
    [5]王端平,柳强.复杂断块油田精细油藏描述[J].石油学报,2000,21(6):111-117.
    [6]何琰,殷军,吴念胜.储集层非均质性描述的地质统计学方法[J].西南石油学院学报,2001,23(3):21-23.
    [7]康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245.
    [8]曹国强.柴达木盆地西部地区第三系沉积相研究.2004.
    [9]陈友飞.沉积相研究及其若干理论[J].福建师范大学学报,1998.112-118.
    [10]赵澄林,季汉成.现代沉积[M].北京:石油工业出版社,1997.5-6
    [11]刘传联.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J].沉积学报,1998,16(3):109-114.
    [12]李守军.正烷烃、姥绞烷与植烷对沉积环境的指示意义-以山东济阳坳陷下第三系为例[J].石油大学学报(自然科学版),1999,23(5):14-23.
    [13]SeilacherA.Bathymetry of trace fossils. Marine Geol.,1967,5:413-428.
    [14]欧成华,陈景山.沉积相定量识别中的层次分析方法[J].石油与天然气地质,1999,20(3):255-259.
    [15]王硕儒.模糊综合评判法及其对海相碳酸盐岩相的识别[J].石油学报,1992,3(l):12-16.
    [16]冉启全,李仕伦.用神经网络模式识别沉积微相[J].石油勘探与开发,1995,22(2):255-259.
    [17]雍世和,文政.用Byaes判别法定量识别沉积微相[J].测井技术,1995,19(l):22-27.
    [18]张春生.最大赋权树模糊聚类分析在沉积相划分中的应用[J].江汉石油学院学报,1992,14(2):65-69.
    [19]周江羽,吴冲龙,李星等.扇形沉积体生长过程的动力学机制及分形模拟[J].2000,25(1):33-38.
    [20]Dickin A P. Radiogenic Isotope Geology Cambridge:Cambridge University Press,1995.
    [21]Derry L A,Kaufman A J,Jacobsen SB.Sedimentary cycling and environmental change in the late proterozoic:Evidence from stable and radio genic isotopes.Goschimicaet Cosmochimica Acta,1992,56:1317-1329.
    [22]Coleman DC,Fry B. Carbon Isotope Techniques .New York:Academic Press,1991.
    [23]龚一鸣.当今遗迹学研究的热点和前沿—第29届国际地质大会遗迹学综述[J].地球科学:中国地质大学学报,1993,18(4):514-516.
    [24]Milliman J D,Syvitsky J P M.Geomorphic/tectonic control of sediment discharge to theocean.
    [25]孙枢,王清晨.80年代我国沉积学研究之回顾[J].科学通报,1991,36(3):161-164
    [26]李铁松,李从先.潮坪沉积与事件[J].科学通报, 1993, 38 (19):1778-1782
    [27]梁桂香.风暴沉积及其构造背景[J].世界地质,1994,13(3):131-143.
    [28]江茂生,沙庆安.碳酸盐与陆源碎屑混合沉积体系研究进展[J].地球科学进展,1995,10(6):551-554
    [29]于兴河.碎屑岩系油气储层沉积学[J].北京:石油工业出版社,2002.
    [30]曾允孚,覃建雄.沉积学发展现状与前瞻[J].成都理工学院学报(自然科学版),1999,26(1):1-7.
    [31]裘亦楠.储层沉积学研究工程流程[J].石油勘探与开发,1990,17(1):85-90.
    [32]裘亦楠.储层地质模型[J].石油学报,1991,12(4):55-62.
    [33]裘铎楠,贾爱林.储层地质模型10年[J].石油学报,2000,21(4):101-104.
    [34]林承焰,侯加根,侯连华,等.油气储层三维定量地质建模方法和配套技术[J].石油大学学报(自然科学版),1996,20(4):20-25.
    [35]张永贵,李允,陈明强.储层地质统计随机建模[J].石油大学学报〔自然科学版),1998,22(3):113-119.
    [36]吕晓光,李长山,蔡希源,等.松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型[J].沉积学报,1999,17(4):572-577.
    [37]吕晓光,王家华,潘憋,等.指示主成分模拟建立分流河道砂体相模型[J].石油学报,2003.24(1):51-57.
