用户名: 密码: 验证码:
面向运动型多功能车操纵稳定性的建模、仿真与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SUV(Sport Utility Vehicle),即运动型多功能车。由于其既具有越野车的部分功能,又能够部分满足家庭休闲的需要,因此在市场上颇受欢迎。汽车的操纵稳定性是影响车辆行驶安全的关键因素,在现代高速汽车生产制造中,操纵稳定性显得更加重要,己成为评价汽车性能的重要技术指标之一。随着计算机技术的迅猛发展,基于多体动力学理论的虚拟样机技术在汽车操纵稳定性研究和设计领域中得到了广泛的应用。
     本文采用多体系统动力学的理论和方法,运用ADAMS软件建立了某SUV车型前悬架和整车的多体模型,并分别进行了主要定位参数性能及动力学性能仿真,完成了前悬架性能和整车动力学特性的灵敏度分析和优化设计,为该车型的研发提供了一个具有理论指导价值的有效方法。
     分析了SUV车型的市场状况和性能特点,以及目前汽车研发技术的现状和相关的先进技术,提出了一套较为完整的SUV车型多体系统动力学模型的建模方法和仿真方法,为SUV车型的建模与仿真打下了坚实的基础。
     建立了SUV车型前悬架的多体系统模型,分析了模型中相关参数的选择与确定,确定了前悬架的主要前轮定位参数,并完成了主要定位参数性能的仿真。仿真结果表明,该车型的主要前轮定位参数基本合理,满足设计要求。利用基于灵敏度分析的优化设计方法,完成了前悬架主要性能的优化设计,得到了具有较高指导价值和实用价值的优化结果。
     建立了SUV车型整车的多体系统动力学模型,分析和建立了整车相关子系统和零部件的模型,选择了正确、适当的模型参数和建模方法,确定了整车操纵稳定性的主要性能参数,并完成了整车的操纵稳定性仿真。研究了后悬架多体系统动力学模型的关键理论和方法,提出了计算简单快捷、精度较高的中性面建模方法。仿真结果表明,该车型整车的操纵稳定性较好,满足设计要求。
     利用所建立的SUV车型前悬架和整车多体系统模型,进行了前悬架主要性能参数和整车操纵稳定性的灵敏度分析,分析了各个设计变量对前悬架主要性能参数和整车操纵稳定性的影响,找出了重要的影响因素,并完成了整车操纵稳定性的动态优化设计,优化结果对于SUV车型的设计与研发有较高的指导价值。
     经过仿真计算与分析,所建立的SUV前悬架和整车多体系统模型与实际车型在主要性能参数及其变化趋势上基本相符,得到了该车型生产厂家的认可。
SUV is the sport utility vehicle. Because it not only has some functions of off-road vehicle but also partly satisfies the home recreation requirement, the SUV type is favourablely received in the market. The handling and stability is one of the critical factors affecting the driving safety of vehicles. In the manufacture of high-speed vehicles, the vehicle handling and stability is more important and is becoming the main criterion in vehicle performance evaluation. With the rapid development of the computer technique, the virtual prototype technique based on the multi-body dynamics is widely applied in the vehicle handling and stability research and in the vehicle design region.
     Taking into the theory and method of multi-body system dynamics, the multi-body system models of a SUV type front suspension and full vehicle are established with ADAMS software in this dissertation. And the main alignment parameters and dynamic simulations are performed separately. The sensitivity analysis, the optimization design of front suspension performance as well as the full vehicle dynamic performance are finished. This study gives an efficient method which has the theortical guidance value for the SUV type research and development.
     It is analyzed about the market situation and the performance nature of SUV type, the R&D technique presentation of the automobile as well as the relevance advanced technology. A comparatively whole set of modeling and simulation method for SUV type is suggested. It is a substantial foundation of SUV modeling and simulation.
     The multi-body system models of a SUV type front suspension are set up. It is analyzed for the model relevance parameters to be selected and to be defined. The main front-wheel alignment parameters of front suspension are determined and the simulation is finished. The simulation results show that the main front-wheel alignment parameters of this SUV type are basically reasonable and satisfy the design requirement. Using the optimization design method based on the sensitivity analysis, the optimization design for the main performance of the front suspension is completed. Some optimal results having higher guiding and practical value are obtained.
