用户名: 密码: 验证码:
基于振动舒适性的山地自行车后悬架系统优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕实现山地自行车后悬架系统优化设计的三个要素,建立了人-车系统模型,制定了反映后悬架性能的评价指标,探讨了实现山地车后悬架优化设计的有效方法。本文主要进行了下述研究工作:
     (1)较为全面地分析了山地自行车后悬架主要类型,将其归纳为单铰摇臂结构、摇臂驱动式四杆机构和连杆驱动式四杆机构三类,并以后悬架的力比曲线为核心,研究和比较了不同后悬架的特性,得出连杆驱动式后悬架具有较小刚度的结论。通过分析找出了影响后悬架系统性能的设计参数,并以这些参数为设计变量,以实际结构空间限制为约束条件,以设定的力比曲线为优化目标,通过典型实例优化了后悬架系统设计参数。
     (2)借鉴国际标准ISO2631-1中人体承受全身振动时舒适性评价方法,建立了山地车骑行者受振模型,并给出了振动舒适性评价指标。基于该评价指标,进行了山地车车架系统振动实验,并分析了不同减振器在不同频率激励条件下的振动特性,得出了在一定频率范围内弹簧减振器具有与液压和气压减振器相同的效果。
     (3)以山地车车架系统模型为基础,建立了将骑行者视为五刚体、考虑四杆机构后悬架的人-山地车系统多刚体动力学模型,并在ADAMS软件中实现了仿真建模。通过仿真实验获得数据样本,采用回归分析和神经网络方法分别建立了后悬架设计变量与优化目标之间关系的数学模型。应用该数学模型预测振动舒适性与采用多刚体动力学模型计算结果基本吻合,验证了该模型的正确性。在此基础上,以振动舒适性为优化目标,以减振器刚度和机构杆长为设计变量,以实际结构空间限制为约束条件,采用遗传算法优化了典型样车后悬架系统的设计参数。优化结果表明:在一定条件下,采用人-车系统多刚体动力学模型优化的参数优于基于力比曲线优化的结果。
     (4)分析所建回归方程表明:在其它参数不变的条件下,随着减振器刚度和连架杆长度的增加,振动舒适性变差,而随着连杆长度的增加振动舒适性得到改善;当减振器刚度不变时,连架杆越长,连杆越短,振动舒适性越好;当连架杆长度一定时,连杆越短,振动舒适性越好,减振器刚度对振动舒适性的影响不大;当连杆长度一定时,连架杆越短,振动舒适性越好,而减振器刚度对振动舒适性几乎没有影响。
Taking three factors in designing rear suspension system of mountain bike as analysis objects, this paper builds a rider-bicycle multi-rigid-body dynamic model which views the rider as a five-rigid-body and takes the four-bar rear suspension into consideration. An efficient method to realize the rear suspension system optimization is developed to improve the vibration comfort. The main research achievements are shown as follow:
     1. Almost kinds of rear suspension system of mountain bike are analyzed and classified into three categories: one-hinge rocker-arm configuration, rocker-arm drove four-bar mechanism and connecting rod drove four-bar mechanism. The characteristics of the above rear suspension are studied and compared each other, based on the force ratio curve of the rear suspension, and the conclusion is drawn that: connecting rod drove four-bar mechanism has weaker rigidity, moreover the design parameters influencing the performance of the rear suspension system are pointed out to be: the length of the side link, the length of the connecting rod and the pivot position of the absorber and the frame. In addition, the parameters of rear suspension system are optimized, with the force ratio curve of the system as the cost function, the rod length and absorber position as design variables, the space of the practical configuration as limitation. Finally, the relatively better design parameters are acquired.
     2. The vibration performance is evaluated referring to the ISO2631-1 Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-body Vibration. According to this evaluation, the vibration experiment is performed, using the various absorbers vibration properties excited by different frequencies are analyzed, and the conclusion is drawn that: the same effect are got as the different absorber in some range of frequency.
     3. A multi-rigid-body dynamic model of mountain bike frame is set up, and its correctness is verified by the simulation. Then, the model of full bike is developed using the fore introduced bike frame, and a multi-rigid-body dynamic model of rider-bicycle is finished. A mathematical model, which concludes the relationship between the design variables of the rear suspension and targets of vibration comfort, is established with the help of stepwise regression analysis and BP neural network. It turns out to be that the vibration comfort result predicted based on mathematical model coincides with that simulated by multi-rigid-body dynamic model.
