用户名: 密码: 验证码:
调速型液力偶合器流固耦合与振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国的经济发展,各个工业领域所用设备功率增加非常快,尤其大型泵与风机用量不断增加,迫切需要大功率调速节能产品。大功率调速型液力偶合器作为理想的节能调速产品受到广泛的重视和应用。调速型液力偶合器在输入转速一定时,通过改变工作腔内的充液率来满足负载的要求,在与其它工业设备匹配传动时,具有平稳启动、无极调速、减缓设备冲击扭振、改善传动品质等诸多优点,而且应用调速型液力偶合器传动后节能效果十分显著,具有工作机功率越大节能效果越好的特点。我国的液力生产厂家目前还不具备独立研发大功率调速型液力偶合器产品的能力,针对我国大功率调速型液力偶合器产品设计中所面临的一些关键技术问题,本文结合国家高技术研究发展计划(863计划)专题课题“大型泵与风机液力调速节能关键技术研究”(2007AA05Z256),对液力偶合器的流固耦合问题和振动特性问题做了较为系统深入的研究。
     系统介绍了流固耦合理论及数值计算方法。针对液力偶合器工作时流场特点介绍了旋转坐标系下的流动控制方程和叶轮结构动力学方程。重点介绍了流固耦合问题两种数值求解方法:整体求解法和分域求解法,同时对数值计算中流固耦合界面的描述方法、信息传递形式及控制条件做了说明。
     基于流固耦合数值计算理论及算法,选择YOCQZ465型调速型液力偶合器为研究对象,对其工作中的流固耦合问题进行了数值模拟。首先采用单向流固耦合数值模拟方法,对液力偶合器叶轮在不同充液率、不同工况下的变形和应力状态进行分析,对叶轮的强度进行校核。在此基础上采用双向流固耦合数值模拟的方法,应用稳态和瞬态两种算法,对制动工况下偶合器的流场特性和涡轮叶片结构动力学特性进行研究。
     基于势流体理论,采用流固耦合的模态求解方法对液力偶合器叶轮和叶片在工作流体介质中的模态进行了数值模拟。采用考虑预应力的模态分析方法,对不同转速比和充液率工况下叶轮的振动特性进行了分析。得到叶轮在实际工作中可能出现的共振频率,并找出工作中叶轮结构上振动的敏感区域。
     对泵轮的旋转强度和液力偶合器传动装置在实际工作中的振动情况进行实验研究。首先采用遥测的方法,对泵轮在不同高速旋转工况下的强度进行测试。将各个转速工况下测点处应变的有效值与相应转速工况下有限元数值模拟结果相对比,验证遥测实验结果的可靠性。对实际工作中的液力偶合器传动装置进行振动测试。测试时在传动装置箱体上选取十个典型位置安放测点,将采集到的每个测点三个方向上的加速度振动信号进行时域和频域分析,从而对工作中液力偶合器传动装置箱体上各个位置的振动情况进行定性和定量的判断。
     综上可述,本文采用流固耦合数值模拟和实验研究的方法,对液力偶合器的流固耦合问题和振动特性做了较为系统的研究。本文的工作为液力偶合器在流固耦合作用下的流场特性预测、叶轮结构动力学计算及结构振动特性预测提供依据,对大功率液力偶合器产品的设计具有一定的指导意义。
With the economy rapid development, the industry devices with large power areincreasing demanded, especially for the large-scale pumps and fans with variable speed andenergy-saving. Owning to the advantages of large power, variable speed and energy-saving,the hydrodynamic coupling is widely used and has been more and more concerned. For acertain input speed, the output power of the hydrodynamic coupling can be changed bychanging the filling rate of the working chamber. Therefore, when connected to otherdevices, the hydrodynamic couplings can achieve the smooth start and stepless speedadjustment, reduce the impulse and vibration and improve the transmission quality.Moreover, the energy saving effect of the hydrodynamic coupling is prominent, and thehigher power output has the better energy saving effect. However, there is a certain distanceto independently development the domestic hydrodynamic coupling. Supported by theNational863High-tech Project “Key Technological Research on Hydrodynamic VariableSpeed and Saving Energy of Large-scale Pump and Fan,” this paper systematically studiesthe key techniques of the hydrodynamic coupling in the aspects of the fluid-structureinteraction and vibration characteristic, specific details are as follows:
     The theory and numerical computation methods related to fluid-structure interaction areintroduced. Aiming at the flow field characteristics of the hydrodynamic coupling, the fluidcontrol equation and impeller structural dynamic equation are deduced under the rotatingreference frame. Two numerical computation methods of integral solution method andsub-region solution method are specially introduced, and the description method,information transfer form and control conditions are declared for the fluid-structureinteraction surface in the numerical computation.
