用户名: 密码: 验证码:
含二咪唑配体的配位聚合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在第一章中,比较全面的介绍了功能配位聚合物的基本概念、发展过程、应用价值、及影响配合物结构的因素等。最后,指明了本课题的选题意义,概括了本研究工作所取得的成果。
     在第二章中,利用4,4'-六氟异丙基邻苯二甲酸(H4hfpdpt)与1,4-二(1-咪唑基)丁烷配体(biim-4)在溶剂热的条件下合成了4个金属配合物:[Cd(Hhfpdpt)(Hbiim-4)(biim-4)_(0.5)(H_2O)]·2H_2O (1), [Cd_2(hfpdpt)(biim-4)_(0.5)(H_2O)_2]·0.5H_2O (2), [Mn_2(hfpdpt)(biim-4)_(0.5)(H_2O)_2]·0.5H_2O (3)和[Zn_2(hfpdpt)(biim-4)_(1.5)]·(CH_3CH_2OH) (4)。化合物1具有(4,5)连接拓扑的超分子结构,而化合物2具有(5,6)连接拓扑的三维结构。化合物3与化合物2具有相同的(5,6)连接的拓扑,然而它们唯一的不同在于hfpdpt上羧基的配位模式。化合物4展示了一个罕见的3D→3D的自穿结构。对化合物1,2和4的热稳定性、光学性质进行了讨论。
     在第三章中,利用1,5-二(1-咪唑基)戊烷配体(biim-5)作为中性配体通过溶剂热的方法合成了5个配合物: [Co(o-BDC)(biim-5)] (5), [Co(m-BDC)(biim-5)]·H_2O (6), [Co(5-OH-m-BDC)(biim-5)] (7), [Co(DL-Cam)(biim-5)]·4H_2O (8)和[Co(BTCA)_(0.5)(biim-5)] (9)。化合物5展现出了二维的63-hcb拓扑。化合物6展现出了不常见的4-连接的二维双层结构。化合物7展示了一个二维的sql网络结构,这个二维的层进一步被羧基上的O原子和羟基之间存在的分子间氢键连接形成一个三维超分子结构。化合物8是一个含有四核水簇的二维层状结构。化合物9是一个相对比较复杂的(3,4)连接的三维化合物,其拓扑符号为(83)2(85·10)。对这些化合物的热稳定性进行了研究。
     在第四章中,利用2,2’–二(1–咪唑基)乙醚配体(BIE)作为中性配体与多元羧酸通过溶剂热的方法合成了13个配合物:[Ni(p-BDC)(BIE)] (10), [Cu(p-BDC)(BIE)] (11), [Cu(o-BDC)(BIE)] (12), [Cu_5(m-BDC)_4(μ3-O)_2(BIE)_2(H_2O)_2] (13), [Co(OX)(BIE)] (14), [Cu_3(1,3,5-BTC)_2(BIE)_2(H_2O)_3] (15), [Cu(1,2,4,5-btec)_(0.5)(BIE)] (16), [Co_2(1,2,4,5-btec)(BIE)_2]·H_2O (17), [Co_2(OA)(BIE)_2]·1.5H_2O (18), [Zn_2(OA)(BIE)_2]·2.5H_2O (19), [Cd(OA)_(0.5)(BIE)(H_2O)]·H_2O (20), [Zn_2(hfpdpt)(BIE)_2]·H_2O (21)和[Cd(1,2,3,4-btec)_(0.5)(BIE)(H_2O)] (22)。化合物10-12为44-sql层。化合物13中含有五核Cu簇,其结构可以简化为α-Po拓扑。化合物14为63-hcb层。而化合物15为罕见的二维自穿结构。化合物16则为不常见的Kagomé拓扑。化合物17为少见的含有平面四边形4-连接点的(3,4)连接的拓扑,其拓扑符号为(83)2(85·10)。化合物18和19几乎是同构的,它们具有相同的(32·62·72)(32·4·62·7)2拓扑。而化合物20则含有两种手性层,其拓扑符号为(52·64)(53·62·7)2。化合物21含有一个假对称中心,其结构为三维孔道结构。化合物22则展示了一个一维链状结构。对这些化合物的结构进行了描述,并对他们的热稳定性和光学性质进行了研究。
     第五章是结论。
In the first chapter, the concepts, the histories, the potential applications of coordination polymers, and the factors affecting the structures of the compounds are concisely introduced. At the end of this chapter, we pointed out that the importance of the search project and summarized the important results obtained in the thesis.
     In the second chapter, four new coordination polymers based on hfpdpt anion and biim-4 ligand, namely [Cd(Hhfpdpt)(Hbiim-4)(biim-4)_(0.5)(H_2O)]·2H_2O (1), [Cd_2(hfpdpt)(biim-4)_(0.5)(H_2O)_2]·0.5H_2O (2), [Mn_2(hfpdpt)(biim-4)_(0.5)(H_2O)_2]·0.5H_2O (3), and [Zn_2(hfpdpt)(biim-4)_(1.5)]·(CH_3CH_2OH) (4), where H4hfpdpt = 4,4’-(hexafluoroisopropylidene)diphthalic acid, biim-4 = 1,4-bis(imidazolyl)butane, were synthesized under hydrothermal conditions. Compound 1 displays a 3D supramolecular structure, with a (4,5)-connected topology, while compound 2 has a 3D (5,6)-connected topology. 3 has the same (5,6)-connected topology as that of 2, however, the only difference of these two compounds is the coordination modes of the hfpdpt anion. Compound 4 exhibits a rare 3D→3D self-penetrating framework. The thermogravimetric and luminescent properties were also investigated for compounds 1, 2 and 4.
     In the third chapter, five new coordination polymers based on biim-5 ligand, namely [Co(o-BDC)(biim-5)] (5), [Co(m-BDC)(biim-5)]·H_2O (6), [Co(5-OH-m-BDC)(biim-5)] (7), [Co(DL-Cam)(biim-5)]·4H_2O (8), and [Co(BTCA)_(0.5)(biim-5)] (9), where biim-5 = 1,5-bis(imidazolyl)pentane, H_2o-BDC = 1,2-benzenedicarboxylic acid, H_2m-BDC = 1,3-benzenedicarboxylic acid, H_25-OH-m-BDC = 5-OH-1,3-benzenedicarboxylic acid, H_2DL-Cam = DL-camphoric acid, and H4BTCA = 1,2,3,4-butanetetracarboxylic acid, were synthesized under hydrothermal conditions. Compound 5 displays a 2D 63-hcb-net. Compound 6 exhibits an uncommon 4-connected 2D layer. Compound 7 has a 2D sql net, this net is further extended by hydrogen bonds between the carboxylate O atoms and the hydroxyl groups into a 3D supramolecular framework. 8 is a 2D layer containing water tetramer. Compound 9 is relatively complex 3D framework with a rare (3,4)-connected topology. The thermal stabilities these five compounds were studied by thermogravimetric analysis.
     In the fourth chapter, reactions of 2,2’-bis(1-imidazolyl)ether (BIE) with different polycarboxylic acids produce thirteen new coordination polymers, namely [Ni(p-BDC)(BIE)] (10), [Cu(p-BDC)(BIE)] (11), [Cu(o-BDC)(BIE)] (12), [Cu_5(m-BDC)4(μ3-O)_2(BIE)_2(H_2O)_2] (13), [Co(OX)(BIE)] (14), [Cu3(1,3,5-BTC)_2(BIE)_2(H_2O)3] (15), [Cu(1,2,4,5-btec)_(0.5)(BIE)] (16), [Co_2(1,2,4,5-btec)(BIE)_2]·H_2O (17), [Co_2(OA)(BIE)_2]·1.5H_2O (18), [Zn_2(OA)(BIE)_2]·2.5H_2O (19), [Cd(OA)_(0.5)(BIE)(H_2O)]·H_2O (20), [Zn_2(hfpdpt)(BIE)_2]·H_2O (21), and [Cd(1,2,3,4-btec)_(0.5)(BIE)(H_2O)] (22), where H_(2p)-bdc = 1,4-benzenedicarboxylic acid, H_2o-bdc = 1,2-benzenedicarboxylic acid, H_2m-bdc = 1,3-benzenedicarboxylic acid, H_2OX = oxalic acid, H31,3,5-BTC = 1,3,5-benzenetricarboxylic acid, H41,2,4,5-btec = 1,2,4,5-benzenetetracarboxylic acid, H4OA = 4,4’-oxidiphthalic acid, H4hfpdpt = 4,4’-(hexafluoroisopropylidene)diphthalic acid, and H41,2,3,4-btec = 1,2,3,4-benzenetetracarboxylic acid, were synthesized under hydrothermal conditions. Compounds 10-12 are 44-sql layers. 13 exhibits anα-Po topology based on pentanuclear Cu(II) cluster. Compound 14 displays a 63-hcb layer, while 15 is a rare self-penetrating 2D network. Compound 16 is a unique Kagométopology. Compound 17 shows a rare 3,4-connected (83)2(85·10) topology with 3-connected nodes and square-planar 4-connected node. The crystal structures of 18 and 19 are close to being isostructural with a scarce (32·62·72)(32·4·62·7)2 topology. 20 contains two kinds of chiral layers, one left-handed and the other right-handed, with a unique topological type of (52·64)(53·62·7)2. Compound 21, related by a pseudo-centre of inversion, possesses a 3D porous framework. 22 shows a 1D chain structure. The structures of 10-22 are described. The thermal stabilities and the luminescent properties of 19-22 are also discussed in detail.