    [38]吕晓光,张永庆,陈兵,等.深度开发油田确定性与随机建模结合的相控建模[J].石油学报,2004,25(5):60-64.
    [39]胡向阳,熊琦华,吴胜和.储层建模方法研究进展[J].石油大学学报(自然科学版),2001,25(1):107-112.
    [40]印兴耀,刘永社.储层建模中地质统计学整合地震数据的方法及研究进展[J].石油地球物理勘探,2002,37(4):423-430.
    [41]杨辉廷,颜其彬,李敏,等.应用改进的神经网络学习方法预测储层参数[J].天然气工业,2005,25(6):37-39.
    [42]Surdarm R C,Boese S W,Crossey L J.The chemistry of secondary porosity.AAPG Memoir.1984,37:127-149.
    [43]郑浚茂,吴仁龙.黄弊坳陷砂岩储层的成岩作用与孔隙分带性[J].石油与天然气地质,1996,17(4):268-275.
    [44]黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995, 13(1):7-17.
    [45]于兴河,王德发.陆相断陷盆地三角洲相构形要素及其储层地质模型[J].地质论评,1997,43(3):225-231.
    [46]Wilkinson M,Darby D,Haszeldine R S,et a1.Secondary Porosity Generation During Deep Burial Assocdated with Overpressure Leak.of:Fulmar Formation,UK Central Graben.AAPG Bulletin,1997,81(5):803-812.
    [47]Zhu J X,Li S Z,Sun X M,et al.,Discovery of Early Tertiary Hydrothermal Activity and Its Significance in Oil/Gas Geology,Dongpu Depression,Henan Province,China.ChineseJournal of Geochemistry,1994,13(3):270-283.
    [48]黄思静,侯中健.地下孔隙率和渗透率在空间和时间上的变化及影响因素[J].沉积学报,2001,19(2):224-232.
    [49]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].中国地质大学学报,2003,28(4):419-424.
    [50]黄思静,谢连文,张萌,等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004.31(3):273-279.
    [51]袁静,赵澄林.水介质的化学性质和流动方式对深部碎屑岩储层成岩作用的影响[J].石油大学学报(自然科学版),2000,24(1):60-63.
    [52]邱隆伟,姜在兴,陈文学,等-种新的储层孔隙成因类型—石英溶解型次生孔隙.沉积学报[J].2002,20(4):621-627.
    [53]Weber K J,Kantorowicz J D and Williams H.Geological modelling of hydrocarbon reservoirs.Marine and Petroleum Geology,1991,8(2):245-246.
    [54]Martinius A W and Nieuwenhuijs R A.Geological description of flow units in channel sandstones in a fluvial reservoir analogue (Loranca Basin,Spain).Petroleum Geoscience,1995,1(3):237-252.
    [55]Wong P M,Tamhane D and Wang L.A neural-network approach to knowledge-based well interpolation : a case study of a fluvial sandstone reservoir.Journal of Petroleum Geology.1997,20(3):363-372.
    [56]Dutton S P and Willis B J.Comparison of outcrop and subsurface sandstone permeability distribution,Lower Cretaceous Fall River Formation,South Dakota and Wyoming.Journal of Sedimentary Research,1998,68(5):890-900.
    [57]尹艳树,吴胜和,张昌民,等.用多种随机建模方法综合预测储层微相.石油学报,2006,27(2):68-71.
    [58]杨仁超.储层地质学研究新进展[J].特种油气藏,2006,13(4):1-5.
    [59]罗啸泉.成都市洛带地区沙溪庙组沉积相及储集条件分析[J].四川地质学报.2005,25(1):4-7.
    [60]朱彤.成岩作用对致密砂岩储层储集性的控制作用研究—以川西新场气田上沙溪庙组气藏为例[J].成都理工学院学报.1999,26(2):157-160.
    [61]王威,徐国盛,崔建伟,廖义沙.川西坳陷洛带气田沙溪庙组天然气成藏规律[J].油气地质与采收率.2007,19(5):39-41.
    [62]曾小英.川西坳陷沙溪庙组储层的成岩作用及孔隙演化[J].93-97.
    [63]邓莉.川西坳陷沙溪庙组气藏成藏主控因素探讨[J].断块油气田.2003,10(5):26-28.