     4. By the calculation and analysis of regression equation, some revealed that: the vibration comfort gets worse with the increment of absorber stiffness and the length of side link, under the condition of the other parameters remained constant, but it will be better along with the length of connecting rod; when the absorber stiffness is constant, the longer side link connecting rod length and the shorter connecting rod length, the better vibration comfort; when the side link is constant, the shorter connecting rod length, the better vibration comfort, but the absorber stiffness is not sensitive to the vibration comfort; when the connecting rod is constant, the shorter side link length, the better vibration comfort, but the absorber stiffness is almost no influence on the vibration comfort.
引文
[1]欧盟2003年自行车产量及出口情况,中国自行车,2005,1:48
    [2]张培生,绿色的产品绿色的产业——2005年自行车市场趋势,中国自行车,2006,5:8~11
    [3]Levy M, Kinetic and vibration analysis of off-road bicycle suspension system, USA: Oregon State University, 2000
    [4]黄永强,王子良,自行车行驶平顺性分析,唐山工程技术学院学报,1991,2:25~29
    [5]丁思远,自行车车架试验模态分析,河南科学,1994,12(4):327~330
    [6]杨向东,贺跃进,碳纤维整体自行车车架造型设计的力学分析,郑州轻工业学院学报,1995,10(4):77~80
    [7]李亚平,殷安琪,王延汉,自行车前叉振动特性及动力反应研究,振动与冲击,1997,16(1):43~46
    [8]何其昌,范秀敏,马登哲等,交互式自行车模拟器中自行车动力学研究,系统仿真学报,2004,16(10):2237~2240,2244
    [9]汪凤泉,董晓马,周星德,山地车减振方法研究,振动、测试与诊断,2002,22(4):296~299
    [10]苏禾,虞和济,冠惠,铝合金自行车结构有限元分析,东北工学院学报, 1983,(4): 77~147
    [11]李金伦,沈义明,晏恒,自行车车架结构的优化设计,中国自行车,1993,1:26~29
    [12]刘云霞,马中兴,戴金涛等,自行车“人-车”系统载荷的统计分析,中国自行车,1990,5:18~20,24
    [13]丁德,严军,自行车车架及前叉的可靠性探讨,机械开发,1990,2:11~18
    [14]李亚平,王仲,宋桂林,自行车车架强度及应用分析,中国自行车,1995,8:4~6,17
    [15]陶浩,段红杰,用有限元法分析碳纤维仿生形态自行车车架,机械设计与制造,1999,1:48~49
    [16]王建华,杨文通,胡凤来,运动自行车车架结构的参数化设计,北京工业大学学报,2001,27(12):472~475
    [17]Wong,M.G., Hull, M.L., Transfer Function Measurement of the Arms in Flexion, Advances in Bioengineering,1981,167~170
    [18]Wong, M.G., Hull, M.L., Analysis of Road Induced Loads in Bicycle Frames, Mechanisms, Transmissions and Automation in Design, 1983, 105:138~145
    [19]Bolourchi,F., Hull,M.L., Measurement of Rider Induced Loads During Simulated Bicycling, Sports Biomechanics,1985, 1:308~329
    [20]Redfield,R.C.,M.L.Hull.,On The Relation Between Joint Moments And Pedalling Rates AtConstant Power In Bicycling, J Biomech,1986,19:317~329
    [21]Newmiller,J.,Hull,M.L.,68000 Based Portable Data Acquisition Module with Advanced Performance Capabilities, Computers in Engineering, Proceedings of the International Computers in Engineering Conference and Exhibit,1990,577~584
    [22]Stone,C.,Hull,M.L.,Rider/Bicycle Interaction Loads During Standing Treadmill Cycling, Applied Biomechanics,1993,9:202~218
    [23]H.Wilczynski,M.L.Hull.,A Dynamic System Model for Estimating Surface-Induced Frame loads During Off-Road Cycling.Transaction of the ASME,1994,116:816~822
    [24]Eric L., Wang, M.S., M.L.Hull., Power Dissipated By Off-Road Bicycle Suspension Systems, Cycling Science,1994,4:10~13,26
