用户名: 密码: 验证码:
调速型液力偶合器热流耦合与换热系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传统能源的日趋枯竭,发展低碳经济、节能降耗成为当今工业发展的必经之路。调速型液力偶合器具有显著的节能效果,在大型泵与风机用量不断增加的情况下,大功率调速型液力偶合器的应用将会产生巨大的经济效益和社会效益。调速型液力偶合器具有启动平稳、无级调速、减缓设备冲击扭振等优越性能。调速型液力偶合器是利用转差进行调速的,存在转差功率损失,这些损失的能量将转变为热能,使工作液体的温度不断升高。如果这些高温工作液体不能得到及时冷却,将使工作液体的物理性质发生改变,如密度和黏度降低,进而使传动能力下降,严重时将导致密封元件老化、漏油和渗油现象的发生。据调查,液力传动油温度过高是调速型液力偶合器的常见故障之一。为了解决这一问题,本文以国家高技术研究发展计划(863计划)专题课题“大型泵与风机液力调速节能关键技术研究(2007AA05Z256)”为依托,针对大功率调速型液力偶合器工作腔以及换热器内的流动和换热特性进行数值计算和实验研究,通过数值计算使其内部流动和换热规律实现可视化,从而为液力偶合器的优化设计、换热器的匹配及改进提供一定的理论基础。本文的研究内容主要有以下几个方面:
     1.调速型液力偶合器的热流耦合研究
     介绍了符合液力偶合器内流体流动与换热特点的控制方程,将静止坐标系下的控制方程转换到旋转坐标系下,推导出用流场变量表示的能量方程,指出流场与温度场的耦合关系。以YOCQZ465调速型液力偶合器为研究对象,对其工作腔内流体的流动与换热进行数值计算。考虑到研究对象为三维黏性非稳态的两相湍流流动传热,在建立控制方程组时,选取了连续性方程、动量方程、能量方程,并采用k ε两方程湍流模型封闭上述方程组。为了使仿真计算结果更加真实可靠,计算区域选取全流道模型,使用非结构混合网格法生成了网格模型,并采用多流动区域耦合算法中的滑移网格法对泵轮和涡轮流道进行统一计算,该方法对复杂的流动传热问题的数值研究具有一定的指导意义。
     2.调速型液力偶合器的热流耦合数值计算与分析
     通过经验公式计算出热电厂锅炉给水泵用YOCQZ465调速型液力偶合器的最大转差功率损失工况点为全充液,转速比为0.667时,即(i=0.667,qc=100%)。对该工况点与典型牵引工况点(i=0.8,qc=80%)的液力偶合器工作腔流体的流动换热进行了数值计算。通过对两种工况下液力偶合器工作腔内流体温度场的计算,得出液力偶合器处于最大转差功率损失工况点时内部流体温度较高的结论,证明了经验公式的正确性。通过对两种工况下液力偶合器全流道与流道切面的速度场、温度场、压力场、以及液相体积分布图的分析与研究,指出调速型液力偶合器在全充液和部分充液情况下工作腔内流体流动与换热规律。通过对这些流动换热特性形成原因的分析与研究,证明流体的黏度和工作腔内的几何形状对液力偶合器内流动与能量传递有很大的影响,对调速型液力偶合器的优化设计,提高其工作性能具有一定的指导意义。在此基础上,本文绘制了液力偶合器在不同工作油温时各个工况下的转矩曲线,通过对比表明,在合理范围内油温过高,传递转矩能力下降,因此在实际工作中,应尽量避免工作油温升较高的工况。
     3.换热器流动换热数值分析及其结构改进
     对热电厂锅炉给水泵调速用YOCQZ465调速型液力偶合器现用换热器的冷却能力进行理论分析。根据管壳式换热器实体进行三维建模,对整个流动区域进行流动传热的数值计算。数值模拟得到换热器壳程和管程内流体速度场与温度场,揭示了管壳式换热器内两种工作介质的真实流动及换热情况。这有助于进一步了解管壳式换热器的换热机理。
     根据强化传热技术理论对管壳式换热器的管程和壳程进行结构改进,改进后的管壳式换热器体积变小,抗结垢能力增强,能耗降低。利用CFD数值模拟软件分析了结构改进前后换热管及壳程流体的流动情况和换热性能,结果表明改进后的换热器的综合换热性能明显优于改进前的换热器。
     4.调速型液力偶合器热平衡实验研究
     针对YOCQZ465调速型液力偶合器的热平衡问题进行了实验研究,分别对热电厂典型牵引工况和空载试验台上液力偶合器各个主要温度测试点进行数据采集。热电厂典型牵引工况下采集的液力偶合器进出口油温与CFD数值模拟结果基本相符,证明了本文所采用的数值计算方法具有一定的可靠性,对于较复杂情况下的流动换热研究具有一定的指导意义。通过对空载实验数据的分析能够了解除负载外还有其它原因带来的能量损失,为数值计算方法的完善和数值计算结果的修正提供依据。
With the traditional energy shortage, the development of low carbon economyand energy saving have become the only way of the industry development. Thevariable speed hydrodynamic coupling has a remarkable energy-saving effect. In thecase of the increasing amount of the large-scale pumps and fans, the application of thehigh-power variable speed hydrodynamic coupling will generate enormous economicand social benefits. The variable speed hydrodynamic coupling has some superiorperformances such as achieving the smooth start, stepless speed adjustment andreducing the impulse and vibration. The speed of variable speed hydrodynamiccoupling is controlled by the use of slip, which can lead to the loss of energy. The lossof energy will change into heat energy and make the temperature of work liquid keeprising. If this heat can not get cooled timely, it will change the physical properties ofthe hydrodynamic transmission oil, such as density and viscosity reduction. Thereby itwill enable the transmission capacity decline. More seriously, it will result on theaging of the sealing elements and lead to the phenomenon of oil impregnate and oilleakage. According to the survey, it is one of the frequent troubles that thehydrodynamic transmission oil temperature is too high. To solve these problems whatare said above, supported by “Key Technology Research on Hydrodynamic VariableSpeed and Saving Energy of Large Pump and Fan(2007AA05Z256)” of the NationalHigh-tech Research Development Plan (863Plan), this thesis aims at the flow and theheat transfer characteristics of the working chamber of the high-power variable speedhydrodynamic coupling and the heat exchanger. This thesis carried out the numericalcalculation and experimental research to show the internal flow and heat transfer lawsaccurately, accordingly, and provided a theoretical basis for the optimizing design ofthe hydrodynamic coupling and the matching and optimization of the heat exchanger.This paper is mainly about the following aspects:
     1. Study on heat flow coupling of variable speed hydrodynamic coupling
     It is introduced that the control equations which conform the characteristics ofthe fluid flow and heat transfer in the hydrodynamic coupling,and the controlequations are transformed from the static coordinates to the rotating coordinates,andthe energy equation has been derived which can be represented by the flow fieldvariables,and points out the coupling relationship between the flow field andtemperature field.YOCQZ465variable speed hydrodynamic coupling was taken asthe study object. Flow and heat transfer of numerical calculation were carried out forthe working chamber of the fluid. Considering that the research object isthree-dimension viscous of two-phase unsteady turbulent flow, controlling equationsare composed of the continuity equation of mixed model, the momentum equation,energy equation and k εtwo equations of turbulence. In order to make thesimulation results more accurate and reliable, the whole flow field was as thecalculation region, divided by mixed element unstructured grid and sliding mesh. Themethod mentioned in this paper can be a theoretical reference for numericalsimulation on complex flow and heat transfer.
     2. Numerical calculation and analysis of heat-flow coupling for variablespeed hydrodynamic coupling
     The maximum point of slip power loss for YOCQZ465variable speedhydrodynamic coupling of thermal power plant boiler feed-water pump is fluid-filledand0.667of speed ratio case through empirical formula calculation, that isqc=100%,i=0.667.Numerical calculation of flow and heat transfer was carried outfor fluid of working chamber at the operating point and typical traction operatingpoint, which is80%fluid filled and0.8of speed ratio. The results show that fluidtemperature is higher at the maximum slip power loss of operating point, whichproves that the empirical formula is correct. Through analysis and research onvelocity field, temperature field, pressure field and the liquid phase volumedistribution of the whole flow passage and flow passage section at the two operatingpoints of hydrodynamic coupling, it was revealed that flow and heat transfer law ofthe working chamber under full fluid filled and partially fluid filled. Through analysisand study on the cause of the characteristics of flow and heat transfer, the workingmechanism of variable speed hydrodynamic coupling was understood more deeply,which can guide optimization design of variable speed hydrodynamic coupling andimprove its performance. It has been proved that the fluid viscosity and the geometry shape in the working chamber have a great influence on the flow in the hydrodynamiccoupling and energy transfer by the analysis and study on the forming reasons of theheat transfer characteristics of flow, which has a certain guiding significance for theoptimal design of speed control type hydrodynamic coupling and improve their workperformance. On this basis, this paper drew torque curve of the hydrodynamiccoupling in different temperature under various working conditions. The comparisonsshow that the higher oil temperature can causes the drive performance declined.Therefore, maximum slip power loss of operating point should try to be avoided inpractical work in order to prevent working oil temperature rising.