    [64]李剑波.川西坳陷中段沙溪庙组测井相和地震相及砂体展布特征[J].成都理工学院学报.2001,28(3):279-283.
    [65]杨凯歌.川西洛带地区上沙溪庙组储层特征研究.成都理工大学学位论文,2009:1-2.
    [66]李建林,徐国盛,朱平,周连德.川西洛带气田沙溪庙组储层成岩作用与孔隙演化[J].石油实验地质.2007,29(6):565-571.
    [67]廖义沙.川西洛带气田中份罗统沙溪庙组天然气成藏规律研究.成都理工大学学位论文,2008:1-4.
    [68]谭万仓,侯明才,董桂玉,陈兆荣.川西前陆盆地中侏罗统沙溪庙组沉积体系研究[J].东华理工大学学报(自然科学版).2008,31(4):336-343.
    [69]吕正祥,叶素娟,卿淳,杨开珍.川西孝泉气田沙溪庙组上部储层特征及评价[J].天然气工业.2000:20(5):15-17
    [70]叶军,朱彤,赵泽江.川西新场气田上沙溪庙组(J2s)气藏储集体特征及形成机理研究[J].石油实验地质.1998,4:332-339.
    [71]吕正祥,卿淳.川西新场气田上沙溪庙组储层渗透性的地质影响因素[J].沉积与特提斯地质.2001,21(2):57-63.
    [72]邓颖,黎华继,戚斌,马丽梅.川西新场气田上沙溪庙组储层特征[J].西安工程学院学报.2001,23(4):32-36.
    [73]吕正祥,卿淳,曾小英.川西新场气田下沙溪庙组气藏预测评价研究[J].石油实验地质.2001,23(4):400-402.
    [74]黎邦荣,黎从军,徐炳高.古构造对新场气田沙溪庙气藏的奠基作用[J].石油与天然气地质.1998,19(4):346-350.
    [75]唐大海,陈洪斌,谢继容,罗远平,曹世昌.四川盆地西部侏罗系沙溪庙组气藏成藏条件[J].天然气勘探与开发.2005,28(3):14-19.
    [76]刘伟.新场气田沙溪庙组Js2气藏储层建模研究.成都理工大学学位论文.2007:2-3.
    [77]张晟,李书舜.新场气田上沙溪庙组下部气藏沉积微相研究[J].成都理工学院学报.1999,26(2):154-156.
    [78]邓小江,李国蓉,王安发.新场气田中侏罗统沙溪庙组一段的储集特征[J].地质找矿论丛.2005,20(2):132-136.
    [79]黄建红,王洪辉,曾剑毅,段新国,蔡左花.一种致密碎屑岩储层产能预测的新方法—以新场气田沙溪庙组为例[J].四川文理学院学报(自然科学).2009,19(5):114-117.
    [80]李剑波,何金权,简万红.中江地区沙溪庙组层序地层特征初步研究[J].矿物岩石.1998,18(1):66-70.
    [81]罗志立.1991.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报,18(1):1-7.
    [82]罗志立,龙学明.1992.龙门山造山带的崛起和川西前陆盆地的沉降[J].四川地质学报,12(1):1-17.
    [83]罗志立.1998.四川盆地基底结构的新认识[J].成都理工学院学报,25(2):191-200.
    [84]何登发,吕修祥等.前陆盆地分析[M].北京:石油工业出版社,1996.
    [85]Burchfiel BC.,Chenzhilang,LiuYuping,et al.,tectonics of the Longmen Shan and adjacent regions,central China.International Geology Review,1995,37:661-735.
    [86]罗志立主编.龙门山造山带的崛起和四川盆地的形成与演化[M].成都:成都科技大学出版社,1994.
    [87]魏显贵等.米仓山推覆构造的结构样式及演化特征[J].矿物岩石,1997,17(增刊):114-122.
    [88]张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,15(2):1-14.
    [89]张国伟,郭安林等.中国大陆构造中的西秦岭-松潘大陆构造结构[J].地学前缘,2004,11(3):23-32.
    [90]黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化[M].北京:地质出版社.
    [91]许志琴,侯立纬,王宗秀,等.1992.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社.
    [92]任纪舜.中国大陆的组成、结构、演化和动力学[J].地球学报-中国地质科学院院报,1994,3-4:5-13.