     Based on the numerical computation algorithm of the fluid-structure interaction andtaken the variable speed hydrodynamic coupling YOCQZ465as research subject, thefluid-structure interaction phenomenon is numerical simulated. Firstly, with the numerical computation method of the unidirectional fluid-structure interaction, the strain and stress of
     the hydrodynamic coupling impeller are analyzed, and the impeller strength is checked. Andthen with the numerical computation method of the bidirectional fluid-structure interaction,the flow field characteristic and the turbine blade dynamic feature are studied in thecondition of the braking working, which are analyzed both in the steady state and transientstate.
     Based on the potential fluid theory, the fluid-structure interaction of the hydrodynamiccoupling impeller and blade is numerical simulated with the modal solution method. Withthe modal solution method taking the pre-stress into consideration, the vibrationcharacteristics of the impeller are studied under different velocity ratio and different fillingrates, the possible resonant frequencies are obtained for impeller practical working, and thesensitive frequencies areas of the impeller vibration are also found.
     In order to validate the numerical simulation results, experiments are carried out to testthe strength of pump wheel and the vibration characteristic of the hydrodynamic couplingdriving device in its practical working. With the remote sensing method, the strength of thepump wheel are tested in different rotating speed. Compare the strain effective value of themeasuring points with the corresponding simulation results and validate the reliability of theremote sensing experimental result. In order to test the vibration characteristic of thehydrodynamic coupling driving device, ten measuring points are put in ten typical locationson the hydrodynamic coupling driving device, and the tested vibration signal of theacceleration in x, y, z direction are analyzed in time domain and frequency domain, which isused to estimate the vibration of the hydrodynamic coupling driving device in qualitative andquantitative.
     To sum up, according to numerical simulation and experiment validation, thefluid-structure interaction and vibration characteristic of the hydrodynamic coupling aresystematically studied. The study can be used to predict the flow field characteristic,calculate impeller structural dynamic and estimate the structure vibration feature, which hascertain significance for guiding the large power hydrodynamic coupling design.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]匡襄.液力传动[M].北京:机械工业出版社,2008.
    [3]杨乃桥,姜丽英.液力调速与节能[M].北京:国防工业出版社,2005.
    [4]彭海宇,杜俊明.风机、泵类负载液力偶合器调速与变频调速节能对比[J].电器时代,2008,(9):86-88.
    [5]童祖楹.液力偶合器[M].上海:上海交通大学出版社,1988.
    [6]刘应诚.液力偶合器实用手册[M].北京:化学工业出版社,2008.
    [7]刘应诚,杨乃乔.液力偶合器应用与节能技术[M].北京:化学工业出版社,2006.
    [8]杨乃乔.调速型液力偶合器在风机上的应用与节能[J].液压气动与密封,2005(1):19-22.
    [9]林斯燕.调速型液力偶合器在中国电力行业的应用[J].流体传动与控制,2005(6):19-22.
    [10]石昇.水介质调速型液力偶合器的研究[J].煤矿机电,2003,(5):61-63.
    [11]方家雨,孟国营,姚伟.调速型液力偶合器及CST的传动特性[J].起重运输机械,2006,(2):44-47.
    [12]黄晓峰,马留柱.液力偶合器的节能技术探索[J].企业技术开发,2011,30(15):57-58.
    [13]庄严.液力偶合器的选择及使用[J].矿山机械,2009,37(2):28-31.