     3. Heat exchanger flow and heat transfer numerical analysis and StructuralImprovement
     This paper analyzed the cooling capacity of heat exchanger for YOCQZ465variable speed hydrodynamic coupling of thermal power plant boiler feed-water pumptheoretically. Three dimensional entity modeling was set up according toshell-and-tube heat exchanger and the numerical calculation of flow and heat transferin the whole flow area were carried out. The velocity fields and temperature fields ofheat exchanger shell and tube were obtained through numerical simulation, whichrevealed two working medium flow and heat transfer situation in the shell-and-tubeheat exchanger. This contributed to the further understand of heat transfer mechanismof shell-and-tube heat exchanger.
     The tube and shell structures of shell-and-tube heat exchanger were optimizedaccording to heat transfer enhancement technology and then the shell and tube heatexchanger volume decreased, anti-fouling ability enhanced and energy consumptionreduced after improving the structure. The original and the improved flow and heattransfer performance were analyzed by CFD numerical simulation software. Theresult shows that the heat exchanger performance significantly improved afteroptimization.
     4. Thermal balance test research of variable speed hydrodynamic coupling
     Thermal balance test of YOCQZ465variable speed hydrodynamic coupling wasstudied. The temperature data of test points was acquired under without load on thebench and typical operating condition of thermal power plant. CFD numericalsimulation results and the oil temperature at the import and export of hydrodynamiccoupling of under typical working conditions in thermal power plant were in linebasically, which proved that the numerical method in this thesis is reliable. It has certain guiding significance for the complex flow and heat transfer. Modified groundswere provided for simplification for mathematical model and hypothesis condition inthe process of numerical research through analysis of experimental data for the energyloss without load.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]龙健梅.低碳经济背景下我国能源法律制度研究[D].昆明:昆明理工大学,2011.
    [3]沈斐敏,姜初炎,吴联兴,李安松,肖汉恒,胡汉敏.矿井主要通风机利用液力耦合器节能可行性研究与实施[J].焦作矿业学院学报,1995,14(4):49-52.
    [4]刘应诚,杨乃乔.液力偶合器应用与节能技术[M].北京:化学工业出版社,2006.
    [5]宋健,冯琛然,杨国颖.重油催化裂化装置锅炉给水泵安装液力偶合器的节能分析[J].化工工程与装备,2009,(1):84-87.
    [6]智关,马焕军.电厂锅炉吸、送风机采用液力偶合器调速的经济技术分析[J].电力学报,2000,15(4):314-316.
    [7]潘志勇.液力偶合器在带式输送机上应用的优越性分析[J].湖南工业职业技术学院学报,2009,9(5):1-3.
    [8]刘完成,王红录,刘应诚,孙逊.液力偶合器在矿山启动沉重型机械上的应用与节能[J].冶金矿山设计与建设,1998,30(4):49-52.
    [9]林专毅.液力偶合器用于碱炉给水泵、引风机的节能效果[J].中国造纸,2003,22(10):40-43.
    [10]樊永军,液力偶合器变速的渣浆泵系统能耗问题分析及节能降耗对策[J].GM通用机械,2005,(5):28-30.
    [11]陈宏中,王尚贤.无滑差液力偶合器在冶金机械中的应用与节能效果[J].有色设备,1995(2):35-39.
    [12]刘彪,张月斌.水介质限矩型液力偶合器在刮板输送机上的应用与节能[J].煤矿机械,2002(10):76-78.
    [13]童祖楹,刘祥春.离心式水泵和风机采用液力偶合器调速的经济技术效果[J].上海交通大学学报,1984,(2):101-108.
    [14]李晓玲.昆明发电厂厂用电节能改造研究[D].昆明:昆明理工大学,2008.
    [15]邓金峰.200MW锅炉风机节能改造研究[D].北京:华北电力大学,2004.
    [16]苏斯特.TPKL型阀控充液式液力偶合器在带式输送机上的应用[J].煤炭工程,2005,(3):70-72.
    [17]邹铁汉.限矩型与调速型液力偶合器在带式输送机中的应用[J].起重运输机械,2002,(6):9-12.
    [18]程超峰,丁家峰,姚秀平,方宁.600MW火电机组给水泵驱动方式的经济性评价与比较研究[J].华东电力,2009,37(10):1775-1777.
    [19]张健.船用液力偶合器及其控制系统的建模与仿真研究[D].上海:上海交通大学,2010.
    [20]王春生.调速型液力偶合器在矿井通风机的应用[J].陕西煤炭技术,2000,(3):32-34.