     The fifth chapter is the conclusions.
引文
[1] Du M, Guo Y M, Chen S T, et al. Preparation of acentric porous coordination crameworks from an interpenetrated diamondoid array through anion-exchange procedures: crystal structures and properties[J]. Inorg Chem, 2004, 43: 1287-1293.
    [2] Clearfield A. Recent advances in metal phosphonate chemistry[J]. Solid State & Material Science, 1996, 1: 268-278.
    [3] Slone R V, Hupp J T, Stern C L, et al. Albercht-schmitt, self-assembly of luminescent molecular squares featuring octahedral rhemium corners[J]. Inorg Chem, 1996, 35: 4096-4097.
    [4] Yu K B. Structure of catena-poly{bis(1,1,1,-trifluoro-2,4-pentanedionato-κ2O,O’) copper-μ-[(4,4 -bipyridine)-κN:κN’]}[J]. Acta Crystallogr Sect C, 1991, 47: 2653-2654.
    [5] Lu J, Paliwala T, Lim S C, et al. Coordination Polymers of Co(NO3)2 with Pyrazine and 4,4’-Bipyridine:Synthesis and Structure[J]. Inorg Chem, 1997, 36, 923-929.
    [6] Losier P, Zaworotko M J. A noninterpenetrated molecular ladderwith hydrophbic cavities[J]. Angew Chem Int Ed Engl, 1996, 35: 2779-2782.
    [7] Yaghi O M, Li H, Groy T L. A molecular railroad with large pores: synthesis and structure of Ni(4,4’-bpy)2(H2O)2(ClO4)2·1.5(4,4’-bpy)·2H2O[J]. Inorg Chem, 1997, 36: 4292-4293.
    [8] Hanan G S, Arana C R, Lehn J M, et al. Synthesis, structure, and properties of dinuclear and trinuclear rack-type Ru(II) complexes[J]. Angew Chem Int Ed Engl, 1995, 34: 1122-1124.
    [9] Chen H J, Yu W J, Chen X M, et al. Poly-[cadmium(II)-μ-4,4’-oxydianiline-N:N-μ-thiocyanato-N:S][J]. Acta Crystallogr Sect C, 2001, 57: 1285-1287.
    [10] MacGillivaray L R, Groeneman R H, Atwood J L. Design and self-assembly of cavity-containing rectangular grids[J]. J Am Chem Soc, 1998, 120: 2676-2677.
    [11] Tong M L, Ye B H, Cai J W, et al. Clathration of two-dimensional coordination polymers: synthesis and structure of [M(4,4’-bpy)2(H2O)2](ClO4)2·(2,4’-bpy)2·H2O and [Cu(4,4’-bpy)2(H2O)2] (ClO4)2·(4,4’-H2bpy)2 (M = CdII, ZnII and bpy = bipyridine)[J]. Inorg Chem, 1998, 37(11): 2645-2650.
    [12] Fujita M, Kwon Y J, Sasaki O, et al. Interpenetrating moleculae ladders and bricks[J]. J Am Chem Soc, 1995, 117: 7287-7288.
    [13] Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. J Am Chem Soc, 1995, 117: 10401-10402.
    [14] Soma T, Yuge H, Iwamoto T. Three-dimensional interpenetrating double and triple framework structures in [Cd(bpy)2{Ag(CN)2}2 and [Cd(pyrz){Ag2(CN)3}{Ag(CN)2}][J]. Angew Chem Int Ed Engl, 1994, 33: 1665-1666.
    [15] Amabilino D B, Stoddart J F. Intertwined structures and superstructures[J]. Chem Rev, 1995, 95:2725-2828.
    [16] Hoskins B F, Robson R. Infinite polymeric framework consisting of three-dimensinal linked rod-like segments[J]. J Am Chem Soc, 1989, 111: 5962-5964.
    [17] Yaghi O M, Davis C E, Li G, et al. Selective guest binding by tailored channels in a 3-D porous zinc(II)-benzenetricarboxylate network[J]. J Am Chem Soc, 1997, 119: 2861-2868.
    [18] Hoskins B F, Robson R, Slizys D A. The structure of [Zn(bix) (NO ) ]·4.5H O (bix = 1,4-bis(imidazol-1-ylmethyl)benzene): a new type of two-dimensional polyrotaxane[J]. 2 3 2 2Angew Chem Int Ed, 1997, 36: 2336-2338.
    [19] Chen B, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1021-1023.
    [20] Wang X L, Qin C, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes[J]. Chem Eur J, 2006, 12: 2680-2691.
    [21] Riedel R, Greiner A, Miehe G, et al.The first crystalline solids in the ternary Si-C-N system[J]. Angew Chem Int Ed, 1997, 36: 603-607.
    [22] Kim J, Chen B, Reineke T M, et al. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures[J]. J Am Chem Soc, 2001, 123: 8239-8247.
    [23] Li H, Eddaoudi M, Groy T L, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate)[J]. J Am Chem Soc, 1998, 120: 8571-8572.
    [24] Hoskins B F, Robson R, Slizys D A. A hexaimidazole ligand binding six octahedral metal ions to give an infinite 3Dα-po-like network through which two independent 2D hydrogen-bonded networks interweave[J]. Angew Chem Int Ed, 1997, 36: 2752-2755.
    [25] Sun J Y, Weng L H, Zhou Y M, et al. QMOF-1 and QMOF-2: three-dimensional metal-organic open frameworks with a quartzlike topology[J]. Angew Chem Int Ed, 2002, 41: 4471-4473.
    [26] Chui S S Y, Lo S M F, Charmant J P H. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1148-1150.
    [27] Abrahams B F, Haywood M G, Robson R, et al. New tricks for an old dog: the carbonate ion as a building block for networks including examples of composition [Cu (CO ) {C(NH ) } ] with the sodalite topology[J]. 6 3 12 2 3 8 4-Angew Chem Int Ed, 2003, 42: 1112-1115.
    [28] Lin J-D, Cheng J-W, Weng H-S, et al. Syntheses, characterizations and topology analyses of two 3D copper–organic frameworks from Cu(pyzca)2 (pyzca = pyrazine-2-carboxylate) building block[J]. Inorg Chem Commun, 2008, 11: 1136–1139.
    [29] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. Angew Chem Int Ed, 1998, 37: 1460-1494.
    [30] Wei G-H, Yang J, Ma J-F, et al. Syntheses, structures and luminescent properties of zinc(II) andcadmium(II) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands[J]. Dalton Trans, 2008, 23: 3080-3092.
    [31] Soma T, Iwamoto T. Supramolecular Structure of a Cadmium-Silver Complex Forming a Two-Dimensional Network Embracing One-Dimensional Chains in a Layered Crystal Structure[J]. Acta Crystallogr Sect C, 1996, 52: 1200-1203.
    [32] Plater M J, Foreman M R S J, Gelbrich T, et al. Synthesis and characterisation of infinite coordination networks with 1,6-bis(4-pyridyl)hexane and copper nitrate[J]. Cryst Eng, 2001, 4: 319-328.
    [33] Zaman M B, Smith M D, Loye H-C. Two different one-dimensional structural motifs in the same coordination polymer: a novel interpenetration of infinite ladders by bundles of infinite chains[J]. Chem Commun, 2001, 21: 2256-2257.
    [34] Carlucci L, Ciani G, Proserpio D M. A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag2(bpethy)5](BF4)2 [bpethy = 1,2-bis(4-pyridyl)ethyne][J]. Chem Commun, 1999, 5: 449-450.
    [35] Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord Chem Rev, 2003, 246: 247–289.
    [36] Plater M J, Foreman M R J S, Gelbrich T J, et al. Synthesis and characterisation of infinite di- and tri-nuclear zinc co-ordination networks with flexible dipyridyl ligands[J]. J Chem Soc Dalton Trans, 2000, 13: 1995-2000.
    [37] Xiao D-R, Li Y-G, Wang E-B, et al. Synthesis and characterisation of infinite di- and tri-nuclear zinc co-ordination networks with flexible dipyridyl ligands[J]. Inorg Chem, 2007, 46: 4158?4166.