    [14]程根生.调速型液力偶合器的性能及应用[J].淮南职业技术学院学报,2005,5(14):47-48.
    [15]杨建刚.旋转机械振动分析与工程应用[M].北京:中国电力出版社出版,2007.
    [16]晏砺堂.高速旋转机械振动[M].北京:国防工业出版社,1994.
    [17]张正松,傅尚新等.旋转机械振动监测及故障诊断[M].北京:机械工业出版社,1991.
    [18]胡中永.液力耦合器的振动分析[J].中国设备管理,2001(5):32-33.
    [19]姚建斌,武建生.液力偶合器的工作原理及振动故障原因分析[J].轻金属,2002(6):19-22.
    [20]胡大千,范宝印.液力偶合器的故障分析与处理[J].风机技术,2004(4):53-55.
    [21]崔明.液力偶合器泵轮短叶片断裂原因及处理[J].电力科学与工程,2009,25(1):54-56.
    [22]江树基.机械传动装置配套液力偶合器运行振动原因分析[J].液压气动与密封,2009,(5):46-48.
    [23] ADAMS M L. Rotating Machinery Vibration:From analysis to Trouble shooting[M].New York:Marcel Dekker,2001.
    [24] MAYNARD K P,TRETHEWEY M.Application of Torsional Vibration Measurement to Blade andShaft Crack Detection in Operating Machinery[C].Proc eedings of the Maintenance and ReliabilityConference,Gatlinburg,TN,2001:1-6.
    [25] AL-BEDOOR B O.Blade Vibration Measurement In Turbo-Machinery:Current Status,The Shockand Vibration Digest,2002,34(6):455-461.
    [26]杨乃乔,严纯伟.新型调速型液力偶合器[J].液压气动与密封,2010,(3):58-60.
    [27]杨乃乔.液力偶合器的新发展[J].液压气动与密封,2010,(9):55-58.
    [28] M.Christen,R.Kernchen.Fluid velocity in constant fill turbo couplings:measurement using laserDoppler velocimetry[J].Antriebstechnik,2001,40:71-74.
    [29] U.Hampela,D.Hoppea ect.Application of gamma tomography to the measurement of fluiddistributions in a hydrodynamic coupling[J].Flow Measurement and Instrumentation,2005(16):177-182.
    [30] D.Hoppe,J.Fietz,U.Hampel et al.Gamma tomographic visualization of the fluid distribution in ahydrodynamic coupling,in F.P.Weiss,U.Rindelhardt:Institute of Safety Reasearch.Annual Report2002,FZR-380.
    [31] M.J.Da Silvaa,Y.Lu et al.Autonomous planar conductivity array sensor for fast liquiddistributionimaging in a fluid coupling[J].Sensors and Actuators A,2008,147:508-515.
    [32] B A I L,MITRA N K,FIEBIG M.Computation of unsteady3D turbulent flow and torquetransmission in fluid coupling[C].Fourteenth International Conference on Numerical Methods inFluid Dynamics.Heidelberg:Spring Berlin,1995:435-440.
    [33] H.Huitenga, N.K.Mitra. Improving startup behavior of fluid couplings through modification ofrunner geometry: Part I-fluid flow analysis and proposed improvement[J}. Journal of fluidengineering,2000(122):686-688.
    [34] H.Huitenga, N.K.Mitra. Improving startup behavior of fluid couplings through modification ofrunner geometry: Part II-fluid flow analysis and proposed improvement[J}. Journal of fluidengineering,2000(122):689-693.
    [35] CHARLES N,MCKINNON,BRENNEN DANAMICHELE,et al.Hydraulic Analysis of aReversible Fluid Coupling[J].Journal of Fluids Engineering,2001(2):249-255.
    [36]童祖楹,刘祥春.离心式水泵和风机采用液力偶合器调速的经济技术效果[J].上海交通大学学报,1984,(2):101-107.
    [37]童祖楹,刘允嘉.偶合器的调速节能及其效益[J].现代节能,1988,(9):51-52.