    [21]王月明.偶合器在内燃动车组液力传动装置中的应用探讨[J].内燃机车,2002,(3):8-12.
    [22]张宗峰.石油钻机运用调速型偶合器的可行性研究[J].内燃机车,2008,(9):12-17.
    [23]王福林.氧化铝厂应用偶合器可行性初探[J].轻金属,1985,(5):16-19.
    [24]李慧,宛传平.液力偶合器在惯性圆锥破碎机的应用研究[J].金属矿山,2006,(7):63-65.
    [25]吴立平.液力偶合器在球磨机上的应用及其选型匹配[J].湖南工业职业技术学院学报,2009,9(2):6-13.
    [26]贾克毅.液力偶合器在水泥机械上的应用及注意事项[J].中国建材装备,2002,(1):33-34.
    [27]韩邦活,郑惠媛.液力偶合器在铸造机械上的应用[J].中国铸机,1988,(6):22-24.
    [28] Fan Lidan, Ma Wenxing, Cai wei. Thermal-Hydraulic Analysis of HydrodynamicCoupling[J].AISS:Advances in Information Sciences and Service Sciences,2012,4(11):393~399.
    [29]李增富.300MW机组电动给水泵液力偶合器工作油温偏高原因分析及处理[J].机械,2004,31:155-156.
    [30]刘贵平,李献宝,姬立钢.125MW机组锅炉给水泵液力偶合器损坏原因分析[J].热能动力工程,2003,18(4):421-422.
    [31]张富强.125MW机组锅炉给水泵液力偶合器损坏原因分析及预防[J].广西电力,2007,(4):79-80.
    [32]杜华锋.300MW机组R16K550型液力偶合器存在问题分析[J].广东电力,2008,21(10):58-61.
    [33]李华申.135MW给水泵液力偶合器调速异常原因分析及处理[J].GM电力通用机械,2009,(6):56-59.
    [34]李有义.液力传动[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [35]王立文.无滑差静液力机械偶合器的研究[D].哈尔滨:哈尔滨工业大学,1994.
    [36]童祖楹,刘祥春.液力偶合器[M].上海:上海交通大学出版社,1988.
    [37]倪胜福,程述声,赵遵道,陈照弟.调速型液力偶合器动态特性分析[J].哈尔滨工业大学学报,1994,26(3):37-42.
    [38] Lakshminarayana B.An Assessment of Computational Fluid Dynamic Techniques in theAnalysis and Design of Turbomachinery-The1990Freeman Scholar Lecture[J].Journal ofFluids Engineering,1991,113:315-352.
    [39]蔡兆麟,罗晟.用有限体积法计算叶轮机械内三维黏性流动[J].华中理工大学学报,2000,28(9):72-75.
    [40] Bai L, Fiebig M, Mitra N K. Numerical Analysis of Turbulent Flow in FluidCouplings[J].Journal of Fluids Engineering,1997,119(3):569-576.
    [41] Bai L,Fiebig M,Mitra N K,Kost A.Multigriderfahren zur Berechnung von3D stromungenin komplexen Geomerien[J].Zeitschrift fur angewandte Mathematik und Mechanik,1993,73:554-556.
    [42] Bai L,Blomerius H,Mitra N K,Fiebig M.Numerical simulation of unsteady incompressible3D turbulent flow in fluid coupling with inclined blades[C]. ASME-Winter AnnualMeeting,Chicago,1994,55:609-616.
    [43] Bai L. Numerische unterwuchung von turbulenten stromungen in hydrodynamischenkupplungen[D].Germany:Ruhr University,1995.
    [44] Huitenga H,Formanski T,Mitra N K,Fiebig M.3D flow structures and operatingcharacteristic of an industrial fluid coupling[C].Internation gas turbine and areoenginecongress and expositon,1995,52.
    [45] Huitenga H, Mitra N K. Improving Startup Behavior of Fluid Couplings ThroughModification of Runner Geometry: Part I—Fluid Flow Analysis and ProposedImprovement[J].Journal of Fluids Engineering,2000,122(4):683-688.
    [46] Huitenga H, Mitra N K. Improving Startup Behavior of Fluid Couplings ThroughModification of Runner Geometry:Part II—Modification of Runner Geometry and Its Effectson the Operation Characteristics[J].Journal of Fluids Engineering,2000,122(4):689-693.
    [47] Mckinnon C N,Brennen D,Brennen C E.Hydraulic Analysis of a Reversible FluidCoupling[J].ASME Journal of Fluids Engineering,2001,123(2):249-255.