    [38] Abrahams B F, Hardie M J, Hoskins B F, et al. Infinite square-grid [Cd(CN)2] n sheets linked together by either pyrazine bridges or polymerisable 1,4-bis(4-pyridyl)butadiyne bridges arranged in an unusual criss-cross fashion[J]. J Chem Soc Chem Commun, 1994, 9: 1049-1050.
    [39] Dai J-C, Wu X-T, Fu Z-Y, et al. Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)?Trimesate Coordination Polymers with Different Coordination Architectures[J]. Inorg Chem, 2002, 41: 1391-1396.
    [40] Majumder A, Gramlich V, Rosair G M, et al. Five New Cobalt(II) and Copper(II)-1,2,4,5-benzenetetracarboxylate Supramolecular Architectures: Syntheses, Structures, and Magnetic Properties[J]. Cryst Growth Des, 2006, 6: 2355-2368.
    [41] Zhong R-Q, Zou R-Q, Du M, et al. Controllable preparation, network structures and properties of unusual metal–organic frameworks constructed from 4,4’-(hexa?uoroisopropylidene)diphthalic acid and 4,4’-bipyridyl[J]. Dalton Trans, 2008, 17: 2346–2354.
    [42] Go Y B, Wang X, Anokhina E V, et al. Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-Benzenedicarboxylate (BDC) Ligand: Case Study of the NiII(BDC)/2,2’-Bipyridine System[J]. Inorg Chem, 2005, 44: 8265?8271.
    [43] Wang J, Lin Z, Ou Y-C, et al. Hydrothermal Synthesis, Structures, and Photoluminescent Properties of Benzenepentacarboxylate Bridged Networks Incorporating Zinc(II)?Hydroxide Clusters orZinc(II)?Carboxylate Layers[J]. Inorg Chem, 2008, 47: 190?199.
    [44] James S L. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 5: 276-288.
    [45] Tong M-L, Kitagawa S, Chang H-C, et al. Temperature-controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chem Commun, 2004, 4: 418-419.
    [46] Khan M I, Cevik S, Doedens R J. Inorganic–organic hybrids derived from oxovanadium sulfate motifs: synthesis and characterization of [VIVO(μ3-SO4)(2,2’-bpy)] [J]. Chem Commun, 2001, 19: 1930-1931.
    [47] Pan L, Frydel T, Sander M B, et al. The Effect of pH on the Dimensionality of Coordination PolymersInorg[J]. Inorg Chem, 2001, 40: 1271-1283.
    [48] Chen W-X, Wu S-T, Long L-S, et al. Construction of a Three-fold Parallel Interpenetration Network and Bilayer Structure Based on Copper(II) and Trimesic Acid[J]. Cryst Growth Des, 2007, 7: 1171-1175.
    [49] Xu L, Guo G-C, Liu B, et al. 2-D open frameworks and blue fluorescence of two new zinc coordination polymers with mixed ligands[J]. Inorg Chem Commun, 2004, 7: 1145–1149.
    [50] Ma J F, Liu J F, Yan X, et al. Construction of a Three-fold Parallel Interpenetration Network and Bilayer Structure Based on Copper(II) and Trimesic Acid[J]. J Chem Soc Dalton Trans, 2000, 14: 2403-2407.
    [51] Wang X, Qin C, Wang E, et al. Synthesis, structure and luminescent properties of two three-dimensional d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with new network topologies[J]. J Mol Struct, 2006, 796: 172–178.
    [52] Zou R Q, Sakurai H, Xu Q, et al. Preparation, Adsorption Properties, and Catalytic Activity of 3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions[J]. Angew Chem Int Ed, 2006, 45: 2542-2546.
    [53] Zhang W-L, Liu Y-Y, Ma J-F, et al. Fine Tuning of the Cu(II)-Bis(imidazole) Networks by Changing Sulfonate Anions[J]. Crys Growth Des, 2008, 8: 1250–1256.
    [54] Yang J, Ma J-F, Liu Y-Y, et al. Four Novel 3D Copper(II) Coordination Polymers with Different Topologies[J]. Eur J Inorg Chem, 2005, 11: 2174–2180.
    [55] Zhang L-P, Ma J-F, Yang J, et al. Series of 2D and 3D Coordination Polymers Based on 1,2,3,4-Benzenetetracarboxylate and N-Donor Ligands: Synthesis, Topological Structures, and Photoluminescent Properties[J]. Inorg Chem, 2010, 49: 1535–1550.
    [56] Chu Q, Liu G-X, Huang Y-Q, et al. Syntheses, structures, and optical properties of novel zinc(II) complexes with multicarboxylate and N-donor ligands[J]. Dalton Trans, 2007, 38: 4302–4311.
    [57]刘波,王硕,鲁晓明,等.含叠氮桥连配位聚合物分子磁体研究综述[M].首都师范大学学报(自然科学版), 2006, 27: 48-55.
    [58] Holmes S M , Girolami G S. Sol-Gel Synthesis of KVII[CrIII(CN)6]·2H2O : A Crystalline Molecule-Based Magnet With a Magnetic Ordering Temperature above 100 oC[J]. J Am Chem Soc,1999, 121: 5593-5595.
    [59] Ma B-Q, Gao S, Su G, et al. Cyano-bridged 4f-3d coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior[J]. Angew Chem Int Ed, 2001, 40: 434-437.
    [60] Tang Z-K, Wang L-Y, Zhang L, et al. Heterobinuclear copper(II)-manganese(II) complexes behaving as three-dimensional supramolecular networks via both macrocyclic oxamido-bridges and hydrogen bonds[J]. J Chem Soc Dalton Trans, 2002, 1607-1612.
    [61] Shi W, Chen X-Y, Zhao B, et al. Construction of 3d-4f mixed-metal complexes based on a binuclear oxovanadium unit: Synthesis, crystal structure, EPR, and magnetic properties[J]. Inorg Chem, 2006, 45: 3949-3957.
    [62] Liu F-C, Zeng Y-F, Li J-R, et al. Novel 3-D framework nickel(II) complex with azide, nicotinic acid, and nicotinate(1-) as coligands: Hydrothermal synthesis, structure, and magnetic properties[J]. Inorg Chem, 2005, 44: 7298-7300.
    [63] Barnett S A, Blake A J, Champness N R, et al. Structural isomerism in CuSCN coordination polymers[J]. Chem Commun, 2002, 15: 1640-1641.
    [64] Carlucci L, Ciani G, Macchi P, et al. An unprecedented triply interpenetrated chiral network of‘square-planar’metal centres from the self-assembly of copper(II) nitrate and 1,2-bis(4-pyridyl)ethyne[J]. Chem Commun, 1998, 17: 1837-1838.
    [65] Hamilton B H, Kelly K A, Wagler T A, et al. Construction of a Functional Layered Solid Using the Tetrakis(imidazolyl)borate Coordinating Anion[J]. Inorg Chem, 2002, 41: 4984-4986.
    [66] Min K, Suh M P. Silver(I)?Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the Crystalline State[J]. J Am Chem Soc, 2000, 122: 6834-6840.
    [67] Jung O-S, Kim Y J, Lee Y-A, et al. Structures and Related Properties of AgX Bearing 3,3‘-Thiobispyridine (X- = NO3-, BF4-, ClO4-, and PF6-)[J]. Inorg Chem, 2001, 40: 2105-2110.
    [68] Jung O-S, Kim Y J, Lee Y-A, et al. Unique Nanometer-Thick Layered Network[J]. Chem Lett, 2002, 31: 500.
    [69] Pan L, Woodlock E B, Wang K-C, et al. Novel silver(I)–organic coordination polymers: conversion of extended structures in the solid state as driven by argentophilic interactions[J]. Chem Commun, 2001, 18: 1762-1763.
    [70] Halper S R, Do L, Stork J R, et al. Topological Control in Heterometallic Metal?Organic Frameworks by Anion Templating and Metalloligand Design[J]. J Am Chem Soc, 2006, 128, 15255-15268.
    [71] Qu Z R, Chen Z F, Zhang J, et al. The first highly stable homochiral olefin-copper(I) 2D coordination polymer grid based on quinine as a building block[J]. Organomatallics, 2003, 22: 2814-2816.
    [72] Zheng G L, Ma J F, Su Z M, et al. A mixed–balence tin-oxyfen cluster contianing six perpheral ferrocence units[J]. Angew Chem Int Ed, 2004, 43: 2409-2411.
    [73] Zheng G L, Ma J F, Yang J, et al. A New system in organooxotin cluster chemistry incorporatinginorganic and organic spacers between two ladders each containing five tin atoms[J]. Chem Eur J, 2004, 10: 3761-3768.