    [38]童祖楹,邵海斌.用流速抛物线分布流动模型预测偶合器的负载特性[J].上海交通大学学报,1989,23(4):41-50.
    [39]童祖楹,刘祥春,崔昌林.流道变参数液力偶合器负载特性的计算[J].上海交通大学学报,1986,20(5):103-110.
    [40]陈雷.调速型液力偶合器智能化电液控制系统研究与开发[D].上海:上海交通大学,2007.
    [41]王春杰,张维竞,杨桂康.偶合器转速控制系统在石灰窑尾排烟风机中的应用[J].液压气动与密封,2010,(3):54-56.
    [42]陈雷,万曼影,黄刘琦,杨阳,师好智.液力偶合器智能监控系统设计[J].机床与液压,2007,35(5):172-173.
    [43]王永生,丁江明.液力偶合器通用外特性的数字建模[J].机械工程学报,2005,41(4):225-228.
    [44]王永生,王建国,安卫.舰船推进系统液力偶合器滑差变化规律分析[J].海军工程大学学报,2005,20(6):60-64.
    [45]王永生,王绍增,丁江明.液力偶合器输入特性曲线变换及工程应用[J].机械工程学报,2006,42(4):218-221.
    [46]丁江明,王永生.基于液力偶合器试验曲线的数学模型[J].中国造船,2006,47(1):94-97.
    [47]孔庆福,曾凡明,吴家明,吴雄学.舰船实船训练系统中混合建模方法研究[J].船海工程,2010,39(2):122-124.
    [48]陆文程,赵继云,张德生,刘立宝.大功率刮板输送机软启动技术分析[J].煤炭科学技术,2009,37(10):68-73.
    [49]张德生,赵继云,刘立宝,陆文程,徐展.阀控充液式液力偶合器电液阀阻塞问题分析[J].煤炭工程,2010,(8):81-82.
    [50]徐展,赵继云,张德生,王振兴.阀控偶合器控制阀组动态特性仿真分析及试验研究[J].液压与气动,2011,(6):113-114.
    [51]张德生,赵继云,刘立宝,陆文程.基于CFD的桃形腔偶合器流场分析及结构优化[J].中国矿业大学学报,2010,39(5):688-691.
    [52]刘立宝,赵继云,张德生,陆文程.水介质阀控充液式液力偶合器电液阀常见问题分析及应对措施[J].矿山机械,2010,38(4):18-20.
    [53]董泳,唐守生,闫国军.泵和风机偶合器调速控制系统中可编程序控制器的应用[J].节能技术,2004,5(3):27-28.
    [54]董泳,王鑫,闫国军.泵和风机并联偶合器同步调速控制方法研究[J].节能技术,2006,24(1):27-28.
    [55]董泳,闫国军,李小斌.调速型液力偶合器双机驱动同步调速与功率平衡控制方法探讨[J].煤矿机械,2007,28(2):57-59.
    [56]董泳,王飞,闫国军.调速型液力偶合器在油田注水泵的调速控制系统中的应用探讨[J].流体机械,2005,33(10):45-47.
    [57]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学,2006.
    [58]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学,2007.
    [59]姚子生.液力偶合器部分充液两相流动数值模拟与分析[D].长春:吉林大学,2008.
    [60]何延东,马文星,刘春宝.液力偶合器部分充液流场数值模拟与特性计算[J].海军工程大学学报,2005,20(6):60-64.
    [61]何延东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学,2009.
    [62]刘春宝,马文星,褚亚旭.多流动区域耦合算法在液力元件中的应用[J].吉林大学学报(工学版),2008,38(6):1343-1345.
    [63]刘春宝,马文星,何延东,等.液力偶合器瞬态流场两相流动数值模拟及特性预测[C].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议:700-706.
    [64]李涛.车辆液力辅助起步与制动系统偶合器内流场特性研究[D].长春:吉林大学,2011.
    [65]李翠翠.液力偶合器的CAD及其动态特性的理论研究[D].南京:南京航空航天大学,2010.