    [48] Jean Schweitzer, Jeya Gandham.Computational Fluid Dynamics in Torque Converters:Validation and Application[J]. International Journal of Rotating Machinery,2003,9:411-418.
    [49] M.Christen, R.Kermchen. Fluid Velocity in Constant Fill Turbo Couplings: Measurementsusing Laser Doppler Velocimetry[J]. Antriebstechnik,2001,40:71-74.
    [50] D. Hoppe,J. Fietz,U. Hampel et al. Gamma Tomographic Visualization of The FluidDistribution in A Hydrodynamic Coupling, in F. P. Weiss, U. Rindelhardt: Institute of SafetyResearch, Annual Report2002, FZR-380.
    [51] U.Hampela,D.Hoppea,K.-H.Dieleb ect. Application of Gamma Tomography to TheMeasurement of Fluid Distributions in A Hydrodynamic Coupling[J]. Flow Measurement andInstrumentation,2005(16):177-182.
    [52] Yasunori Kunisaki,Toshio Kobayashi,Tetsuo Saga,ect al.PIV Measurement on the FlowField Around a Stator Cascade of Automotive Torque Converter.SAE2001-01-0868.
    [53] Tetsuya Kubota,Toshio Kobayashi,Tetsuo Saga. Application Study of PIV Measurement ofFlow Flied Around Lock-up Clutch of Automotive Torque Converter[C]. JSAE,2003,4.
    [54] M.J.Da Silvaa, Y.Lu, T.Sühnel, et al. Autonomous Planar Conductivity Array Sensor for FastLiquid Distribution Imaging in a Fluid Coupling[J]. Sensors and Actuators A,2008,147:508-515.
    [55]陈东光,石志儒,匡襄.调速型液力偶合器非线性调节特性的补偿[J].工程机械,1993,(7):24-26.
    [56]王立文,陆肇达,匡襄,侯继海,李振培,郭树桐.锅炉给水泵液力调速系统的非线性补偿原理和方法分析[J].水泵技术,1997(1):23-26.
    [57] Wu Chunghua.A General Theory of Three Dimensional Flow with Subsonic and Supersonicveloeity in Turbomachines Having Arbitrary Hub and Casing Shapes[C].ASME Trans,1952:50-79.
    [58]张德生,赵继云,陆文程,刘立宝.液力偶合器的研究现状及发展趋势[J].机床与液压,2010,38(24):89-91.
    [59] Zhang Desheng.Strength Analysis of Dual-Chamber Hydrodynamic Coupling Based on OneWay FSI[C].International Conference on Mechanical Engineering and Green Manufacturing2010,2010:105-110.
    [60]张德生,赵继云,刘立宝,陆文程.基于CFD的桃形腔偶合器流场分析及结构改进[J].中国矿业大学学报,2010,39(5):687-692.
    [61]张德生,赵继云,刘立宝,陆文程,徐展.阀控充液式液力偶合器电液阀阻塞问题分析[J].煤炭工程,2010(8):81-82.
    [62]张德生.大功率阀控液力偶合器设计理论及关键技术研究[D].徐州:中国矿业大学,2011.
    [63]杨洋,郭仁宁.改善水泵运行的节能技术.辽宁工程技术大学学报[J].2005,12,219-220.
    [64]杨洋.调速型液力偶合器的特性分析[D].阜新:辽宁工程技术大学,2007.
    [65]黄家良.调速型液力偶合器叶轮的有限元分析及改进设计[D].大连:大连交通大学,2008.
    [66]侯天柱.液力偶合器流场仿真分析方法及其力矩系数研究[D].北京:中国舰船研究院,2010.
    [67]马文星.液力变矩器三维流动计算—流线曲率法[J].建筑工程,1991(1):112-116.
    [68]马文星.国外车辆液力传动研究现状及其展望[J].汽车工程,1996(4):193-198.
    [69]王彦,王玉鹏,马文星.液力变矩器循环圆的综合描述及导数修正法[J].吉林大学工学版,2002,32(1):79-82.
    [70]赵红,马文星,王大志.液力变矩器动态特性辨识方法的探讨[J].工程机械,2002(07):28-31.
    [71]王清松,马文星,赵罡,于清.液力变矩器叶轮和叶片非接触测量及三维建模[J].工程机械,2004,(04):38-40.
    [72]于清海,王辉,马文星,方杰.液力变矩器内部流场实验示踪粒子的选取[J].实验技术与管理,2004,21(2):86-88.
    [73]田华,葛安林,马文星,张作礼.液力变矩器泵轮内流场的数值分析[J].吉林大学工学版,2004,34(3):378-382.
    [74]于清海,王辉,马文星,方杰.PIV技术在液力变矩器内部流场实验研究中的应用[J].实验技术与管理,2004,21(5):31-34.