    [74] Song S Y, Ma J F, Yang J, et al. Synthesis of an organotin oligomer containing a heptanuclear tin phosphonate cluster by debenzylation reactions: X-ray crystal structure of {Na 6( CH3 OH) 2( H2 O)}{[(BzSn)3 ( PhPO3 )5 (μ3-O)(CH O)] Bz Sn}·CH OH[J]. Organomatallics, 2007, 26: 2125-2128. 3 2 2 3
    [75] Xu G H, Ma J F, Yu H X, et al. A series of new organotin-cyanometalate compounds based on triorganotin, diorganotin, and organooxotin clusters[J]. Organomatallics, 2007, 25: 5996-6006.
    [76] Goodman D C, Farmer P J, Darensbourg M Y, et al. A coordination polymer of nickel(II) based on a pentadentate N, S, and O donor ligand[J]. Inorg Chem, 1996, 35: 4989-4994.
    [77] MacGillivray L R, Subramanian S, Zaworotko M J. Interwoven two- and three-dimensional coordination polymers through self-assembly of CuI cations with linear bidentate ligands[J]. Chem Commun, 1994, 11: 1325-1326.
    [78] Yaghi O M, Li H. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4’-bpy)·NO3[J]. J Am Chem Soc, 1996, 118: 295-296.
    [79] Yaghi O M, Li G. Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4-bpy)Cl][J]. Angew Chem Int Ed, 1995, 34: 207-209.
    [80] Fujita M, Kwon Y J, Washizu S, et al. Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine[J]. J Am Chem Soc, 1994, 116: 1151-1152.
    [81] Cui G-H, Li J-R, Tian J-L, et al. Multidimensional metal-organic frameworks constructed from flexible bis(imidazole) ligands[J]. Cryst Growth Des, 2005, 5: 1775-1780.
    [82] Wu L P, Yamagiwa Y, Kuroda-Sowa T, et al. Synthesis and structure of a three-dimensional copper(II) coordination polymer with 1,2-bis(imidazol-1’-yl)ethane[J]. Inorg Chim Acta, 1997, 256: 155-159.
    [83] Li X, Cao R, Guo Z, et al. An unusual four-connected (65,8) topology in a coordination polymer[J]. Inorg Chem Commun, 2006, 9: 551-554.
    [84] Ma J-F, Yang J, Zheng G-L, et al. Four new coordination polymers of Cu(II) with 1,4-bis(imidazolyl)butane [J]. Polyhedron, 2004, 23: 553-559.
    [85] Zhang W-L, Liu Y-Y, Ma J-F, et al. Syntheses and characterizations of nine coordination polymers of transition metals with carboxylate anions and bis(imidazole) ligands[J]. Polyhedron, 2008, 27: 3351–3358.
    [86] Qi Y, Luo F, Che Y, et al. Hydrothermal Synthesis of Metal-Organic Frameworks Based on Aromatic Polycarboxylate and Flexible Bis(imidazole) Ligands[J]. Cryst Growth Des, 2008, 8: 606–611.
    [87] Qi Y, Che Y, Luo F, et al. A Variety of 1D to 3D Metal-Organic Coordination Architectures Assembled with 1,1′-(2,2′-Oxybis(ethane-2,1-diyl))bis(1H-imidazole)[J]. Cryst Growth Des, 2008, 8: 1654-1662.
    [88] Tan H-Y, Zhang H-X, Ou H-D, et al. Chair-form [Ag2(1,2-bimb)2]2+ in silver(I) complexes containing the ditopic ligand 1,2-bis(l-imidazolymethyl) benzene (1,2-bimb)[J]. Inorg Chim Acta, 2004, 357: 869-874.
    [89] Ryu J Y, Lee J Y, Choi S H, et al. Syntheses and structures of Ag(I) compounds containing btp ligands[J]. Inorg Chim Acta, 2005, 358: 3398-3406.
    [90] Zhu H-F, Fan J, Okamura T, et al. Syntheses and structures of Zinc(II), Silver(I), Copper(II) and Cobalt(II) complexes with imidazole-containing ligand: 1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl) benzene[J]. Cryst Growth Des, 2005, 5: 289-294.
    [91] Gao Y, Twamley B, Shreeve J M. Coordination networks with fluorinated backbones[J]. Inorg Chem, 2005, 45: 1150-1155.
    [92] Chen C-L, Zhang J-A, Li X-P, et al. Extended structures sustained by hydrogen bonding andπ-πinteractions: Synthesis and characterization of Cd(II) complexes with bis(benzimidazolyl) ligands[J]. Inorg Chim Acta, 2005, 358: 4527-4533.
    [93] Meng X, Xiao B, Fan Y, et al. Novel cup-like helical coordination polymers: synthesis, crystal structures and thermal properties[J]. Inorg Chim Acta, 2004, 357: 1471-1477.
    [94] Jiang H, Ma J-F, Zhang W-L. et al. Metal–Organic Frameworks Containing Flexible Bis(benzimidazole) Ligands[J]. Eur J Inorg Chem, 2008, 5: 745–755.
    [95] Liu H, Tong X. Assembly of supermolecular complexes from the tripodal ligand titmb: assembly of a large M6L8 cage from 14 components[J]. Chem Commun, 2002, 12: 1316–1317.
    [96] Fan J, Zhu, H-F, Okamura T, et al. Novel One-Dimensional Tubelike and Two-Dimensional Polycatenated Metal?Organic Frameworks[J]. Inorg Chem, 2003, 42: 158?162.
    [97] Fan J, Sui B, Okamura T, et al. Synthesis, structures and properties of two-dimensional honeycomb and stepwise networks from self-assembly of tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene with metal salts[J]. J Chem Soc Dalton Trans, 2002, 20: 3868–3873.
    [98] Liu H, Huang X, Lu T, et al. Discrete and infinite 1D, 2D/3D cage frameworks with inclusion of anionic species and anion-exchange reactions of Ag3L2 type receptor with tetrahedral and octahedral anions[J]. Dalton Trans, 2008, 24: 3178–3188.
    [99] Fan J, Zhu H-F, Okamura T, et al. Discrete and Infinite Cage-Like Frameworks with Inclusion of Anionic and Neutral Species and with Interpenetration Phenomena[J]. Chem Eur J, 2003, 9: 4724-4731.
    [100] Zhao W, Song Y, Okamura T, et al. Syntheses, Crystal Structures, and Magnetic Properties of Novel Manganese(II) Complexes with Flexible Tripodal Ligand 1,3,5-Tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene[J]. Inorg Chem, 2005, 44: 3330?3336.
    [101] Liu H-K, Sun W-Y, Tang W-X, et al. Self-Assembly of the First Copper(II) Infinite 2D Network with Large Cavities Formed between the Two Adjacent Layers[J]. Inorg Chem, 1999, 38: 6313-6316.
    [102] Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res, 2005, 38: 176-182.
    [103] Power K N, Hennigar T L, Zaworotko M J. X-Ray crystal structure of{Cu[1,2-bis(4-pyridyl)ethane]2(NO3)2}n : the first example of a coordination polymer that exhibits the NbO 3D network architecture[J]. Chem Commun, 1998, 5: 595-596.
    [104] Long D-L, Blake A J, Champness N R, et al. Lanthanide coordination frameworks of 4,4'-bipyridine-N,N’-dioxide[J]. Chem Commun, 2000, 15: 1369-1370.
    [105] Moulton B, Abourahma H, Bradner M W, et al. A new 65.8 topology and a distorted 65.8 CdSO4 topology: two new supramolecular isomers of [M2(bdc)2(L)2]n coordination polymers[J]. Chem Commun, 2003, 12: 1342-1343.
    [106] Eddaoudi M, Kim J, O'Keeffe M, et al. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type[J]. J Am Chem Soc, 2002, 124: 376-377.
    [107] Chen B, Fronczek F R, Maverick A W. Solvent-dependent 44 square grid and 64.82 NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II))[J]. Chem Commun, 2003, 17: 2166-2167.
    [108] Zhang J, Kang Y, Zhang R-B, et al. A twisting chiral dense 75.9 net, incorporating a helical sub-structure[J]. CrystEngComm, 2005, 28: 177-178.
    [109] Tong M-L, Chen X-M, Batten S R. A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes[J]. J Am Chem Soc, 2003, 125: 16170-16171.
    [110] Yang S Y, Long L S, Jiang Y B, et al. An Exceptionally Stable Metal?Organic Framework Constructed from the Zn8(SiO4) Core[J]. Chem Mater, 2002, 14: 3229-3231.
    [111] Guo X, Zhu G, Li Z, et al. A lanthanide metal–organic framework with high thermal stability and available Lewis-acid metal sites[J]. Chem Commun, 2006, 30: 3172-3174.
    [112] Zou R-Q, Zhong R-Q, Du M, et al. Highly-thermostable metal–organic frameworks (MOFs) of zinc and cadmium 4,49-(hexafluoroisopropylidene)diphthalates with a unique fluorite topology[J]. Chem Commun, 2007, 24: 2467–2469.
    [113] Zhang L-P, Ma J-F, Yang J, et al. 1D, 2D, and 3D Metal-Organic Frameworks Based on Bis(imidazole) Ligands and Polycarboxylates: Syntheses, Structures, and Photoluminescent Properties[J]. Cryst Growth Des, 2009, 9: 4660–4673.
