用户名: 密码: 验证码:
船舶碰撞风险评价与避碰决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水路运输在国际贸易中发挥着重要的作用,而保障船舶在航行和运营过程中的安全是一个重要的前提条件。船舶碰撞、搁浅等事故往往会造成严重的经济损失、人身伤亡和环境污染。因此,水上交通风险评价问题受到了人们的广泛关注。针对海湾、海峡、港口航道、繁忙水域等的通航风险评价进行了大量的研究工作。在水上交通风险评价中,很多情况下由于数据量有限等原因,需要利用专家的主观经验知识作为补充,而如何将主观知识和客观数据有效融合是研究的焦点问题之一。此外,船舶碰撞是水上交通事故中最为常见的类型之一,船舶碰撞风险评价和智能避碰决策问题也是水上交通运输领域的重要课题。本文主要针对以上问题开展研究,主要的研究工作和研究成果如下:
     (1)针对传统置信规则推理方法中没有对不同专家的主观判断进行区别对待的缺陷,提出一种泛化的置信规则库方法(generalized belief rule base, G-BRB),该方法考虑不同专家主观知识的差异,并可以将专家的主观判断和历史数据进行融合,得到最终的评价结果。该方法被进一步应用到碰撞风险评价,将相关的指标划分为安全形势和应急成本投入两个部分,其中安全形势将事故/险情数量、遇险人数和死亡/失踪人数作为评价指标,应急成本投入部分则用海事部门搜救次数和社会力量救助次数两个因素作为评价指标,分别利用G-BRB方法进行推导,最后将安全形势和成本的评价结果进一步融合,得到最终结果。与传统的BRB方法和贝叶斯网络得到的结果比较,并进一步进行敏感性分析,结果显示,提出的泛化的置信规则库方法具有更高的精度和可靠性。
     (2)提出一种当船舶存在碰撞风险时的避碰决策效果定量评价模型(时空评价模型),分别从时间和空间两个维度对避碰决策效果进行评价,然后利用证据理论对结果进行融合,在时间序列内以两船之间的距离和最近会遇距离(distance to closest point of approach, DCPA)两个参数的加权平均值作为空间增益的量测,以最近会遇时间(time to closest point of approach, TCPA)作为时间增益的量测,并利用D-S证据理论对时间和空间增益进行融合处理,得到每个时刻的决策效果评价结果,最后通过改变相关赋值曲线,分析模型的敏感度和可靠性。
     (3)在国际海上避碰规则的基本要求下,研究了两条船舶在近距离会遇情况下的避碰时机选择问题,研究中考虑了所有存在碰撞风险的会遇情况,分别对在存在碰撞风险条件下,仅靠让路船采取措施,以及在紧迫局面下,两条船舶同时避让所需要的最小距离进行确定。然后将计算结果与常用的参数,如DCPA、TCPA进行比较,结果表明仅靠DCPA和TCPA来评估碰撞风险很可能会低估避碰难度,而提出的模型得到的结果可以作为一个重要补充。最后,利用三个典型船舶会遇情况进行案例研究,结果表明,两条船舶在采取正确的避让行动条件下,可以在规定的距离内成功避免碰撞。
     (4)针对多船会遇局面下的避碰决策问题,提出一种分布式实时避碰决策方法,该方法在海上避碰规则的要求下,将所有其它船舶看作是“目标船”,从“本船”的角度研究避碰问题,分别对“本船”为让路船、“本船”为直航船,且“目标船”没有采取避让措施等情况下的避碰决策进行设计,根据会遇情况考虑采取转向和变速两种方式进行避让。对所有船舶都遵守海上避碰规则,以及存在船舶违反避碰规则的多船会遇局面进行仿真,得到以下基本结论:①通常情况下,船舶在避让过程中只采用一次转向或变速操纵,而且一般不会出现船舶同时转向和变速的情况;②采用分布式避碰决策可能会造成不同船舶的操作发生冲突,船舶之间的通信和协调在避让过程中发挥着重要的作用;③根据避碰规则的要求,除非是在极端的条件下,船舶应该尽可能避免向左转向。
Maritime transportation plays a significant role in international trade system. The safety of ships during navigation and operation is one of the most important preconditions. Many types of accident like ship collisions and groundings often result in great economic loss, fatalities and the environmental contamination. Consequently, maritime risk assessment is one of the most important focus areas for waterway transportation. A lot of attentions have been paid to the risky areas where traffic density is high for a long time. The areas include gulfs, straits, ports, busy waterways and so on. In a lot of maritime risk assessment, the subjective opinions from experts in relevant domains can be an effective complement in the scarcity of historic data. How to make assessment by combining historic data with expert opinions has been one of the most concerns for researchers. What's.more, as one of the most common types of accident, collision risk assessment and intelligent anti-collision decision-making are also important topics in maritime transportation. The research of this thesis mainly focuses on the above topics, and the results are as follows:
     (1) A novel method called Generalized Belief Rule Base (G-BRB) was proposed by making differential treatment for subjective knowledge from different experts, which the traditional method treats them equally. G-BRB can get the final result by combining expert opinions with historical data. The proposed method was further used into collision risk assessment. The indicators were first divided into two parts, namely safety situation and emerging resource cost. Safety was evaluated by accident/incident, distress and death/missing toll while emerging resourcecost was evaluated by salvage and other vessels'assistance. The proposed G-BRB was used to make inference to get the final result. The proposed method was then compared with traditional BRB and Bayes Belief Network (BBN) as well as sensitivity analysis. The results show that the proposed method has higher precision and reliability.