     The multi-body system dynamic model of a SUV full vehicle is founded. The relevance sub-system models of full vehicle are analyzed and are set up. The proper model parameters and modeling methods are chosen. The main handling and stability parameters of the full vehicle are determined and the handling stability simulation of the full vehicle is accomplished. The key theory and technique of the back suspension model are studied. A simple, rapid and accurate kind of medium-plane modeling method is submitted. It is shown by the simulation results that the handling and stability of the full vehicle is fair and is able to satisfy the design requirement.
     By the multi-body system models of SUV type front suspension and full vehicle, the sensitivity analysis for the main performance parameters of the front suspension and the full vehicle handling and stability is conducted. It is discussed for the design variables to affect the front suspension performance parameters and the full vehicle handling and stability. The important factors are discovered. At last, the dynamic optimization design of the full vehicle handling and stability is fulfuled. The valuable guidance is supplied for the design and R&D of the SUV type.
     Through the simulating calculation and the analysis, the built multi-body models of the SUV front suspension and the full vehicle are accorded with the real vehicle type on the main performance and on the variation trend. The models and the results are confirmed by the manufacturing corporation of the SUV type.
引文
[1] A. A. Shabana. Dynamics of Multibody Systems.New York: John Wiley & Sons, 1989
    [2] W. Schiehlen. Multi - body Systems Handbook. Heidelberg: Spring-Verlag, 1990
    [3]休斯敦,刘又午.多体系统动力学.天津:天津大学出版社,1987
    [4]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996
    [5] L .Segel. An overview of developments in road vehicle dynamics: past, present and future. Preceeding of Imech E Conference on Vehicle Ride and Handling, 1993
    [6] P. R. Mchenry.An analysis of the dynamics of automobiles during simultaneous cornering and ride motions, in handling of vehicles under emergency conditions. Proc. IMechE, 1968 - 1969, (13): 28~48