    [114] Sheldrick G M. SHELXS-97, Programs for X-ray Crystal Structure Solution, University of G?ttingen: G?ttingen, Germany, 1997.
    [115] Sheldrick G M. SHELXL-97, Programs for X-ray Crystal Structure Refinement, University of G?ttingen: G?ttingen, Germany, 1997.
    [116] Dolomanov O V, Blake A J, Champness N R, Schroder M J Appl Crystallogr, 2003, 36: 1283; Dolomanov, O. V. OLEX, http://www.ccp14.ac.uk/ccp/web-mirrors/lcells/index.htm.
    [117] Du M, Zhang Z-H, Tang L-F, et al. Molecular Tectonics of Metal–Organic Frameworks (MOFs): A Rational Design Strategy for Unusual Mixed-Connected Network Topologies[J]. Chem Eur J, 2007, 13: 2578-2586.
    [118] Fu F, Li D-S, Yang X-G, et al. (4, 5)-Connected 3D Supramolecular Framework Based on 1D Tube-Shaped Coordination Armed-Chains [Mn(4,4’-bipy)(OAc)2]n[J]. Synth React Inorg Met-OrgChem, 2009, 39: 373–378.
    [119] Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network[J]. Nature, 1995, 374: 792-795.
    [120] Reineke, T M, Eddaoudi M, O’Keeffe M, et al. A Microporous Lanthanide-Organic Framework[J]. Angew Chem Int Ed, 1999, 38: 2590-2594.
    [121] Carlucci L, Ciani G, Proserpio D M, et al. 1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets[J]. J Am Chem Soc, 1995, 117: 4562-4569.
    [122] Carlucci L, Ciani G, Proserpio D M, et al. Polymeric Networks of Silver(I) and Copper(I) Ions Linked by an Anionic Acetonyl Derivative of Tetracyanoethylene[J]. Angew Chem Int Ed Engl, 1996, 35: 1088-1090.
    [123] Blatov V A, Carlucci L, Ciani G, et al. Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database[J]. CrystEngComm, 2004, 65: 378-395.
    [124] Dong Y-B, Jiang Y-Y, Li J, et al. Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors[J]. J Am Chem Soc, 2007, 129: 4520-4521.
    [125] He H, Da F, Sun D. A new luminescent 3D metal–organic framework possessing a rare (3,5)-connected net which can be transformed from a 2D double layer[J]. Dalton Trans, 2009, 5: 763-766.
    [126] Li S-L, Lan Y-Q, Qin J-S, et al. A (4,8)-Connected Fluorite Topology Framework Based on Mononuclear and Dinuclear Metal Centers[J]. Cryst Growth Des, 2008, 8: 2055-2057.
    [127] Spek A L. PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2001.
    [128] Batten S R. Topology of interpenetration[J]. CrystEngComm, 2001, 18: 76-82.
    [129] Liu C, Xiong M, Zhang D-Q, et al. Two- and three-dimensional lanthanide–organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands[J]. Dalton Trans, 2009, 29: 5666–5672.
    [130] Wang X-W, Li X, Chen J-Z, et al. Novel (3,4)- and (4,5)-Connected Lanthanide Metal–Organic Frameworks Novel (3,4)- and (4,5)-Connected Lanthanide Metal–Organic Frameworks[J]. Eur J Inorg Chem, 2008, 7: 98–105.
    [131] Zhang G-X, Zhang W, Han Z-B. Novel (3,4)- and (4,5)-Connected Lanthanide Metal–Organic Frameworks[J]. Inorg Chem Commun, 2009, 12: 982–985.
    [132] Yang J, Ma J-F, Liu Y-Y, et al. Four-, and six-connected entangled frameworks based on ?exible bis(imidazole) ligands and long dicarboxylate anions[J]. CrystEngComm, 2009, 11: 151–159.
    [133] Yang J, Yue Q, Li J-D, et al. Structures, Photoluminescence, Up-Conversion, and Magnetism of 2D and 3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages[J]. Inorg Chem, 2006, 45:2857-2865.
    [134] Thirumurugan A, Natarajan S. Synthesis, structure and luminescent properties of yttrium benzene dicarboxylates with one- and three-dimensional structure[J]. J Chem Soc Dalton Trans, 2004, 18: 2923-2928.
    [135] Zheng X J, Jin L, Gao S, et al. Second ligand-directed self-assembly of lanthanide(III) coordination polymers with 1,4-naphthalenedicarboxylate[J]. New J Chem, 2005, 29: 798-804.
    [136] Zhang X-J, Jin L-P, Gao S. Synthesis and Characterization of Two Novel Lanthanide Coordination Polymers with an Open Framework Based on an Unprecedented [Ln7(μ3-OH)8]13+ Cluster[J]. Inorg Chem, 2004, 43: 1600-1602.
    [137] Wen L, Lu Z, Lin J, et al. Syntheses, Structures, and Physical Properties of Three Novel Metal?Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons[J] Cryst Growth Des, 2007, 7: 93-99.
    [138] Wen L, Li Y, Lu Z, et al. Syntheses and Structures of Four d10 Metal?Organic Frameworks Assembled with Aromatic Polycarboxylate and bix [bix = 1,4-Bis(imidazol-1-ylmethyl)benzene][J]. Cryst Growth Des, 2006, 6: 530-537.
    [139] Lin J-G, Zang S-Q, Tian Z-F, et al. Metal–organic frameworks constructed from mixed-ligand 1,2,3,4-tetra-(4-pyridyl)-butane and benzene-polycarboxylate acids: syntheses, structures and physical properties [J]. CrystEngComm, 2007, 9: 915-921.
    [140] Ma J-F, Yang J, Li S-L, et al. Two Coordination Polymers of Ag(I) with 5-Sulfosalicylic Acid[J]. Cryst Growth Des, 2005, 5: 807-812.
    [141] Carlucci L, Ciani G, Proserpio D M, et al. Extended networks via hydrogen bond cross-linkages of [M(bipy)] (M = Zn2+ or Fe2+; bipy = 4,4 -bipyridyl) linear co-ordination polymers[J]. J Chem Soc Dalton Trans, 1997, 11: 1801-1804.
    [142] Khlobystov A N, Blake A J, Champness N R, et al. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands[J]. Coord Chem Rev, 2001, 222: 155-192.
    [143] Moulton B, Zaworotko M J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids[J]. Chem Rev, 2001, 101: 1629-1658.
    [144] Zaworotko M J. Superstructural diversity in two dimensions: crystal engineering of laminated solids[J]. Chem Commun, 2001, 1: 1-9.
    [145] Yaghi O M, ORKeeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714.
    [146] Seo J S, Whang D, Lee H, et al. A homochiral metal–organic porous material for enantioselectiveseparation and catalysis[J]. Nature, 2000, 404: 982-986.
    [147] Halder G J, Kepert C J, Moubaraki B, et al. Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material[J]. Science, 2002, 298: 1762-1765.
    [148] Takamizawa S, Nakata E, Yokoyama H, et al. Carbon Dioxide Inclusion Phases of a Transformable1D Coordination Polymer Host [Rh2 (O2 CPh)4 ( pyz)]n [J]. Angew Chem Int Ed, 2003, 42: 4331-4334.
    [149] Dybtsev D N, Chun H, Yoon S H, et al. Microporous Manganese Formate: A Simple Metal?Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J]. J Am Chem Soc, 2004, 126: 32-33.
    [150] Kesanli B, Cui Y, Smith M R, et al. Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage[J]. Angew Chem Int Ed, 2005, 44: 72-75.
    [151] Mondal K C, Sengupta O, Nethaji M, et al. Assembling metals (CoII and MnII) with pyridylcarboxylates in the presence of azide: synthesis, structural aspects and magnetic behavior of three coordination polymers[J]. Dalton Trans, 2008, 6: 767-775.
    [152] Montney M R, Supkowski R M, LaDuca R L. Five-fold interpenetrated strongly hydrogen bonded rhomboid grid layers constructed from the aggregation of neutral coordination complexes with long pendant aromatic dicarboxylate and organodiimine ligands[J]. CrystEngComm, 2008, 1: 111-116.
    [153] Sun D, Ma S, Ke Y, et al. Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability[J]. Chem Commun, 2005, 21: 2663-2665.
    [154] Gao H-L, Yi L, Ding B, et al. First 3D Pr(III)?Ni(II)?Na(I) Polymer and A 3D Pr(III) Open Network Based on Pyridine-2,4,6-tricarboxylic Acid[J]. Inorg Chem, 2006, 45: 481-483.
    [155] Wang F-Q, Mu W-H, Zheng X-J, et al. Hydrothermal Reaction of Cu(II)/Pyrazine-2,3,5-tricarboxylic acid and Characterization of the Copper(II) Complexes[J]. Inorg Chem, 2008, 47: 5225-5233.