     (2) A quantitative anti-collision decision making evaluation model called spatial-temporal forensic in collision situation was proposed. The model makes evaluation both in the dimension of space and time. The spatial gain was measured by the distance and DCPA between two ships and the temporal gain was measured by the TCPA between two ships. The D-S theory was then used to combine spatial and temporal gain to get the final evaluation at each time point. Furthermore, the sensitivity and reliability analysis were carried out by changing relevant curves used in the model.
     (3) Ship anti-collision under the COLREGs based on the maneuverability model was discussed and further studied. The study took all encounter situations into account and obtained the minimum distance required for two encountering ships to maintain clearance of each other under normal situations and critical situations respectively. The results obtained in this paper are also used to compare the proposed model with the traditional anti-collision parameters such as the TCPA and the DCPA. The results show that assessing the collision risk by only the TCPA and the DCPA is quite likely to mislead navigators to take action too late to avoid collision. Therefore, the minimum distances required under both normal situations and critical situations obtained in this paper are necessary for navigators to make wise decisions. At last, three typical encounter situations were used to do case studies. The results show that the two ships can avoid collision successfully within required distance by taking right actions
     (4) Multi-ship anti-collision problem is studied in a distributed and real time way in this paper. The decision making procedure is carried in a distribute way under the requirements of COLREGs and all the involved ships make decision by their own judgments by treating itself as "Own Ship (OS)" and all the other ships as "Target Ships (TSs)". Both course and speed changing are considered according to the encounter situations. In the model, not only the situation that all the involved ships are complied with requirements from COLREGs is considered, but also the decision making for stand-on ship given that the give-way ship violates the rules is studied. The simulation results show that the proposed procedure can avoided successfully even when some ships did not undertake their responsibilities. The study also draws the following conclusions:(i) Most of the anti-collision operations are carried out by single operation, even in multi-ship encounter situations. What's more, it is not possible that a ship changes course and speed simultaneously,(ii) Some conflicts between ships' operations may happen sometimes when they make decisions in a distributive mode. Real-time communication and cooperation among them is very important for collision avoidance,(iii) Turning port side is not advisable for ships to avoid collision according to COLREGs, unless in extreme situations.
引文
[1]魏磊.浅议我国内河航运现状及发展中的问题[J].中国水运,2007,7(4): 187-188.
    [2]许庆斌.运输经济学导论[M].北京:中国铁道出版社,1995.
    [3]Shepherd J, Walton G. Shipping, maritime trade, and the economic development of colonial North America[M]. London and New York:Cambridge University Press,1972.
    [4]李明.水运对我国国民经济贡献的研究[D].大连:大连海事大学,2004.
    [5]李建丽,真虹,徐凯.水路运输在低碳经济背景下的比较优势[J].水运管理,2010,32(3):14-16.
    [6]交通部.中国交通年鉴[M].2006-2011.
    [7]Yip T. Port traffic risks-A study of accidents in Hong Kong waters[J]. Transportation Research Part E:Logistics and Transportation Review,2008,44(5)):921-931.
    [8]舟山海事局网站.http://zs.cnzjmsa.gov.cn/
    [9]Goerlandt F, Kujala P. Traffic simulation based ship collision probability modeling[J]. Reliability Engineering & System Safety,2011,96(1):91-107.
    [10]张金奋,严新平,陈先桥,等.基于概率分布的长江干线水上交通事故分析[J].中国航海,2012,35(3):81-84.
    [M]浙江海事局网站.http://zs.cnzjmsa.gov.cn/
    [12]Mennis E, Platis A, Nikitakos N. Applying stochastic models in maritime safety[J]. Journal of Environmental Protection and Ecology.2009,10(4):975-985.
    [13]Arben M, Ulf P. A ground theory model for analysis of marine accidents[J]. Accident Analysis and Prevention.2011, (43):1590-1603.
    [14]王宝阔.船舶交通事故量灰色预测应用研究[J].中国航海,2011,34(1): 59-62.
    [15]赵佳妮,吴兆麟.基于灰色马尔可夫模型的水上交通事故预测[J].大连海事大学学报,2005,31(4):15-18.
    [16]李俊.基于支持向量机的船舶交通事故预测研究[D].武汉:武汉理工大学,2008.
    [17]Andrews J., Moss T. Reliability and risk assessment[M].2nd ed., London:Professional Engineering Publishing Limited,2002.