    [66]宋彬,吕建刚,张晓涛,孔凡.液力偶合器制动工况流场仿真与特性分析[J].机械设计与研究,2011,27(1):26-30.
    [67]王清松.液力传动元件流场实验及流动图像判读系统研究[D].长春:吉林大学,2011.
    [68]柴博森,马文星,卢秀泉,范丽丹.基于粒子跟踪测速技术的液力偶合器内部流速测定方法[J].农业工程学报,2011,27(7):140-143.
    [69]柴博森,马文星,刘春宝.基于互相关算法的液力偶合器内部流场分析[J].农业机械学报,2011,42(12):38-40.
    [70]童祖楹.液力偶合器工作轮的强度计算及其试验研究[R].上海:上海交通大学,1971.
    [71]于新颖,王铭忠.给水泵液力偶合器工作轮强度计算与分析[J].汽轮机技术,1990,32(5):13-21.
    [72]夏焕文,张景香.液力偶合器强度及轴向力分析[J].测试技术学报,1996,10(2,3):411-417.
    [73]韩东劲.调速型液力偶合器叶轮强度的有限元分析[J].煤矿机电,2001(6):20-23.
    [74]李娅娜,邵万珍,兆文忠.YOTCHP465调速型液力偶合器叶轮强度的有限元分析[J].大连交通大学学报,2007,28(2):30-33.
    [75]黄家良,邵万珍.YOCQ550调速型液力偶合器叶轮强度的有限元分析[J].机械工程师,2008(11):65-66.
    [76]庞洁.YO750液力偶合器叶轮强度有限元分析[J].内燃机车,2009(2):23-25.
    [77]赵美,聂文科,郭忠.双腔液力偶合器叶轮的有限元分析[J].煤矿机电,2011(1):45-47.
    [78]王峰,闫清东,王书灵.基于CFD和FEA的液力减速器叶片强度分析[J].北京理工大学学报,2006,26(12):1052-1060.
    [79]魏巍,闫清东,朱颜.液力变矩器叶片流固耦合强度分析[J].兵工学报,2008,29(10):1158-1162.
    [80]闫清东,刘树成,姚寿文,李晋.大功率液力变矩器叶轮强度有限元分析[J].兵工学报,2011,32(2):141-144.
    [81]王永权.液力偶合器叶轮与流体的流固耦合模拟与分析[D].长春:吉林大学,2009.
    [82]陆忠东,吴光强,殷学仙,顾文清.液力变矩器流固耦合研究[J].汽车技术,2010,32(4):14-16.
    [83]王佳.调速型液力偶合器叶轮强度与振动特性研究[D].长春:吉林大学,2009.
    [84]张德生.大功率阀控液力偶合器设计理论及关键技术研究[D].北京:中国矿业大学,2011.
    [85]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-21.
    [86]张明明,李绍斌,侯安平,周盛.叶轮机械叶片颤振研究的进展与评述[J].力学进展,2011,41(1):26-29.
    [87]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报:自然科学版,2004,18(2):123-126.
    [88]陈进于,钱若军.流固耦合问题的数值分析[J].工业建筑增刊,2008:617-623.
    [89]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15.
    [90]叶正寅,张伟伟,史爱明.流固耦合力学基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2010.
    [91]张阿漫,戴绍仕.流固耦合动力学[M].北京:国防工业出版社,2011.
    [92]张伟.非线性动力学理论与应用的新进展[M].北京:科学出版社,2009.
    [93] DickmannW. Unsteady flow in a turbocharger centrifugal compressor: three-dimensionalcomputational fluid dynamics simulation and experimental analysis of impeller bladevibration.JouTmal of Turbomachinery,2006,128:455-465.
    [94] Sadeghi M, Liu F. Investigation of non-linear flutter by a coupled aerodynamics and structuraldynamics method. AIAA-2001-573,2001.
    [95] Sadeghi M, Yang S, Liu F, Computation of uncoupled and coupled aeroelasticity ofthree-dimensional blade rows. AIAA-2004-192,2004.
    [96] Sadeghi M, Liu F. Coupled fluid-structure simulation for turbomachinery blade rows.AIAA-2005-18,2005.