    [156] Li W, Jia H-P, Ju Z-F, et al. A series of manganese–carboxylate coordination polymers exhibiting diverse magnetic properties[J]. Dalton Trans, 2008, 39: 5350-5357. [157 Pasán J, Sanchiz J, Lloret F, et al. Crystal engineering of 3-D coordination polymers by pillaring ferromagnetic copper(II)-methylmalonate layers[J]. CrystEngComm, 2007, 6: 478-487.
    [158] Ye J-W, Wang J, Zhang J-Y, et al. Construction of 2-D lanthanide coordination frameworks: syntheses, structures and luminescent property[J]. CrystEngComm, 2007, 6: 515-523.
    [159] Tang L, Li D, Fu F, et al. The structure and magnetic properties of a 3D pillared-layer polymer and two helical chains constructed from flexible ligands[J]. J Mol Struct, 2008, 888: 344-353.
    [160] Wu S-T, Long L-S, Huang R-B, et al. pH-Dependent Assembly of Supramolecular Architectures from 0D to 2D Networks[J]. Cryst Growth Des, 2007, 7: 1746-1752.
    [161] Cao X-Y, Zhang J, Li Z-J, et al. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, self-threading and (3,6)-connected nets[J]. CrystEngComm, 2007, 9: 806-814.
    [162] Thuéry, P. Uranyl Ion Complexation by Citric and Citramalic Acids in the Presence of Diamines[J]. Inorg Chem, 2007, 46: 2307-2315.
    [163] Zhou Y, Yue C, Yuan D, et al. Nickel-Organic Coordination Layers with Different Directional Cavities[J]. Eur J Inorg Chem 2006, 23: 4852-4856.
    [164] Carballo R, Covelo B, El Fallah M S, et al. Supramolecular Architectures and Magnetic Behavior of Coordination Polymers from Copper(II) Carboxylates and 1,2-Bis(4-pyridyl)ethane as a FlexibleBridging Ligand[J]. Cryst Growth Des, 2007, 7: 1069-1077.
    [165] Fang Q-R, Zhu G-S, Jin Z, et al. A Multifunctional Metal-Organic Open Framework with a bcu Topology Constructed from Undecanuclear Clusters[J]. Angew Chem Int Ed, 2006, 45: 6126-6130.
    [166] Jones L F, Jensen P, Moubaraki B, et al. The role of diisopropanolamine (dipaH3) in cluster dimerisation and polymerisation: from spin frustrated S = 5 FeIII6 clusters to the novel 1-D covalent polymer of mixed valence [CoII3CoIII] tetramers[J]. Dalton Trans, 2005, 20: 3344-3352.
    [167] Marinho M V, Yoshida M I, Guedes K J, et al. Synthesis, Crystal Structure, and Spectroscopic Characterization of trans-Bis[(μ-1,3-bis(4-pyridyl)propane)(μ-(3-thiopheneacetate-O))(3-thiopheneacetate-O)]dicopper(II), Cu2(O2CCH2C4H3S)4μ-(BPP)2]}n: From a Dinuclear Paddle-Wheel Copper(II) Unit to a 2D Coordination Polymer Involving Monatomic Carboxylate Bridges[J]. Inorg Chem, 2004, 43: 1539-1544.
    [168] Wei G-H, Yang J, Ma J-F, et al. A novel cobalt(II) coordination polymer with an unusual four-connected 42.63.8 topology[J]. Acta Cryst, 2008, C64: m267-m270.
    [169] Qi Y, Luo F, Batten S R, et al. Syntheses and Crystal Structures of a Series of Novel Helical Coordination Polymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts[J]. Cryst Growth Des, 2008, 8: 2806-2813.
    [170] Wen L-L, Dang D-B, Duan C-Y, et al. 1D Helix, 2D Brick-Wall and Herringbone, and 3D Interpenetration d10 Metal?Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide[J]. Inorg Chem, 2005, 44: 7161-7170.
    [171] Liu W, Ye L, Liu X, et al. Rapid synthesis of a novel cadmium imidazole-4,5-dicarboxylate metal–organic framework under microwave-assisted solvothermal condition[J]. J Inorg Chem Commun, 2008, 11: 1250-1252.
    [172] Wei G-H, Liu Y-Y, Yang J, et al. Syntheses and structures of cadmium(II) and cobalt(II) coordination polymers based on 1,10-(2,20-oxybis(ethane-2,1-diyl))bis(1H-imidazole) and carboxylate ligands[J]. Inorg Chem Commun, 2008, 11: 1156-1159.
    [173] Luo F, Yang Y-T, Che Y-X, et al. An unusual metal–organic framework showing both rotaxane- and cantenane-like motifs[J]. CrystEngComm, 2008, 8: 981-982.
    [174] Dong G-C, Zhang R-C. Poly[[μ2-1,1'-(butane-1,4-diyl)bis(imidazole)-κ2N3:N3']dichlorocobalt(II)][J]. Acta Cryst, 2006, E62: m1847.
    [175] Zhang L-P, Yang J, Ma J-F, et al. A series of 2D and 3D metal–organic frameworks based on different polycarboxylate anions and a ?exible 2,2’-bis(1-imidazolyl)ether ligand[J]. CrystEngComm, 2008, 10: 1410-1420.
    [176] Baeg J Y, Lee S W. A porous, two-dimensional copper coordination-polymer containing guest molecules: hydrothermal synthesis, structure, and thermal property of Cu(BDC)(bipy)](BDCH2) (BDC=1,4-benzenedicarboxylate; BIPY=4,4′-bipyridine)[J]. Inorg Chem Commun, 2003, 6: 313-316.
    [177] Yang J, Ma J-F, Liu Y-Y, et al. Two New CuII Coordination Polymers: Studies of TopologicalNetworks and Water Clusters[J]. Eur J Inorg Chem, 2006, 6: 1208-1215.
    [178] Wang Y, Wang X-F, Okanura T, et al. Synthesis and Crystal Structure of Ag(I) Complex with One-dimensional Chain Structure[J]. Chin J Inorg Chem, 2006, 22: 1487-1490.
    [179] O’Keeffe M, Eddaoudi M, Li H L, et al. Frameworks for Extended Solids: Geometrical Design Principles[J]. J Solid State Chem, 2000, 152: 3-20.
    [180] Delgado-Friedrichs O, O’Keeffe M. Isohedral simple tilings: binodal and by tiles with 16 faces[J]. Acta Cryst, 2005, A61: c358-326.
    [181] Delgado-Friedrichs O, O’Keeffe M, Yaghi O M. Three-periodic nets and tilings: edge-transitive binodal structures[J]. Acta Cryst, 2006, A62: 350-355.
    [182] Bonneau C, Delgado-Friedrichs O, O’Keeffe M, et al. Three-periodic nets and tilings: minimal nets[J]. Acta Cryst, 2004, A60: 517-520.
    [183] Delgado F O, O’Keeffe M, Yaghi O M. The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation[J]. Solid State Sci, 2003, 5: 73-78.
    [184] Luo F, Che Y X, Zheng J M. Synthesis, structures and characters of one 3D 2-fold interpenetrating net with rare 42638 topology[J]. Inorg Chem Commun, 2006, 9: 856-858.
    [185] Ng M T, Deivaraj T C, Klooster W T, et al. Hydrogen-Bonded Polyrotaxane-like Structure Containing Cyclic (H2 O )4 in [Zn(OAc)2 (μ-bpe)] 2H2 O: X-ray and Neutron Diffraction Studies[J]. Chem Eur J, 2004, 10: 5853-5859.
    [186] Jiang G, Bai J, Xing H, et al. A Tetrahedral Water Tetramer in a Zeolite-like Metal?Organic Framework Constructed from {(H3O)2[Fe6O{(OCH2)3CCH3}4Cl6]·4H2O}[J]. Cryst Growth Des, 2006, 6: 1264-1266.
    [187] Ghosh S K, Bharadwaj P K. Coexistence of Water Dimer and Hexamer Clusters in 3D Metal?Organic Framework Structures of Ce(III) and Pr(III) with Pyridine-2,6-dicarboxylic Acid[J]. Inorg Chem, 2003, 42: 8250-2854.
    [188] Ludwig R. Water: From Clusters to the Bulk[J]. Angew Chem Int Ed, 2001, 40, 1808-1827.
    [189] Ghosh S K, Ribas J, Bharadwaj P K. Metal–organic framework structures of Cu(II) with pyridine-2,6-dicarboxylate and different spacers: identification of a metal bound acyclic water tetramer[J]. CrystEngComm, 2004, 45: 250-256.
    [190] Gong Y, Hu C W, Li H, et al. Two novel coordination polymers with different molecular tectonics based on obalt–succinate-organoamine systems[J]. Inorg Chem Commun, 2006, 9: 273-276.