    [18]Lazakis I, Turan O, Aksu S. Increasing ship operational reliability through the implementation of a holistic maintenance management strategy[J]. Ships and Offshore Structures,2010,5(4):337-357.
    [19]刘新建.基于FTA的客滚船动力装置安全评价[D].大连:大连海事大学,2007.
    [20]刘少辉,林少芬,江小霞,等.基于模糊故障树分析法的舵机液压系统可靠性研究[J].船舶工程,2008,30(5):·27-29.
    [21]Beim G, Hobbs B. Event tree analysis of lock closure risks[J]. Journal of Water Resources Planning and Management,1997,123(3):169-178.
    [22]Soares C, Teixeira A. Risk assessment in maritime transportation[J]. Reliability Engineering & System Safety,2001,74(3):299-309.
    [23]Jensen, F, Nielsen, T.2007. Bayesian networks and decision graphs (second edition)[M]. Springer press.
    [24]Trucco, P, Cagno, E, Rugger, F, Grande, O. A bayes belief network modelling of organisational factors in risk analysis:a case study in maritime transportation[J]. Reliability Engineering and System Safety,2008,93:823-834.
    [25]Li K, Yin J, Bang H, et al. Bayesian network with quantitative input for maritime risk analysis[J]. Transportmetrica,2012 (ahead-of-print):1-30.
    [26]Zhang D. Yan X, Yang Z, et al. Incorporation of Formal Safety Assessment and Bayesian Network in Navigational Risk Estimation of the Yangtze River[J]. Reliability Engineering & System Safety,2013.
    [27]Wang Y, Xie M, Chin K, et al. Accident analysis model based on Bayesian Network and Evidential Reasoning approach[J]. Journal of Loss Prevention in the Process Industries,2012.
    [28]Wang, Y, Yang, J, Xu, D, et al. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees[J]. European Journal of Operational Research, 2006,175:35-66.
    [29]Yang J, Liu J, Wang J, et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE Transactions on Systems, Man, and Cybernetics-part A: Systems and Humans,2006,36:266-284.
    [30]Yang J, Wang Y, Xu D, Belief rule-based methodology for mapping consumer preferences and setting product targets[J]. Expert Systems with Applications,2012,39:4749-4759.
    [31]Jason R, J. Rene V, Joseph P, et al. A Traffic Density Analysis of Proposed Ferry Service Expansion in San Francisco Bay Using a Maritime Simulation Model[J]. Reliability Engineering and System Safety.2003,81:119-132.
    [32]张笛.枯水期长江通航风险评价和预测方法研究[D].武汉:武汉理工大学,2011.
    [33]Lisowski J, Rak A, Czechowicz W. Neural network classifier for ship domain assessment[J]. Mathematics and computers in simulation,2000,51(3):399-406.
    [34]Dai J., Liu K. Calculation method of restricted waterway transit capacity harbor based on ship domain model[J]. Journal of Wuhan University of Technology:Transportation Science & Engineering,2009,33(4):679-283.
    [35]刘敬贤,文元桥.基于船舶行为特征的港口航道通过能力仿真[J].大连海事大学学报:自然科学版,2009,35(2):31-33.
    [36]Liu J, Wen Y. Simulation of waterway transit capacity at harbor based on the ship behavior[J]. Journal of Dalian Maritime University,2009,2:8.
    [37]Mavrakis D, Kontinakis N. A queueing model of maritime traffic in Bosporus Straits[J]. Simulation Modelling Practice and Theory,2008,16(3):315-328.
    [38]陈伟炯,蔡存强.船舶碰撞责任的计算机辅助判析技术研究[J].中国航海,2000,23(2):62-69.
    [39]Wang Y, Zhang J, Chen X, et al. A spatial-temporal forensic analysis for inland-water ship collisions using AIS data[J]. Safety Science.2013,57:187-202.
    [40]Kabayama K, Izawa S. Radar anti-collision system for ships in waters adjacent land areas: U.S.3,890,616[P/OL].1975.
    [41]Yang S, Li L, Suo Y, et al. Study on construction of simulation platform for vessel automatic anti-collision and its test method[C]. Automation and Logistics,2007 IEEE International Conference on,2007:2414-2419.
    [42]Lin W, Yue D. Numerical solutions for large-amplitude ship motions in the time domain[J]. 1991.
    [43]Smierzchalski R, Kuczkowski P, Jaworski B. Distributed Evolutionary Algorithm for Path Planning in Navigation Situation[J]. Trans Nav,2013,7(2):293-300.
    [44]Szlapczynski R. Evolutionary Ship Track Planning within Traffic Separation Schemes-Evaluation of Individuals[J]. Trans Nav,2013,7(2):301-308.
    [45]Tsou M, Hsueh C. The study of ship collision avoidance route planning by ant colony algorithm[J]. Journal of Marine Science and Technology,2010,18(5):746-756.