    [7] N. Orlandea, M.A. Chace.Simulation of vehicle suspension with ADAMS computer program. SAE Technical Paper 770053
    [8] R.R. Ryan.ADAMS—Multi-body System Analysis Software.Multi-body Systems Handbook. Heidelberg: Springer-verlag, 1990
    [9]郭孔辉.汽车操纵动力学.长春:吉林科学出版社,1991
    [10]余志生.汽车理论.北京:机械工业出版社,1990
    [11] H.Rahnejat. Multi-body Dynamics: Vehicles Machines and Mechanisms. Warrendale, Pennsylvania: Society of Automotive Engineers, 1998
    [12]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用.北京:清华大学出版社,2005
    [13]郭孔辉.中国汽车工业发展道路的回顾与展望——合作与自主问题.汽车情报,2004,(22):4~7
    [14]邓亚东,余路,苏楚奇.ADAMS在汽车操纵稳定性仿真分析中的运用.武汉大学学报(工学版),2005,38(2):95~98
    [15]刘红军,明平顺,程远会,马飞.ADAMS在汽车操纵稳定性中的应用研究.武汉理工大学学报(信息与管理工程版),2003,25(4):50~53
    [16]冉振亚,庞迪,赵树恩,韩兆运.PRO/E、ADAMS软件在汽车操纵稳定性中的应用.重庆大学学报(自然科学版),2005,28(11):20~23
    [17]于国飞,孔德文,马士泽,吴光强.应用ADAMS/CAR二次开发模块研究汽车操纵稳定性.吉林大学学报(工学版),2005,35(6):582~586
    [18]陈克,王工,李飞.基于ADAMS的汽车操纵稳定性虚拟试验演示系统开发.沈阳理工大学学报,2005,24(1):59~61,70
    [19]徐进,邵毅明,胡燕,李鸿伟.基于多体理论的车辆制动性能的虚拟试验的实现及评价.汽车科技,2006,(1):20-24
    [20]周水清,何天明,赵礼东.基于虚拟样机的汽车平顺性仿真分析.汽车科技,2005,(3):28~30
    [21]褚志刚,邓兆祥,王攀,胡玉梅.基于虚拟样机的汽车稳态转向特性改进研究.系统仿真学报,2006,18(1):106~109
    [22]李阳,唐应时,方琼,段心林.某越野车平顺性试验的仿真.汽车科技,2006,(2):35~37
    [23]张云清,项俊,陈立平,孙营.整车多体动力学模型的建立、验证及仿真分析.汽车工程,2006,28(3):287~291
    [24]王国权,杨文通,许先峰,余群.汽车平顺性的虚拟试验研究.上海交通大学学报,2003,37(11):1772~1775
    [25]吴碧磊,秦民,程超,李幼德.重型牵引车平顺性建模与仿真分析.汽车技术,2006,(3):12~15
    [26]时培成,陈无畏,王其东,陈黎卿.基于ADAMS软件的多功能车操纵稳定性仿真研究.合肥工业大学学报(自然科学版),2005年,28(8):931-935
    [27]董华林,吴光强.汽车动力学稳定性控制仿真研究.汽车研究与开发,2005,(5):41~44
    [28]夏长高,王岱斐.用柔性多体动力学方法预测悬架对汽车转向特性的影响系数.汽车工程,2004,26(2):174-176,232
    [29]孙维汉,顾宏斌.基于ADAMS/Car汽车动力学仿真.汽车科技,2004,(6):19-21
    [30]宋传平.SUV和MPV车型的发展现状及趋势.汽车工业研究,2003,(4):30~32
    [31]孙建斌.SUV市场发展趋势探索.汽车工业研究,2006,(3):30~34
    [32]陈小复.运动型多用途车(SUV).上海汽车,2000,(7):27~31
    [33]郭孔辉.汽车操纵稳定性.吉林:吉林人民出版社,1983
    [34]郭孔辉.人一车一路闭环操纵系统主动安全性的综合评价与优化设计.汽车技术,1993,(4):4~12,31
    [35]宗长富,郭孔辉.汽车操纵稳定性的研究与评价.汽车技术,2000,(6):6~11
    [36]国家汽车试验标准GB 4970-1996《汽车平顺性随机输入行驶试验方法》
    [37]国家汽车试验标准QC/T 474-1999《客车平顺性评价指标及限值》
    [38]国家汽车试验标准GB/T 6323.6-1994《汽车操纵稳定性方法稳态回转试验》
    [39]国家汽车试验标准GB/T 6323.4-1994《汽车操纵稳定性方法转向回山陛能试验》
    [40]国家汽车试验标GB/T 6323.5-1994《汽车操纵稳定性方法转向轻便性能试验》
    [41]国家汽车试验标准QC/T 480-1999《汽车操纵稳定性指标限值与评价方法》.