    [25]Eric L.,Wang,M.S.,M.L.Hull.,A Model for Determining Rider Indeced Energy Losses in Bicycle Suspension Systems,Vehicle System Dynamics,1996,25:223~246
    [26]Eric L.,Wang,M.S.,M.L.Hull.,Minimization of Pedaling Induced Energy Losses in Off-Road Bicycle Rear Suspension Systems,Vehicle System Dynamics,1997,28:291~306
    [27]Redfield,R.C.,Extreme Mountain Biking Dynamics:Development of a Bond Graph Model, Proceedings of the IASTED International Conference on Modeling and Simulation, 2003,2:450~455
    [28]Redfield,R.C.,Brian Self, Brian Fredrickson and et al.,Motion Measurements in the Jumping of A Mountain Bike,Instrumentation,Systems and Automation Society,2004:43~50
    [29]Redfield,R.C.,Planar、Large Excursion Bond Graph Model for Full Suspension Mountain Biking,Proceedings of IMECE,2005:1157~1165
    [30]Waechter,M.,Modelling of the Motion Quantities for Bicycles with Wheel Suspension,Faculty of Physics,1994
    [31]Waechter,M.,Zacharias,N.,Riess,F.,Measurement and Simulation of the Vibrational Stress on Cyclists,Proceedings of the 3rd European Seminar on Velomobile Design,1998,8
    [32]Waechter,M.,Zacharias,N.,Riess,F.,Simulation of the Vibrational Comfort of Bicycles with Suspension,Faculty of Physics,1999
    [33]Waechter,M.,Riess,F.and Zacharias,N.,A Multibody Model for the Simulation of Bicycle Suspension Systems,Vehicle System Dynamics,2002,37(1):3~28
    [34]John K.Titlestad, Arthur R.Whittaker, Anthony C.Fairlie-Clarke, Mark C Davie, Stanley Grant, Numerical and Experimental Simulation of Mountain Bike Suspension Systems Subject to Regular Impact Excitation, Material Science Forum, 2003, 440~441:111~118
    [35]Ferraresi,C., Garibaldi, L.Perocchio, D and et al,Dynamic Behaviour and Optimization of Frames for Road and Mountain Bikes, 1998, 1:387~393
    [36]Chong-Won Lee,Jae-Cheol Shin,Rider's Net Moment Estimation Using Control Force of Motion Sustem for Bicycle Simualator , Journal of Robotic Systems, 2004, 21(11):597~607
    [37]Champous, Y.,Vittecoq,P.,Maltais, P.,Measuring the Dynamic Structural Load of an Off-RoadBicycle Frame,Experimental Techniques, 2004, 2:33~36
    [38]Needle S A, HULL ML, An off-road bicycle with adjustable suspension kinematics, Transactions of the ASME, 1997, 119: 370~375
    [39]Leitner H, Rear suspension for bicycles[P], US: PCT/US93/00502, July 22, 1993
    [40]Busby J S, Beach L, Bicycles rear suspension[P], US: 5306036, Apr. 26, 1994
    [41]Busby J S, Bicycle rear suspension system[P], US: 5409249, Apr. 25, 1995
    [42]Harris T L,Rear wheel suspension for a bicycle and bicycle equipped therewith[P], US: 5452910, Sep. 26, 1995
    [43]Owyang M S, Integrated rear suspension for a bicycle frame[P], US: 5772228, Jun. 30, 1998
    [44]Lawwill M R, Rear suspension for a bicycle[P], US:PCT/US98/17960, Mar. 4, 1999