    [93]杨巍然,邓清录.扬子克拉通与秦岭造山带的构造关系及金刚石矿的找寻[J].地质科技情报,1991,1.
    [94]张国伟,孟庆任,于在平.秦岭造山带的造山过程及其动力学特征[J].中国科学D辑,1996,26(3):193-200.
    [95]王鸿祯,徐成彦,周正国.东秦岭古海域两侧大陆边缘区的构造发展[J].地质学报,1982,2(3):175-183.
    [96]蔡学林,曹家敏等.青藏高原多向碰撞-楔入隆升地球动力学模式[J].地学前缘,1999,6(3):181-189.
    [97]刘树根,龙门山冲断带与川西前陆盆地的形成演化[M].成都,电子科技大学出版社,1993.
    [98]杨克明,朱彤,何鲤.龙门山逆冲推覆带构造特征及勘探潜力分析[J].石油实验地质,2003,25(6):685-700.
    [99]罗志立,雍自权,刘树根等.四川汶川大地震与C型俯冲的关系和防震减灾的建议[J].成都理工大学学报(自然科学版),2008,31(4):338-347.
    [100]杨长清,刘树根,曹波等.龙门山造山带与川西前陆盆地耦合关系及其对油气成藏的控制[J].成都理工大学学报(自然科学版),2008,35(4):471-476.
    [101]王金琪.龙门山印支运动主幕辨析-再论安县构造运动[J].四川地质学报,2003,23(2):65-69.
    [102]王二七,孟庆任,陈智梁,等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375-384.
    [103]刘树根,罗志立,戴苏兰,等.1995.龙门山冲断带的隆生和川西前陆盆地的沉降[J].地质学报,69(3):205-214.
    [104]许效松等.中国西部大型盆地分析及地球动力学[M].北京:地质出版社,1997.
    [105]汪泽成,赵文智等.四川盆地构造层序与天然气勘探[M].北京.地质出版社,2002.
    [106]李书兵,何鲤,柳梅青.四川盆地晚三叠世以来陆相盆地演化史[J].天然气工业,1999,19(增刊):18-23.
    [107]辜学达,刘啸虎.四川省岩石地层[M].武汉:中国地质大学出版社,1997.
    [108]四川省地质矿产局.四川省区域地质志[M].地质出版社,1991.
    [109]邓康龄等.四川盆地西部晚三叠世早期地层及其沉积环境[J].石油与天然气地质,1982.
    [110]许效松,刘宝珺等.上扬子西缘二叠纪-三叠纪层序地层与盆山转换耦合[M]北京:地质出版社,1997.
    [111]张键、李国辉、谢继容等.四川盆地上三叠统划分对比研究[J].天然气工业,2006,26(1):12-15.
    [112]P.R.Vail.Seismic Stratigraphic Interpretation Using Sequence Stratigraphy.Part 1:Seismic Stratigraphic Interpretation Procedure[A] . In Bally A W , ed.Atlas of Seismic Stratigraphic[C].American Association of Petroleum Geologists,Studies in Geology,1987,27:1-10.
    [113]A.T.Cross,M.A.Lessenger.Sediment Volume Partitioning:Rationale for Stratigraphic Model Evaluation and High-Resolution Stratigraphic Correlation[R].Accepted for publication in Norwegian Petroleums-Forening Conference Volume,Jluy.1996,1-24.
    [114]邓宏文.美国层序地层研究中的新学派-高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [115]邓宏文,王洪亮,李熙吉.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-184.
    [116]邓宏文,王洪亮,李小孟.高分辨率层序地层对比在河流相中的应用[J].石油与天然气地质,1997,18(2):90-95.
    [117]郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249-255.
    [118]郑荣才,尹世民,彭军.基准面旋回结构与叠加样式的沉积动力学分析[J].沉积学报,2000,18(3):369-375.
    [119]H.G.里丁主编,周明鉴、陈昌明等译.沉积环境和相[M].北京:科学出版社,1985.
    [120]裘亦楠.中国陆相碎屑岩储层沉积学[J].沉积学报,1992,10(3):16-23.
    [121]曾允孚,覃建雄.沉积学发展现状与前瞻[J].成都理工学院学报,1999,26(1):1-7.
    [122]姜在兴主编.沉积学[M].北京:石油工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700