    [75]田华,葛安林,马文星,张作礼.液力变矩器流场损失的分析[J].吉林大学工学版,2004,34(4):559-563.
    [76]褚亚旭,崔志军,马文星.液力变矩器内部流场的激光切面法初步测量[J].液压与气动,2005,(03):72-74.
    [77]田华,葛安林,马文星,金伦.修正能头损失的变矩器性能预测方法[J].农业机械学报,2005,36(3):19-21.
    [78]田华,葛安林,马文星.液力变矩器的内流场数值分析[J].农业机械学报,2005,36(4):139-141.
    [79]方杰,齐迎春,马文星,李风.液力变矩器流场的数值模拟与分析[J].同济大学学报(自然科学版),2005,33(5):673-678.
    [80]褚亚旭,马文星,刘春宝,田华,刘文同.基于W305液力变矩器的系列化设计[J].汽车技术,2006,(01):14-16.
    [81]才委,马文星,褚亚旭.大功率履带推土机发动机与液力变矩器动态匹配方法的探讨[J].机床与液压,2006,(2):106-110.
    [82]刘春宝,马文星,朱喜林.液力变矩器三维瞬态流场计算[J].机械工程学报,2010,46(14):161-166.
    [83]褚亚旭,马文星,方杰,于清海.液力变矩器三维流动的计算[J].农业机械学报.,2005,36(8):107-110.
    [84]褚亚旭,刘春宝,马文星.液力耦合器三维瞬态流场大涡模拟与特性预测[J].农业机械学报,2008,39(10):169-173.
    [85]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算[C].第四届全国流体传动及控制学术会议,2006,659-664.
    [86]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学,2006.
    [87]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [88]王佳.调速型液力偶合器叶轮强度与振动特性研究[D].长春:吉林大学,2009.
    [89]尹刚刚.液力偶合器调速控制系统研究[D].长春:吉林大学,2009.
    [90]邓洪超,尹刚刚,马文星.风机—液力偶合器模糊-PID调速控制系统研究[J].应用基础与工程科学学报,2011,19(3):481-491.
    [91]何延东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学,2009.
    [92]何延东,马文星,刘春宝.液力偶合器部分充液流场数值模拟与特性计算[J].农业机械学报,2009,40(5):24-28.
    [93]何延东,马文星,邓洪超,刘刚.基于CFD的调速型液力偶合器设计方法[J].农业机械学报,2010,41(6):31-36.
    [94]孙波.大功率调速型液力偶合器轴向力研究[D].长春:吉林大学,2011.
    [95] Sun Bo,Ma Wenxing,He Yandong.Research on Axial Force of Fluid Hydrodynamiccoupling Based on3-D Flow Numerical Solution[C]. The2009IEEE InternationalConferrence on Mechatronics and Automation,ICMA2009,1629-1633.
    [96]王永权.液力偶合器叶轮与流体的流固耦合模拟与分析[D].长春:吉林大学,2009.
    [97]卢秀泉.调速型液力偶合器流固耦合与振动特性研究[D].长春:吉林大学,2012.
    [98] Chai Bosen,Ma Wenxing,Liu Chunbao.Analysis of internal flow field in fluid couplingbased on numerical simulation and experimental measurement[C].Proceedings of2011International Conference on Fluid Power and Mechatronics,2011,742-747.
    [99]柴博森,马文星,卢秀泉,范丽丹.基于粒子跟踪测速技术的液力偶合器内部流速测定方法[J].农业工程学报,2011,27(7):140-143.
    [100]柴博森,马文星,刘春宝.基于互相关算法的液力偶合器内部流场分析[J].农业机械学报,2011,42(12):38-40.
    [101]柴博森.液力偶合器内部流动可视化与流速识别方法研究[D].长春:吉林大学,2012.
    [102]褚家瑞.当代管壳式和板式换热设备的技术进展[J].石油化工设备,1992,21(2):3-7.
    [103]刘天丰.非对称管壳式换热器结构分析及改进中的问题研究[D].杭州:浙江大学,2005.
    [104]张强.换热管及内外流体多场耦合数值分析方法研究[D].大庆:东北石油大学,2011.
    [105] Narayanan C.M. Studies on performance characteristics of variable area heatexchangers[J].Journal of chemical engineering of Japan,1998,31(6):903-907.
    [106]崔海亭,彭培英.强化传热新型技术及应用[M].北京:北京化工出版社,2006.
    [107] X.F.Ye,M.Shimizu.Augmented longitudinal diffusion in grooved tubes for oscillatoryflow[J].Int. J. of Heat and Mass Transfer,2001,44(3):633-644.