    [45]Weston M W, Sun P, Bicycle rear suspension system providing relative rearward motion of rear axle[P], US: 6203042B1, Mar. 20, 2001
    [46]ArvadA R M C, Rear bicycles suspension[P], US: 20040046355A1, May. 11, 2004
    [47]李振美,最小生成树的生成及应用[J],中国科技信息,2005,8:197
    [48]大卫G.乌尔曼著,黄靖远,刘莹等译,机械设计过程[M],北京:机械工业出版社,2006
    [49]Pennestri E, Strozzieri A, Optimal design and dynamic simulation of a motorcycle with linkage suspension, Int.J.of Vehicle design, 1988, 9(3): 339~350
    [50]Hoogendoorn S, Rear suspension system for a bicycle[P],US:PCT/US2005/033410,2006.3.23
    [51]Lawwill M, Rear suspension for a bicycle[P],US : PCT/US98/17960,1999.3.4
    [52]QB1880-93,自行车车架[S],1994
    [53]新型自行车图型设计与试验分析检测技术及加工装配维护新技术标准规范实用手册,中国科技文化出版社,2005
    [54]International Organization for Standardization, ISO 2631-1:1997(E) Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-Part 1: General requirements [S], Switzerland: International Organization for Standardization, 1997
    [55]Griffen, M. J.,Evaluation of vibration with respect to human response,Society of Automotive Engineers, Inc,Paper 860047: 1323~1345, 1987
    [56]余志生,《汽车理论》,北京:机械工业出版社,2000
    [57]周一鸣,毛恩容,车辆人机工程学[M],北京:北京理工大学出版社,1999
    [58]李云雁,胡传荣,试验设计与数据处理[M],北京:化学工业出版社,2005
    [59]唐光武,贺学锋,颜永福,路面不平度的数学模型及计算机模拟研究[J],中国公路学报,2000,13(1):114~117
    [60]赵济海,王哲人,关朝雳编著,路面不平度的测量分析与应用[M],北京:北京理工大学出版社,2000
    [61]杨叔子,吴雅,时间序列分析的工程应用:上册[M],武汉:华中理工大学出版社,1991
    [62]薛贯海,马吉胜,崔清斌,由路面谱重构路面不平度的AR模型法[J],军械工程学院学报,2004,17(2):20~22
    [63]谢伟东,王磊,余翊妮,沈季胜,随机信号在路面不平度仿真中的应用[J],振动、测试与诊断,2005,25(2):126~130
    [64]常志权,罗虹,褚志刚,邓兆祥,谐波叠加路面输入模型的建立及数字模拟[J],重庆大学学报(自然科学版),2004,27(12):5~8
    [65]刘献栋,邓志党,高峰,公路路面不平度的数值模拟方法研究[J],北京航空航天大学学报,2003,29(9):842~846
    [66]全睿臣,宋健,路面不平度的模拟与汽车非线性随机振动的研究[J],清华大学学报(自然科学版),1999,39(8):76~79
    [67]D.E.纽兰,方同译,随机振动及谱分析概论[M],北京:机械工业出版社,1978
    [68]S.M.Kay,黄建国,武延祥,杨世兴译,现代谱估计原理与应用[M],北京:科学出版社,1988
    [69]陆佑方,柔性多体系统动力学,北京:高等教育出版社,1996,7
    [70]洪嘉振,计算多体系统动力学,北京:高等教育出版社,1999,7
    [71][德]J..维腾伯格著,郭坤译,多刚体系统动力学,北京:北京航空学院出版社,1986,7
    [72][美]R.罗森伯格著,郭坤译,离散系统分析动力学,北京:人民教育出版社,1981,12
    [73]袁士杰,吕哲勤,多刚体系统动力学,北京:北京理工大学出版社,1996,3
    [74]贾书惠,刚体动力学,北京:高等教育出版社,1987,9
    [75]MDI, Using ADAMS/View, America Mechanical Dynamics, 2002, 7
    [76]MDI, Using ADAMS/Solver, America Mechanical Dynamics, 2002, 7
    [77]MDI, Using ADAMS/Tire, America Mechanical Dynamics, 2002, 7
    [78]MDI, Using ADAMS/Flex, America Mechanical Dynamics, 2002, 7
    [79]Mechanical Dynamics,Inc. ADAMS/Tire Documentation [M], 2002
    [80]管迪华,范建成,用于不平度路面车辆动力学仿真的轮胎模型综述[J],汽车工程,2004,26(2): 162~166
    [81]刘惟信,机械最优化设计,北京:清华大学出版社,1994,237
    [82]雷英杰,张善文,李续武等,MATLAB遗传算法工具箱及应用,西安:西安电子科技大学出版社,2005,11~14,146~207
    [83]许东,吴铮,基于MATLAB 6.x的系统分析与设计——神经网络,西安:西安电子科技大学出版社,2002,4~35
    [84]赵贤敬,基于GA和BP网络的停车设备结构优化设计,硕士学位论文,青岛建筑工程学院,2003
    [85]谢庆生,尹健,罗廷科,机械工程中的神经网络方法,北京:机械工业出版社,2003,93~95,138~143
    [86]闻新,周露,李翔等,MATLAB神经网络仿真与应用,北京:科学出版社,2003,278~281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700