    [46]Liu L, Dai Y, Want L, et al. Research on Global Path Planning of Underwater Vehicle Based on Ant Colony Algorithm[J]. Journal of System Simulation,2007,18:019.
    [47]王得燕,刘以安.粒子群算法在多船避碰决策中的应用[J].计算机工程与设计,2009,14:037.
    [48]田雨波,潘朋朋.免疫粒子群算法在船舶避碰上的应用研究[J].中国航海,2011,34(1):48-52.
    [49]Tam C, Bucknall R. Cooperative path planning algorithm for marine surface vessels[J]. Ocean Engineering,2013,57:25-33.
    [50]Michael R, John J, Joseph A. et al. A method for protocol-based collision avoidance between autonomous marine surface craft[J]. Journal of Field Robotics,2006,23(5):333-346.
    [51]Michael R, John J, Joseph A, et al. Protocol-based COLREGS collision avoidance navigation between unmanned marine surface craft[C].2006:1-27.
    [52]Michael R, Joseph A, John J. Navigation of Unmanned Marine Vehicles in Accordance with the Rules of the Road[C].2006:1-7.
    [53]赵劲松.船舶避碰学原理[M].大连:大连海事大学出版社,1999.
    [54]Iglesias B, Vinagre R. Maritime Safety Standards and the Seriousness of Shipping Accidents[J]. Journal of Navigation.2011,64(3):495-520.
    [55]Orosa J, Santos R, Perez J. A practical case study of the relationship between work risk prevention and fatigue at work in spanish merchant ships[J]. Human Factors and Ergonomics in Manufacturing & Service Industries.2011,21 (5):484-492.
    [56]IMO MSC/ Circ.829. Interim Guidelines for the application of Formal Safety Assessment (FSA) to the IMO Rule-Making process. International Maritime Organization,1997.
    [57]IMO MSC/ Circ.1023. Guidelines for Formal Safety Assessment (FSA) for use in the IMO Rule-Making process. International Maritime Organization,2002.
    [58]Kontovas C, Psaraftis H. Formal safety assessment:a critical review[J]. Marine technology, 2009,46(1):45-59.
    [59]Karahalios, H, Yang, Z, Williams, V, Wang, J. A proposed System of Hierarchical Scorecards to assess the implementation of maritime regulations[J]. Safety Science,2011,49(3): 450-462.
    [60]Saaty, T. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology,1977,15:234-281.
    [61]Wang J, Pillay A, Kwon, Y, et al. An analysis of fishing vessel accidents[J]. Accident Analysis and Prevention,2005,37(6):1019-1024.
    [62]Yang Z, Wang J, Bonsall S, et al. Use of fuzzy evidential reasoning in maritime security assessment[J]. Risk Analysis,2009,29:95-120.
    [63]Yang Z, Zhang D, Caglayan O. Selection of techniques for reducing shipping NOX and SOX emissions[J]. Transportation Research Part D,2012,17:478-486.
    [64]Wang J. A brief review of marine and offshore safety assessment[J]. Marine Technology, 2002,39(2):77-85.
    [65]Fujii Y, Yamanouchi H, Mizuki N. On the fundamentals of marine traffic control. Part Ⅰ—Probabilities of collision and evasive actions[J]. Electronic Navigation Research Institute Papers,1970,(2):1-16.
    [66]Fujii Y, Yamanouchi H, Mizuki N. Some factors affecting the frequency of accidents in marine traffic.Ⅱ— the probability of stranding and Ⅲ— the effect of darkness on the probability of collision and stranding[J]. Journal of Navigation,1974,27:239 47.
    [67]MacDuff T. The probability of vessel collisions[J].Ocean Industry,1974:144 8.
    [68]Pedersen P. Collision and grounding mechanics[J]. West European Confederation of Maritime Technology Societies (WEMT),1995.
    [69]Fujii Y, Tanaka K. Traffic capacity[J]. Journal of navigation,1971,24(4):543-552.
    [70]Goodwin E. A statistical study of ship domains[J]. Journal of Navigation,1975,28(03): 328-344.
    [71]Pietrzykowski Z, Uriasz J. The ship domain-a criterion of navigational safety assessment in an open sea area[J]. Journal of Navigation,2009,62(1):93.
    [72]Filipowicz W. Vessel traffic control problems[J]. Journal of Navigation,2004,57(01): 15-24.
    [73]Szlapczynski R. A unified measure of collision risk derived from the concept of a ship domain[J]. Journal of Navigation,2006,59(3):477-490.
    [74]Smierzchalski R, Weintrit A. Domains of navigational objects as an aid to route planning in collision situation at sea[C]. Proc. of 3rd Navigational Symposium, Gdynia, Ⅰ.1999: 265-279.
    [75]齐乐,郑中义,李国平.互见中基于AIS数据的船舶领域[J].大连海事大学学报,2011,37(1):48-50.
    [76]贾传荧.拥挤水域内船舶领域的探讨[J].大连海事大学学报,1989,15(4):15-18.