    [108]彭炳初,罗伟明,严国泰.强化管在空压机后冷器中传热与流阻性能研究[J].华南理工大学学报(自然科学版),1997,25(3):81-85.
    [109]郭春福,高绪镇,李志安.管壳式换热器传热强化技术进展[J].辽宁化工,2004,33(7):399-402.
    [110]刘秀英.不锈钢螺纹管换热机理的探讨[J].热力透平,2005,35(2):88-91.
    [111]蒋翔,李晓欣,朱冬生.几种翅片管换热器的应用研究[J].化工进展,2003,22(2):183-186.
    [112]古新.管壳式换热器数值模拟与斜向流换热器研究[D].郑州:郑州大学,2006.
    [113]喻九阳,谢国雄,朱兵,冯兴奎.单弓形折流板管孔扩孔实验研究[J].石油化工,2006,35(4):9-12.
    [114] Luo X P,Deng X H,Deng S J. Research on factor of heat exchanger with longitudinalFlow in shellside[J].Journal of South China University of Technology(Natural Science),1998,26(11):110-114.
    [115]周兵,陈亚平,王伟晗.管壳式换热器壳侧强化传热与管束支撑方式的研究进展[J].节能,2009,10(3):10-20.
    [116] El A., Amjad S. Hydrogen induced cracking and pitting of brass heat exchangertube[J].Materials Science and Technology,2008,24(6):711-717.
    [117] Lutcha J,Nemcansky J.Performance improvement of tubular heat exchangers by helicalbaffles[J].Institution of chemical engineers,1990,68(5):263-270.
    [118]何军民,沈人杰,冯宵.螺旋折流板换热器壳侧结构改进剂模拟研究[J].化工装备技术,2006,27(5):37-42.
    [119]马永其.换热器固定管板有限元应力分析的进一步研究[D].北京:北京化工大学,2000.
    [120] Minshan Liu,Qiwu Dong,Xin Gu.Research and application of CAD technology of a newtype of heat exchanger with a longitudinal flow of shell-side fluid in a thermodynmaicsystem[J].Journal of engineering for thermal energy and power,2004,19(3):12-15.
    [121] Mnishna Liu,Qiwu Dong,Xin Gu.Research and development of assembly module of newtype high efficient energy saving heat exchanger[J].Proceeding of the3rdinternationalsymposium on heat transfer enhancement and energy conservation,2004:1038-1042.
    [122] Bassi F,CrivelliniA,Rebay S.Discontinuous Galerkin Solution of the Reynolds-averagedNavier-Stokes and k-ω Turbulence Model Equations[J].Computers and Fluids,2005,34(4-5):507-540.
    [123] Patankar S V,Spalding D B.A calculation procedure for the transient and steady statebehavior of shell-and-tube heat exchangers[M].In Afgan N and Schlunder E V(eds.),Heatexchanger design and theory sourcebook,Washington D C:Scripta book company,1974.
    [124] ShaW T,Yang C I.Multidimensional Numerical Modeling of Heat Exchangers[J].Journalof Heat Transfer:Trans the ASME,1982,104:417-425.
    [125] Prithiviraj M,Andrews M J.Three Dimensional Numerical Simulation of Shell-and-TubeHeat Exchangers,Part I:Foundation and Fluid Mechanics[J].Numerical Heat Transfer,Part A,1998,33:799-816.
    [126] Prithiviraj M,Andrews M J.Three Dimensional Numerical Simulation of Shell-and-TubeHeat Exchangers,Part I:Heat Transfer[J].Numerical Heat Transfer,Part A,1998,33:817-828.
    [127]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [128]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究[J].西安交通大学学报,2003,37(9):889-893.
    [129]邓斌,陶文铨.管壳式换热器壳侧湍流流动与换热的三维数值模拟[J].化工学报,2004,55(7):1053-1059.
    [130]李欣,邓斌,陶文铨.翅片管束式管壳式换热器三维数值模拟研究[J].工程热物理学报,2005,26(2):316-318.
    [131]雷勇刚,楚攀,何雅玲,高亚甫.螺旋通道内受限外流传热和阻力特性的数值模拟[J].热能动力工程,2007,22(6):655-660.
    [132]陈贵冬,陈秋炀,曾敏,王秋旺.组合式多壳程螺旋折流板管壳式换热器数值模拟研究[J].工程热物理学报,2009,30(8):1357-1359.
    [133]吴金星,魏新利,董其伍,刘敏珊.杆支撑换热器壳程的单元流道模型机流场分布[J].化工进展,2006,26(1):69-73.