    [97] Stuart Moffatt, He Li. Blade forced resoonse prediction for industrial gas turbines part I:methodologies. ASME GT2003-38640,2003.
    [98] Tim R, David B. Identification of the stability margin between safe operation and the onset of bladeflutter. Journal of Turbormachinery,2009,131:011009(1-10).
    [99]瞿伦富,王正伟,周凌九.轴流转浆机组浆叶液固耦合振动特性仿真计算[J].清华大学学报,1998,38(1):15-18.
    [100]谷朝红,姚熊亮,陈起富.水轮机部件流固耦合振动特性研究[J].大电机技术,2001,(6):47-52.
    [101]肖若富,韦采新,韩风琴,陈秋.流固耦合对水轮机的固定导叶振频振型的影响[J].华中科技大学学报,2001,29(4):86-87.
    [102]邬海军,郭鹏程,廖伟丽,罗兴.ANSYS在水轮机部件流固耦合振动分析中的应用[J].水电能源科学,2004,22(4):64-66.
    [103]党小建.水轮机导叶流固耦合振动特性计算[D].西安:西安理工大学,2004.
    [104]陈香林.混流式水轮机叶片流固耦合动力特性研究[D].昆明:昆明理工大学,2004.
    [105]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报,2004,23(3):116-118.
    [106]刘德民,刘小兵,李娟.基于流固耦合的水轮机振动分析[J].流体传动与控制,2008,1(26):21-25.
    [107]王正伟,罗永要,方源,温晓军.负荷调节过程中的混流式转轮流固耦合计算[J].水利发电学报,2005,24(4):58-61.
    [108]肖若富,王正伟,罗永要.基于流固耦合的混流式水轮机静应力特性分析[J].水利发电学报,2007,26(3):120-123.
    [109]邵伟强.基于弱耦合的轴流式水轮机三维数值模拟[D].西安:西安理工大学,2008.
    [110]曾强.压气机转子叶片流固耦合计算及软件集成研究[D].南京:南京航天航空大学,2006.
    [111]吕文亮.对转涡轮转子叶片流固耦合数值分析方法研究[D].南京:南京航天航空大学,2010.
    [112]张瑞琴,翁建生.基于流固耦合的叶片颤振分析[J].计算机仿真,2010,28(3):48-51.
    [113]黎少辉.风机叶片流固耦合特性分析与故障诊断[D].武汉:中国矿业大学,2009.
    [114]谢远森,李意民,周忠宁,谷勇霞.旋转预应力条件下的叶片流固耦合模态分析[J].噪声与振动控制,2009,(4):35-37.
    [115]弓三伟,任丽芸,刘火星,李琳,邹正平.汽轮机末级转子叶片流固耦合计算[J].热力透平,2007,36(3):35-37.
    [116]裴吉,袁寿其,袁建平.流固耦合作用对离心泵内部流场影响的数值计算[J].农业机械学报,2009,40(12):107-111.
    [117]王松岭,孙哲,吴正人,张磊.基于流固耦合的离心通风机叶轮强度研究[J].华北电力大学学报,2011,38(4):108-111.
    [118]金琰.叶轮机械中若干气流激振问题的流固耦合数值研究[D].北京:清华大学,2002.
    [119]吴望一.流体力学[M].北京:北京大学出版社,2004.
    [120]费斯泰赫(美).计算流体力学导论[M].北京:世界图书出版公司,2010.
    [121]江春波,张永良,丁则平.计算流体力学[M].北京:中国电力出版社,2007.
    [122]徐秉业,王建学.弹性力学[M].北京:清华大学出版社,2007.
    [123]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002.
    [124]邱吉宝,向树红,张正平.计算结构动力学[M].北京:中国科学技术大学出版社,2009.
    [125]凌学勤.大型隔膜泵关键技术研究[D].沈阳:东北大学,2011.
    [126]汪学锋,李锋,周炜,冷文浩,汤家力.流固耦合网格插值方法研究[J].船舶力学,2009,13(4):571-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700