    [77]代君,王当利,刘克中.基于船舶领域模型的港口受限航道通过能力计算方法[J].武汉理工大学学报:交通运输工程版,2009,33(4):679-684
    [78]Wang N. An intelligent spatial collision risk based on the quaternion ship domain[J]. Journal of Navigation,2010,63(4):733-749.
    [79]Wang N, Meng X, Xu Q, et al. A unified analytical framework for ship domains[J]. Journal of Navigation,2009,62(4):643.
    [80]徐周华,牟军敏,季永清.内河水域船舶领域三维模型的研究[J].武汉理工大学学报:交通科学与工程版,2004,28(3):380-383.
    [81]刘绍满,王宁,吴兆麟.船舶领域研究综述[J].大连海事大学学报,2011,1:014.
    [82]Pietrzykowski Z, Gucma L. Application of the probabilistic-fuzzy method for assessment of a dangerous situation of a ship manoeuvring in a restricted area[J]. Annual of Navigation,2002: 59-70.
    [83]Pietrzykowski Z. Ship's fuzzy domain-a criterion for navigational safety in narrow fairways[J]. Journal of Navigation,2008,61(3):499-514.
    [84]Pietrzykowski Z. Ship fuzzy domain on a straight section of a fairway:comparative study [C]. The Ⅸ International Scientific and Technical Conference on Maritime Traffic Engineering, Szczecin.2001.
    [85]Zhao J, Wu Z, Wang F. Comments of ship domains[J]. The Journal of Navigation,1993, 46(03):422-436.
    [86]Zadeh L. Fuzzy sets[J]. Information and control,1965,8(3):338-353.
    [87]Zhu X, Xu H, Lin J. Domain and its model based on neural networks[J]. Journal of Navigation,2001,54(1):97-103.
    [88]Szlapczynski R. Fuzzy Collision Threat Parameters Area (FCTPA)-A New Display Proposal[J].2008.
    [89]Endoh S. Aircraft collision models[D]. Cambridge:Massachusetts Institute of Technology, 1982.
    [90]Pedersen P. Review and application of ship collision and grounding analysis procedures[J]. Marine Structures,2010,23(3):241-262.
    [91]Kujala P, Hanninen M, Arola T, et al. Analysis of the marine traffic safety in the Gulf of Finland[J]. Reliability Engineering & System Safety,2009,94(8):1349-1357.
    [92]Kaneko F. Effectiveness of separation scheme for prevention of collision by diminishing ships'encounter probability[C], Proceedings of the 3rd international conference on collision and grounding of ships (ICCGS). Izu, Japan.2004,211 220.
    [93]Kaneko F, Hara D. Estimation of dangerous encounters' number from observed ship trajectories[C].4th international conference on collision and grounding of ships. Hamburg University of Technology (ICCGS). Schiffbautechnische Gesellschaft. Hamburg, Germany, 2007:187 192.
    [94]Kaneko F. An improvement on a method for estimating number of collision candidates between ships[J]. Collision and Grounding of Ships and Offshore Structures,2013:27.
    [95]Montewka J, Hinz T, Kujala P, et al. Probability modelling of vessel collisions[J]. Reliability Engineering & System Safety,2010,95(5):573-589.
    [96]Zhang J, Yan X, Chen X, et al. A novel approach for assistance withanti-collision decision making based on the International Regulations for Preventing Collisions at Sea[J]. Part M, Journal of Engineering for the Marine Environment.2012,226(3):250-259.
    [97]郝勇,童飞.水上交通事故致因理论探讨[J].船海工程,2006,2:83-86.
    [98]赵佳妮,吴兆麟.基于灰色马尔可夫模型的水上交通事故预测[J].大连海事大学学报,2005,31(4):15-18.
    [99]陈咫宇,胡甚平,郝严斌.基于分形理论的水上交通事故预测[J].上海海事大学学报,2009,30(3):18-21.
    [100]Antao P, Soares G. Fault-tree models of accident scenarios of RoPax vessels[J]. International Journal of Automation and Computing,2006,3(2):107-116.
    [101]郝勇,吴志新,傅春燕.长江干线船舶碰撞原因的故障树分析:以武汉海事故辖区水域为例[J].中国安全生产科学技术,2010(5):043.
    [102]Ronza A, Felez S, Darbra R, et al. Predicting the frequency of accidents in port areas by developing event trees from historical analysis[J]. Journal of Loss Prevention in the Process Industries,2003,16(6):551-560.
    [103]Asami M, Kaneko F. Development of vessel collision model based on Naturalistic Decision Making model[C]. International Conference on Grounding and Collision for Ships (ICCGS),2013:49-56.
    [104]Trucco P, Cagno E, Ruggeri F, et al. A Bayesian Belief Network modelling of organisational factors in risk analysis:A case study in maritime transportation[J]. Reliability Engineering & System Safety,2008,93(6):845-856.
    [105]Hanninen M, Kujala P. Influences of variables on ship collision probability in a Bayesian belief network model[J]. Reliability Engineering & System Safety,2012,102:27-40.