    [191] Zhang G Q, Yang G Q, Ma J S. Versatile Framework Solids Constructed from Divalent Transition Metals and Citric Acid: Syntheses, Crystal Structures, and Thermal Behaviors[J]. Cryst Growth Des, 2006, 6: 375-381.
    [192] Liu F C, Zeng Y F, Jiao J, et al. First Metal Azide Complex with Isonicotinate as a Bridging Ligand Showing New Net Topology: Hydrothermal Synthesis, Structure, and Magnetic Properties[J]. Inorg Chem, 2006, 45: 2776-2778.
    [193] Delgado F O, O’Keeffe M, Yaghi O M. Three-periodic nets and tilings: regular and quasiregularnets[J]. Acta Cryst, 2003, A59: 22-27.
    [194] Bu X, Zheng N, Li Y, et al. Templated Assembly of Sulfide Nanoclusters into Cubic-C3N4 Type Framework[J]. J Am Chem Soc, 2003, 125: 6024-6025.
    [195] Wang Z, Kravtsov V C, Zaworotko M J. Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra[J]. Angew Chem Int Ed, 2005, 44: 2877-2880.
    [196] Hong S, Zou Y, Moon D, et al. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Chem Commun, 2007, 14: 1707-1709.
    [197] Wang X-S, Ma S, Sun D, et al. A Mesoporous Metal?Organic Framework with Permanent Porosity[J]. J Am Chem Soc, 2006, 128: 16474-16475.
    [198] Gaspar A B, Galet A, Mu?oz M C, et al. A Singular Noninterpenetrating Coordination Polymer with the Pt3O4 Structure Containing Naked [Na+]4 Units[J]. Inorg Chem, 2006, 45: 10431-10433.
    [199] Xie C-Z, Zhang B-F, Wang X-Q, et al. catena-poly[[[tetraaquacobalt(II)]-μ-4,4'-bipyridine-κ2N:N'] hthalate dihydrate][J]. Acta Cryst, 2004, E60: m1703-m1705.
    [200] Wu C-D, Lu C-Z, Yu Y-Q, et al. catena-Poly[bis[tetraaquacobalt(II)-μ-4,4'-bipyridine-κ2N:N'] benzene-1,2,4,5-tetracarboxylate(4-) dihydrate][J]. Acta Cryst, 2002, C58: m197-m198.
    [201] He H-Y, Zhou Y-L, Hong Y, et al. Syntheses and crystal structures of two structurally diverse cobalt complexes constructed from 5-hydroxyl-1,3-benzenedicarboxylates[J]. J Mol Struct, 2005, 737: 97-101.
    [202] Hagrman P J, Hagrman D, Zubieta J. Organisch-anorganische Hybridmaterialien: von "einfachen" Koordinationspolymeren zu Molybd?noxiden mit Organodiamin-Templaten[J]. Angew Chem, 1999, 111: 2798-2848.
    [203] Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks[J]. Coord Chem Rev, 1999, 183: 117-138.
    [204] Evans O R, Lin W. Crystal Engineering of NLO Materials Based on Metal?Organic Coordination Networks[J]. Acc Chem Res, 2002, 35: 511-522.
    [205] Müller A, Das S K, Talismanov S. S, et al. Trapping Cations in Specific Positions in Tuneable Artificial Cell Channels: New Nanochemistry Perspectives[J]. Angew Chem, 2003, 115: 5193-5198.
    [206] Rao C N R, Natarajan S, Vaidhyanathan R. Metal Carboxylates with Open Architectures[J]. Angew Chem Int Ed, 2004, 43: 1466-1496.
    [207] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2337.
    [208] Lee E, Heo J, Kim K. A Three-Dimensional Polyrotaxane Network[J]. Angew Chem Int Ed, 2000, 39: 2699-2701.
    [209] Prior T J, Bradshaw D, Teat S J, et al. Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheets[J]. Chem Commun, 2003, 4: 500-501.
    [210] Galet A, Niel V, Mu?oz M C, et al. Synergy between Spin Crossover and Metallophilicity in TripleInterpenetrated 3D Nets with the NbO Structure Type[J]. J Am Chem Soc, 2003, 125: 14224-14225.
    [211] Ma B Q, Sun H L, Gao S. The design and synthesis of a non-centric diamond-like network based NH4+ ion [J]. Chem Commun, 2003, 17: 2164-2165.
    [212] Pan L, Liu H, Lei X, et al. RPM-1: A Recyclable Nanoporous Material Suitable for Ship-In-Bottle Synthesis and Large Hydrocarbon Sorption[J]. Angew Chem, 2003, 115: 560-564.
    [213] Wang X L, Qin C, Wang E B, et al. Designed double layer assembly: a three-dimensional open framework with two types of cavities by connection of infinite two-dimensional bilayer[J]. Chem Commun, 2004, 4: 378-379.
    [214] Bu X-H, Tong M-L, Chang H-C, et al. A Neutral 3D Copper Coordination Polymer Showing 1D Open Channels and the First Interpenetrating NbO-Type Network[J]. Angew Chem Int Ed, 2004, 43: 192-195.
    [215] Wang X-L, Qin C, Wang E-B, et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angew Chem Int Ed, 2004, 43: 5036-5040.
    [216] Munakata M, Wu L P, Kuroda-Sowa T, et al. Two Types of New Polymeric Copper(I) Complexes of Pyrazinecarboxamide Having Channel and Helical Structures[J]. Inorg Chem, 1997, 36: 5416-5418.
    [217] Suenaga Y, Yan S G, Wu L P, et al. Self-assembly of copper(I) and silver(I) complexes with square-grid and channel structures[J]. J Chem Soc Dalton Trans, 1998, 7: 1121-1126.
    [218] Hirsch K A, Wilson S R, Moore J S. Coordination Networks of 3,3’-Dicyanodiphenylacetylene and Silver(I) Salts: Structural Diversity through Changes in Ligand Conformation and Counterion[J]. Inorg Chem, 1997, 36: 2960-2968.
    [219] Carlucci L, Ciani G, Macchi P, et al. Self-assembly of a three-dimensional network from two-dimensional layers via metallic spacers: the (3,4)-connected frame of [Ag3(hmt)2][ClO4]3·2H 2O (hmt = hexamethylenetetramine)[J]. Chem Commun, 1997, 6: 631-632.
    [220] Ye B-H, Tong M-L, Chen X-M. Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands[J]. Coord Chem Rev, 2005, 249: 545-565.
    [221] Yao J, Huang W, Li B, et al. A novel one-dimensional single helix derived from 2,2′-bipyridine based Zn(II) species directed self-assembly with 1,2-benzenedicarboxylate[J]. Inorg Chem Commum, 2002, 5: 711-714.
    [222] Dalai S, Mukherjee P S, Rogez G, et al. Synthesis, Crystal Structures, and Magnetic Properties of Two New 1D Copper(II) Coordination Polymers Containing Fumarate(-2) and Chelating N,N -Donor as Ligands[J]. Eur J Inorg Chem, 2002, 31: 3292-3297.
    [223] Férey G, Serre C, Mellot-Draznieks C, et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible?[J]. Acc Chem Res, 2005, 38: 217-225.
    [224] Hoskins B F, Robson R, Slizys D A. An Infinite 2D Polyrotaxane Network in Ag2(bix)3(NO3)2 (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene)[J]. J Am Chem Soc, 1997, 119: 2952-2953.
    [225] Gao E-Q, Xu Y-X, Yan C-H. Two square grid coordination polymers with manganese(II) and 1,4-bis(imidazole-1-ylmethyl)benzene[J]. CrystEngComm, 2004, 52: 298-302.
    [226] Fan J, Slebodnick C, Angel R, et al. New Zinc Phosphates Decorated by Imidazole-Containing Ligands[J]. Inorg Chem, 2005, 44: 552-558.
    [227] Zhang L, LüX-Q, Chen C-L, et al. Nanosized Silver(I) Coordination Networks of Mixed Bix-Diphosphine (Bix = 1,4-Bis(imidazol-1-ylmethyl)benzene)[J]. Cryst Growth Des, 2005, 5: 283-287.
    [228] Ducan P C M, Goodgame D M L, Menzer S, et al. Formation of an infinite interpenetrating three-dimensional network by tris(N,N -butylenebismidazole)manganese(II) tetrafluoroborate[J]. Chem Commun, 1996, 18: 2127-2128.
    [229] Li X, Cao R, Bi W Y, et al. A New Family of Cadmium(II) Coordination Polymers from Coligands: Effect of the Coexistent Groups (R = H, ?NO2, ?OH) on Crystal Structures and Properties[J]. Cryst Growth Des, 2005, 5: 1651-1656.
    [230] Huang X-C, Zhang J-P, Chen X-M. New Route to Supramolecular Isomers via Molecular Templating: Nanosized Molecular Polygons of Copper(I) 2-Methylimidazolates[J]. J Am Chem Soc, 2004, 126: 13218-13219.