    [134]董其伍,谢建,刘敏珊,王永庆.管壳式换热器模拟中壁面函数旋转分析[J].石油机械,2009,37(2):41-44.
    [135]孔松涛,董其伍,刘敏珊.换热器壳程三维数值模拟及场协同分析[J].石油机械,2006,34(10):16-19.
    [136]古新,王珂,董其伍.基于导向型折流栅的换热器壳程强化传热数值模拟[J].工程热物理学报,2010,31(6):1041-1044.
    [137]董其伍,林苏奔,刘敏珊,王永庆,谢建.间隙漏流对换热器壳侧流场的影响研究[J].郑州大学学报(工学版),2009,30(3):97-100.
    [138]古新,董其伍,刘敏珊,周雅宁.帘式折流杆换热器强化传热数值研究[J].高校化工工程学报,2010,24(2):340-345.
    [139]古新,董其伍,刘敏珊.周期性模型在管壳式换热器数值模拟中的应用[J].热能动力工程,2008,23(1):64-68.
    [140]梅娜,陈亚平,施明恒.螺旋折流片换热器壳侧传热与流动的数值模拟[J].工程热物理学报,2005,26(2):310-312.
    [141] Chen Yaping,Mei Na,Shi Mingheng.Numerical simulation of heat transfer enhancement bystrip-coil-baffles in tube-bundle for a tube-shell heat exchanger[J].Journal of southeastuniversity(English edition),2007,23(1):81-85.
    [142]陈亚平,梅娜,施明恒.螺旋折流片强化壳侧传热的四管模型数值模拟[J].工程热物理学报,2007,28(1):119-121.
    [143]梅娜,陈亚平.螺旋折流片强化壳侧传热研究[J].石油化工设备,2004,33(5):1-4.
    [144] Boivin C,Ollivier C.A toolkit for numerical simulation of PDEs:I. Fundamentals of genericfinte-volume simulation[J].Computer methods in applied mechanics and engineering,2003,192(9/10):1147-1175.
    [145] Boivin C,Ollivier C.A toolkit for numerical simulation of PDEs:II.Solving genericmultiphysics problems[J].Computer methods in applied mechanics and engineering,2004,193(36/38):3891-3918.
    [146]过增元,黄素逸.协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [147]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2008.
    [148] S.V.Patankar,D.B.Spalding.Computer analysis of the three-dimension flow and heat transferin a steam generator[J].Forschung im Ingenieurwesen,1978,44:47-52.
    [149] S.V.Patankar.Recent development in computational heat transfer[J].ASME J. Heat transfer,1988,110:1037-1045.
    [150] C.D.Perez-Segarra,C.Oliet,A.Oliva.Thermal and fluid dynamic simulation of automotivefin-and-tube heat exchangers.Part1:Mathematical model[J].Heat transfer engineering,2008,29(5):484-489.
    [151] C.D.Perez-Segarra,C.Oliet,A.Oliva.Thermal and fluid dynamic simulation of automotivefin-and-tube heat exchangers.Part2:Experimental comparison[J].Heat transfer engineering,2008,29(5):490-494.
    [152]黄海波.涡轮叶片中流场和温度场计算及实验研究[D].工程热物理研究所,2002.
    [153]虞跨海,王金生,杨茜,岳珠峰.回流式冷却叶片流热耦合数值分析[J].热能动力工程,2011,26(3):271-275.
    [154]黄钰期.基于场协同原理的车用冷却系统流动传热耦合分析与结构改进[D].杭州:浙江大学,2010.
    [155] Ferziger J H. Computational methods for turbulent flows, transonic and viscousflows[M].Washington DC:hemisphere,1983.
    [156] Orszag S A. Handbook of turbulenc[M].New York:Plenum Press,1977.
    [157] Jordan S A,Ragab S A.A large eddy simulation near wake of a circular cylinder[J].ASMEJ Fluids Engineering,1999,120:243-252.
    [158] Yang Z Y. Large eddy simulation of fully developed turbulent flow in a rotatingpipe[J].Number Methods Fluids,2000,33:681-694.
    [159]刘春宝,马文星,何延东,姚子生.液力偶合器瞬态流场两相流动数值模拟机特性预测[M].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议,2008,700-706.
    [160]徐寿昌.工业冷却水处理技术[M].化学工业出版社,1984.
    [161] Webb R L.Performance evaluation criteria for use of enhanced heat transfer surfaces in heatexchanger desingn[J].Heat mass transfer,1981,24(4):715-726.
    [162]范晓伟,刘寅,孙昆峰.流体流过带折流板通道时的流动及传热数值研究[J].能源工程,2003(1):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700