    [106]Macduff T. The probability of vessel collisions[J]. Ocean Industry 1974:14 48.
    [107]Fowler T, Sorgard E. Modeling ship transportation risk[J]. Risk Analysis 2000,20(2):225 44.
    [108]Fujii Y, Mizuki N. Design of VTS systems for water with bridges[C]. Proceedings of the international symposium on advances in ship collision analysis, Copenhagen, Denmark, 1998:17790.
    [109]Pedersen P, Zhang S. Collision analysis for MSD extra[C]. SAFEREURORO Spring Meeting, Nantes, France,1999:1 33.
    [110]Otto S, Pedersen P, Samuelides M, Sames P. Elements of risk analysis for collision and grounding of a RoRo passenger ferry [J]. Marine Structures 2002,15(4):461 474.
    [111]Rosqvist T, Nyman T, Sonninen S, et al, The implementation of the VTMIS system for the Gulf of Finland:a FSA study[C]. Proceedings of the RINA International Conference on Formal Safety Assessment, London,2002:1-14
    [112]Karlsson M, Rasmussen F, Frisk L. Verification of ship collision frequency model[C]. Proceedings of the international symposium on advances in ship collision analysis. Rotterdam.1998:117 121.
    [113]Hanninen M, Kujala P. The effects of causation probability on the ship collision statistics in the Gulf of Finland.8th international navigational symposium, Gdansk, Poland,2009.
    [114]Jakub M, Tomasz H, Pentti K, et al. Probability Modeling of Vessel Collisions. Reliability Engineering and System Safety.2010, (95):573-589.
    [115]Karl G. Modeling and analysis of ship traffic by observation and numerical simulation[D]. Norwegian University of Science and Technology.
    [116]Karl G., Torgeir M. Estimating navigation patterns from AIS[J]. the Journal of Navigation. 2009,62:587-607.
    [117]Karl G, Torgeir M. Adding the human element to ship manoeuvring simulations[J]. the Journal of Navigation.2010,63:695-716.
    [118]刘亮,刘敬贤,谭志荣.荆州长江大桥船舶到达规律分析及检验[J].大连海事大学学报.2010,36(4):1-5.
    [119]刘敬贤,李云斌.天津港主航道船舶到达规律统计分析[J].武汉理工大学学报.2008,32(2):351-353.
    [120]焦亮.船舶交通仿真与优化[D].大连:大连海事大学.2000.
    [121]Mohammed S, Haugen S. Collision between offshore supply vessels and offshore installations[C]. ESREL,2012:1-10.
    [122]Vinnem S, Haugen S. Generalised methodology for operational risk analysis of offshore installations[J]. Journal of Risk and Reliability.2009,223(1):87-97.
    [123]Curtis R. A ship collision model for overtaking[J]. Journal of the Operational Research Society,1986:397-406.
    [124]Qu X, Meng Q, Suyi L. Ship collision risk assessment for the Singapore Strait[J]. Accident Analysis & Prevention,2011,43(6):2030-2036.
    [125]Van H, Malaise V, Vries G, et al. Combining ship trajectories and semantics with the simple event model (sem)[C]. Proceedings of the 1st ACM international workshop on Events in multimedia. ACM,2009:73-80.
    [126]Van H, Vries G, Malaise V, et al. Spatial and semantic reasoning to recognize ship behavior[C]. ISWC.2009.
    [127]Peter F, Bo C. User manual for GRACAT-Grounding and Collision Analysis.
    [128]Friis-Hansen A, Christensen C, Hansen P. Reliability analysis of Upheaval Buckling-Updating and cost optimization[C]. Probabilistic Mechanics Conference, ASCE.2000.
    [129]Peter F, Bo C. GRACAT:software for grounding and collision risk analysis[J]. Marine Structures.2002,15:383-401.
    [130]Ali D, Yasemin A, Fahri C. A numerical investigation of multiphase flow and oil spill in Istanbul[J]. Online Journal of Science and Technology.2011,1(2):8-15.
    [131]Brown, A. Collision scenarios and probabilistic collision damage[J]. Marine Structures. 2002,15:335-364.
    [132]Finn V, Thomas D, Nielsen. Bayesian networks and decision graphs[M]. Berlin, Springer, 2007.
    [133]Jensen F. Hugin Lite 6.28 software for Bayesian networks, www.hugin.dk
    [134]Jensen F. Introduction to Bayesian networks:Hugin[M]. Aalborg, Denmark, Aalborg University Press,1993.
    [135]Andreas F. Bayesian networks as a decision support tool in marine application[D]. Department of Naval Architecture and Offshore Engineering Technical University of Denmark.2000.
    [136]Hollnagel E, Woods D. Resilience engineering:concepts and precepts[M]. Copenhagen: Ashgate Publishing,2006.
    [137]Hollnagel E, Nemeth C. Dekker, S. Resilience engineering perspectives:remaining sensitive to the possibility of failure[M]. Copenhagen:Ashgate Publishing, Ltd.,2008.