    [231] Ahna H D D, Hardt H D. Fluoreszenz und Fluoreszenz-Thermochromie bei Alkyl-pyridinokupfer(I)-Halogeniden[J]. Z Anorg Allg Chem, 1972, 387: 61-71.
    [232] Ziolo D R F, Lipton S, Dori Z. The photoluminescence of phosphine complexes of d10 metals [J]. J Chem Soc Chem Commun, 1970, 17: 1124-1125.
    [233] Cotton F A, Dikarev E V, Petrukhina M A. Syntheses and Crystal Structures of“Unligated”Copper(I) and Copper(II) Trifluoroacetates[J]. Inorg Chem, 2000, 39: 6072-6079.
    [234] Ghosh A K, Ghoshal D, Zangrando E, et al. Synthesis, crystal structure and thermal analysis of supramolecular architectures of copper(II)(2,2′-biimidazole) complexes using dicarboxylate as a coligand[J]. Polyhedron, 2007, 26: 4195-4200.
    [235] Wells A F. Further Studies of Three-dimensional Nets; ACA Monograph No. 8; American Crystallographic Association: Buffalo, NY, 1979.
    [236] Smith J V. Topochemistry of zeolites and related materials. 1. Topology and geometry[J]. Chem Rev, 1988, 88: 149-182.
    [237] Dybtsev D N, Chun H, Kim K. Three-dimensional metal–organic framework with (3,4)-connected net, synthesized from an ionic liquid medium[J]. Chem Commun, 2004, 14: 1594-1595.
    [238] Batten S R, Hoskins B F, Robson R. Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3·solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv≈3/4C2H2Cl4·3/4CH3OH or≈3/2CHCl3·1/3CH3OH)[J]. J Am Chem Soc, 1995, 117: 5385-5386.
    [239] Abrahams B F, Batten S R, Grannas M J, et al. Ni(tpt)(NO ) -A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net3 2[J]. Angew Chem Int Ed, 1999, 38: 1475-1477.
    [240] Friedrichs O D, O’Keeffe M, Yaghi O M. Three-periodic nets and tilings: regular and quasiregularnets[J]. Acta Crystallogr Sect A, 2003, A59: 22-27.
    [241] Yang J, Li G-D, Cao J-J, et al. Structural Variation from 1D to 3D: Effects of Ligands and Solvents on the Construction of Lead(II)-Organic Coordination Polymers[J]. Chem Eur J, 2007, 13: 3248-3261.
    [242] Soma T, Yuge H, Iwamoto T. Three-Dimensional Interpenetrating Double and Triple Framework Structures in [Cd(bpy)2 { Ag(CN)2 } 2] and [Cd(pyrz){Ag 2( CN) 3 }{Ag(CN)2 }][J]. Angew Chem Int Ed, 1994, 33: 1665-1666.
    [243] Zhang J, Corbett J D. Zirconium chloride cluster phases centered by transition metals Mn-Ni. Examples of the Nb6F15 structure[J]. Inorg Chem, 1991, 30: 431-435.
    [244] Abrahams B F, Batten S R, Hamit H, et al. A Cubic (3,4)-Connected Net with Large Cavities in Solvated [Cu3 (tpt)4 ](ClO4 ) 3 (tpt = 2,4,6-Tri(4-pyridyl)-1,3,5-triazine)[J]. Angew Chem Int Ed, 1996, 35: 1690-1692.
    [245] Zhou Y-F, Lou B-Y, Yuan D-Q, et al. pH-value-controlled assembly of photoluminescent zinc coordination polymers[J]. Inorg Chim Acta, 2005, 358: 3057-3064.
    [246] Carlucci L, Ciani G, Proserpio D M. Self-assembly of novel co-ordination polymers containing polycatenated molecular ladders and intertwined two-dimensional tilings[J]. J Chem Soc Dalton Trans, 1999, 11: 1799-1804.
    [247] Paz F A A, Klinowski J. Two- and Three-Dimensional Cadmium?Organic Frameworks with Trimesic Acid and 4,4’-Trimethylenedipyridine[J]. Inorg Chem, 2004, 43: 3882-3893.
    [248] Bradshaw D, Rosseinsky M J. Interpenetrating and non-interpenetrating 3-dimensional coordination polymer frameworks from multiple building blocks[J]. Solid State Sci, 2005, 7: 1522-1532.
    [249] Holliday B J, Mirkin C A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry[J]. Angew Chem Int Ed, 2001, 40: 2022-2043.
    [250] Leininger S, Olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals[J]. Chem Rev, 2000, 100: 853-908.
    [251] Liu J-Q, Wang Y-Y, Ma L-F, et al. An unusual 3D three-fold parallel interpenetrating network self-assembled from the grid-containing 2D layer motifs[J]. Inorg Chem Commun, 2007, 10: 979-908.
    [252] Steel P J. Ligand Design in Multimetallic Architectures: Six Lessons Learned[J]. Acc Chem Res, 2005, 38: 243-250.
    [253] Brammer L. Developments in inorganic crystal engineering[J]. Chem Soc Rev, 2004, 33: 476-489.
    [254] Seidel S R, Stang P J. High-Symmetry Coordination Cages via Self-Assembly[J]. Acc Chem Res, 2002, 35: 972-983.
    [255] Caulder D L, Raymond K N. Supermolecules by Design[J]. Acc Chem Res, 1999, 32: 975-982.
    [256] Cui Y, Lee S J, Lin W. Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J]. J Am Chem Soc, 2003, 125: 6014-6015.
    [257] Knof U, Zelewsky A. Predetermined Chirality at Metal Centers[J]. Angew Chem Int Ed, 1999, 38: 302-322.
    [258] Carlucci L, Ciani G, Macchi P, et al. Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile[J]. Chem Eur J, 1999, 5: 237-243.
    [259] Liu Y, Kravtsov V C, Beauchamp D A, et al. 4-Connected Metal?Organic Assemblies Mediated via Heterochelation and Bridging of Single Metal Ions: KagoméLattice and the M6L12 Octahedron[J]. J Am Chem Soc, 2005, 127: 7266-7267.
    [260] Behera J N, Paul G, Choudhury A, et al. An organically templated Co(II) sulfate with the kagome lattice[J]. Chem Commun, 2004, 4: 456-457.
    [261] Grohol D, Nocera D G. Hydrothermal Oxidation?Reduction Methods for the Preparation of Pure and Single Crystalline Alunites: Synthesis and Characterization of a New Series of Vanadium Jarosites[J]. J Am Chem Soc, 2002, 124: 2640-2646.
    [262] Moulton B, Lu J, Hajndl R, et al. Crystal Engineering of a Nanoscale KagoméLattice[J]. Angew Chem Int Ed, 2002, 41: 2821-2824.
    [263] Atwood J L. A molecular toolkit for magnetism[J]. Nature, 2002, 1: 91-92.
    [264] Eddaoudi M, Kim J, Vodak D, et al. Supramolecular Chemistry And Self-assembly Special Feature: Geometric requirements and examples of important structures in the assembly of square building blocks[J]. Proc Natl Acad Sci U S A, 2002, 99: 4900-4904.
    [265] Perry J J, McManus G J, Zaworotko M J. Sextuplet phenyl embrace in a metal–organic Kagomélattice[J]. Chem Commun, 2004, 22: 2534-2535.
    [266] Shin D M, Lee I S, Chung Y K, et al. Synthesis and Characterization of Novel Grid Coordination Polymer Networks Generated from Unsymmetrically Bridging Ligands[J]. Inorg Chem, 2003, 42: 5459-5461.
    [267] Rusanov E B, Ponomarova V V, Komarchuk V V, et al. A Topology Paradigm for Metal-Organic Zeolites[J]. Angew Chem Int Ed, 2003, 42: 2499-2501.
    [268] Li S-L, Lan Y-Q, Ma J-F, et al. Structures and Luminescent Properties of a Series of Zinc(II) and Cadmium(II) 4,4′-Oxydiphthalate Coordination Polymers with Various Ligands Based on Bis(pyridyl imidazole) under Hydrothermal Conditions[J]. Cryst Growth Des, 2008, 8: 1610-1616.
    [269] Seo S-J, Zha D, Suh K, et al. Synthesis and luminescence properties of mesophase silica thin films doped with in-situ formed europium complex[J]. J Lumin, 2008, 128: 565-572.
    [270] Li G Z, Wang Z L, Yu M, et al. Fabrication and optical properties of core–shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol–gel process[J]. J Solid State Chem, 2006, 179: 2698-2706.
    [271] Li G Z, Yu M Z, Wang L, et al. Sol–Gel Fabrication and Photoluminescence Properties of SiO2@Gd2O3:Eu3+ Core–Shell Particles[J]. J Nanosci Nanotechnol, 2006, 6: 1416-1422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700