    [138]Hollnagel E. Resilience engineering in practice:A guidebook[M]. Ashgate Publishing, Ltd.,2011.
    [139]马小明,杜娟.柔性工程及在安全管理系统中的应用[J].中国安全科学学报,2008,18(7):49-54.
    [140]Smierzchalski R, Michalewicz Z. Adaptive modeling of a ship trajectory in collision situations at sea[C]. Evolutionary Computation Proceedings,1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Conference on. IEEE,1998: 342-347.
    [141]Campbell S, Naeem W, Irwin G. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres[J]. Annual Reviews in Control,2012.
    [142]Smierzchalski R, Michalewicz Z. Modeling of ship trajectory in collision situations by an evolutionary algorithm[J]. Evolutionary Computation, IEEE Transactions on,2000,4(3): 227-241.
    [143]Smierzchalski R. Evolutionary trajectory planning of ships in navigation traffic areas[J]. Journal of marine science and technology,1999,4(1):1-6.
    [144]Szlapczynski R, Szlapczynska J. On evolutionary computing in multi-ship trajectory planning[J]. Applied Intelligence,2012,37(2):155-174.
    [145]Tsou M, Kao S, Su C. Decision support from genetic algorithms for ship collision avoidance route planning and alerts[J]. Journal of Navigation,2010,63(01):167-182.
    [146]Tsou M. Integration of a geographic information system and evolutionary computation for automatic routing in coastal navigation[J]. Journal of Navigation,2010,63(2):323.
    [147]Ito M, Zhang F, Yoshida N. Collision avoidance of ship with genetic algorithm[C]. Proceedings of 1999 IEEE International Conference on Control Applications,1999: 1791-1796.
    [148]Nikolos I, Valavanis K, Tsourveloudis N, et al. Evolutionary algorithm based offline/online path planner for UAV navigation[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2003,33(6):898-912.
    [149]程细得,刘祖源.基于遗传算法的内河船舶避碰路径优化研究[J].中国航海,2006(2):38-40.
    [150]邹晓华,倪天权.遗传算法在船舶转向避碰幅度决策中的应用研究[J].舰船电子对抗,2006,29(3):66-69.
    [151]王则胜.基于遗传算法的船舶避碰决策研究[D].上海:上海海事大学,2005.
    [152]Commandant U. International regulations for prevention of collisions at sea,1972 (72 COLREGS)[S]. US Department of Transportation, US Coast Guard, Commandant Instruction,1999.
    [153]Statheros T, Howells G, Maier K. Autonomous ship collision avoidance navigation concepts, technologies and techniques[J]. Journal of Navigation,2008,61(1):129.
    [154]NskiR S. Customized crossover in evolutionary sets of safe ship trajectories[J]. Int. J. Appl. Math. Comput. Sci,2012,22(4):999-1009.
    [155]刘以安,刘静,吴洁,等.模拟退火算法在船舶转向避碰幅度决策中的应用[J].中国造船,2007,4.
    [156]Perera L, Carvalho J, Soares C. Fuzzy logic based decision making system for collision avoidance of ocean navigation under critical collision conditions[J]. Journal of marine science and technology,2011,16(1):84-99.
    [157]Perera L, Carvalho J, Guedes S. Decision making system for the collision avoidance of marine vessel navigation based on COLREGs rules and regulations[C]. Proceedings of 13th congress of international maritime association of Mediterranean, Istanbul, Turkey.2009: 1121-1128.
    [158]Perera L, Carvalho J, Soares C. Bayesian network based sequential collision avoidance action execution for an ocean navigational system[C]. Proc.8th IFAC Conf. Control Appl. Mar. Syst.2010:301-306.
    [159]Lee S, Kwon K, Joh J. A fuzzy logic for autonomous navigation of marine vehicles satisfying COLREG guidelines[J]. International Journal of Control Automation and Systems,2004,2:171-181.
    [160]Hwang C, Yang J, Chiang C. The design of fuzzy collision-avoidance expert system implemented by H-autopilot[J]. Journal of Marine Science and technology,2001,9(1):25-37.
    [161]Kao S, Lee K, Chang K, et al. A fuzzy logic method for collision avoidance in vessel traffic service[J]. Journal of Navigation,2007,60(1):17-31.
    [162]Liu Y, Shi C. A fuzzy-neural inference network for ship collision avoidance[C]. Machine Learning and Cybernetics,2005. Proceedings of 2005 International Conference on. IEEE, 2005,8:4754-4759.
    [163]毕修颖.船舶碰撞危险度及避碰决策模型的研究[D].大连:大连海事大学,2000.
    [164]孙立成.船舶避碰决策数学模型的研究[D].大连:大连海事大学,2000.
    [165]杨神化.基于Multi-agent的船舶避碰决策支持系统[D].上海:上海海事大学,2008.
    [166]Yuhong L, Shengzheng W, Xuanmin D. A multi-agent information fusion model for ship collision avoidance[C]. Proceedings of the 7th International Conference on Machine Learning and Cybernetics,2008:6-11.
    [167]Liu Y, Yang C, Du X. A multiagent-based simulation system for ship collision avoidance[M]. Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. Springer Berlin Heidelberg,2007:316-326.
    [168]胡巧儿,胡勤友.基于协商的船舶避碰仿真系统的设计及分析[J].中国航海,2009,32(1):54-59.
    [169]刘宇宏,胡勤友,王胜正,等.一个基于多主体通信的船舶避碰协商模型(英文)[J].中国航海,2008,4:15.
    [170]Chang K, Jan G, Parberry I. A method for searching optimal routes with collision avoidance on raster charts[J]. The Journal of Navigation,2003,56(3):371-384.
    [171]Naeem W, Irwin G, Yang A. COLREGs-based collision avoidance strategies for unmanned surface vehicles[J]. Mechatronics,2012,22(6):669-678.
    [172]Tam C, Bucknall R. Collision risk assessment for ships[J]. Journal of Marine Science and Technology,2010,15(3):257-270.
    [173]Tam C, Bucknall R. Path-planning algorithm for ships in close-range encounters[J]. Journal of marine science and technology,2010,15(4):395-407.
    [174]Tan C, Bucknall R, Greig A. Review of collision avoidance and path planning methods for ships in close range encounters[J]. Journal of Navigation,2009,62(3):455.
    [175]Kuwata Y, Wolf M, Zarzhitsky D, et al. Safe maritime navigation with COLREGS using velocity obstacles[C]. Intelligent Robots and Systems (IROS),2011 IEEE/RSJ International Conference on. IEEE,2011:4728-4734.
    [176]Hsu H, Witt N, Hooper J, et al. The AIS-Assisted Collision Avoidance[J]. Journal of Navigation,2009,62(04):657-670.
    [177]Kreutzmann A, Wolter D, Dylla F, et al. Towards Safe Navigation by Formalizing Navigation Rules[J]. International Journal on Marine Navigation and Safety of Sea Transportation (TransNav),2013,7(2):161-168.
    [178]Kreutzmann A, Colonius I, Wolter D, et al. Temporal logic for process specification and recognition[J]. Intelligent Service Robotics,2013,6(1):5-18.
    [179]Zhang J, Xinping Yan X, Zhang D, et al. Study on the effect of ship-ship communication on anti-collision performance[C]. ESREL 2013. (to be published)
    [180]刘清,吴秀恒,邹早建.船舶航向模糊控制及仿真研究[J].武汉造船,2000,130(1):6-9.
    [181]Lin F, Shen P, Hsu S. Adaptive backstepping sliding mode control for linear induction motor drive[J]. IEE Proceedings-Electric Power Applications,2002,149(3):184-194.
    [182]Yuan L, Wu H. Simulation and design of fuzzy sliding-mode controller for ship heading-tracking[J]. Journal of Marine Science and Application,2011,10(1):76-81.
    [183]Zhang X., Jia X.. Simplification of H-infinity mixed sensitivity algorithm and its application[J]. Automatic control and computer sciences,2002,36(3):28-33.
    [184]张显库,赵翔宇.船舶转向的鲁棒控制及其优化设计[J].哈尔滨工程大学学报,2006,27(3):319-322.
    [185]王立军,张显库.基于鲁棒模糊控制的船舶转向及航向保持[J].中国航海,2011,34(2):1-4.
    [186]杨国勋,郭晨,贾欣乐.基于增强型学习算法的船舶运动混合智能控制[J].中国航海,2001(2):1-5.
    [187]Fossen T, Breivik M, Skjetne R. Line-of-sight path following of underactuated marine craft[J]. Proceedings of the 6th IFAC MCMC, Girona, Spain,2003:244-249.
    [188]Zhang J, Yan X, Zhang D, et al. Ship's Trajectory Control Optimization in Multi-ship Anti-collision Maneuvering[J]. International Journal on Marine Navigation and Safety of Sea Transportation (TransNav),2013,7(1):89-93.
    [189]Dempster A. Upper and lower probabilities induced by a multi-valued mapping[J]. The Annals of Statistics,1967,28,325 339.
    [190]Shafer G. A mathematical theory of evidence[M]. Princeton, NJ, USA:Princeton University Press.1976.
    [191]Jousselme A, Grenier D, BosseE. A new distance between two bodies of evidence[J]. Information Fusion.2001,2,91-101.
    [192]Kong X, Guo B, Liu Z. The fundamentals of geodesy[M]. Wuhan University Press (in Chinese).2005.
    [193]Pedersen P. Collision risk for fixed offshore structures close to high-density shipping lanes[J]. Proc IMechE Part M:J Engineering for the Maritime Environment.2002,216(1): 29 44.
    [194]南通海事局网站http://www.ntmsa.gov.cn/
    [195]国际电信联盟网站http://www.itu.int/en/pages/default.aspx

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700