    [42]钱德猛,赵韩,梁林.多体运动学理论在空气悬架运动分析中的应用.合肥工业大学学报(自然科学版),2005,28(1):34~36
    [43]陈黎卿,王启瑞,陈无畏,时培成.基于ADAMS的双横臂扭杆独立悬架操纵稳定性分析.合肥工业大学学报(自然科学版),2005,28(4):341~345
    [44]杨英,刘刚,赵广耀.基于ADAMS机械模型的车辆主动悬架控制策略与仿真.东北大学学报(自然科学版),2006,27(1):72~75
    [45]赵韩,钱德猛,魏映.汽车空气悬架的运动学仿真分析及优化设计.中国机械工程,2005,16(4):360~364
    [46]王启瑞,刘立强.汽车转向与悬架系统的集成控制研究.汽车科技,2005,(1):29~33
    [47]谭永岗.双横臂悬架运动特性分析.上海汽车,2006,(1):27~29
    [48]姬鹏,孙振军,崔国华.ADAMS在汽车操纵稳定性评价中的应用.农业装备与车辆工程,2006,(5):32~34
    [49]贾长治,王兴贵,龚烈航.基于虚拟样机的装备故障灵敏度分析及参数阈值获取.系统仿真学报,2005,17(10):2395~2398
    [50]刘岩,丁玉兰,林逸.汽车转向机构高速振动的研究.中国公路学报,2001,14(2):123~126
    [51]王其东,方锡邦,钱立军,马恒永,唐永琪.基于虚拟样机技术的汽车钢板弹簧设计及分析研究.机械工程学报,2001,37(12):63-66
    [52]王其东,方锡邦,卢剑伟,赵猛.汽车钢板弹簧多体动力学建模及动特性仿真研究.合肥工业大学学报(自然科学版),1999,22(6):35~39
    [53]李海滨,夏群生.少片变刚度钢板弹簧计算方法探讨.中国机械工程,2004, 15(4):358-361
    [54]王庆五.用搜索法求解渐变刚度钢板弹簧刚度和应力.汽车技术,2004,(7):15~18
    [55]蒋国平,李守成.刚柔耦合建模技术在横置钢板弹簧独立悬架中的应用.武汉理工大学学报(交通科学与工程版),2006,30(4):728~731
    [56] A. Ozaki. Basic study of vehicle roll motion and possibility of inward roll: examination by a mechanical model of rigid axle suspension. JSAE Review, 2002, (23): 465~471
    [57] D. Cajander, H. Le-Huy. Design and optimization of a torque controller for a switched reluctance motor drive for electric vehicles by simulation. Mathematics and Computers in Simulation, 2006, (71): 333~344
    [58] O. Mokhiamar, M. Abe. Effects of model response on model following type of combined lateral force and yaw moment control performance for active vehicle handling safety. JSAE Review, 2002, (23): 473~480
    [59] M. Shinoa, M. Nagai. Independent wheel torque control ofsmall-scale electric vehicle for handling and stability improvement. JSAE Review, 2003, (24): 449~456
    [60] G. Hall, A. Usman.Modified order and stepsize strategies in ADAMS codes. Journal of Computational and Applied Mathematics, 1999, (111): 113~122
    [61] N. Noomwongsa, H. Yoshidab, M. Nagaib, K. Kobayashic, T. Yokoi. Study on handling and stability using tire hardware-in-the-loop simulator. JSAE Review, 2003, (24): 457~464
    [62] M. Shino, M. Nagai.Yaw-moment control of electric vehicle for improving handling and stability. JSAE Review, 2001, (22): 473~480
    [63] J. P. C. Goncalves, J. A. C. Ambrosio.Road vehicle modeling requirements foroptimization of ride and handling. Multi-body System Dynamics, 2005, (13): 3~23
    [64] W. Rulka, E. Pankiewicz.MBS approach to generate equations of motions for HiL-simulations in vehicle dynamics. Multibody System Dynamics, 2005, (14): 367~386
    [65] P. Lemerle, P. Boulanger, R. Poirot.A simplified method to design suspended cabs for counterbalance trucks. Journal of Sound and Vibration, 2002, 253(1): 283~293
    [66] J. Yamakawa, K. Watanabe.A spatial motion analysis model of tracked vehicles with torsion bar type suspension. Journal of Terramechanics, 2004, (41): 113~126
    [67] D.S. Bae, J.K. Lee , H.J. Cho , H. Yae.An explicit integration method for realtime simulation of multibody vehicle models. Computer Methods Application for Mechanical Engineering, 2000, (187): 337~350
    [68] P.S. Els, P.E. Uys, J.A. Snyman, M.J. Thoresson. Gradient-based approximation methods applied to the optimal design of vehicle suspension systems using computational models with severe inherent noise. Mathematical and Computer Modelling, 2006, (43): 787~801
    [69] D. Centea, H. Rahnejat, M.T. Menday.Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder). Applied Mathematical Modelling, 2001, (25): 177~192
    [70] J.P. Dias, M.S. Pereira. Optimization methods for crashworthiness design using multi-body models. Computers and Structures, 2004, (82): 1371~1380
    [71]寇发荣,马建.超车工况下高速客车操纵稳定性仿真与试验研究.汽车技术,2006,(4):24~27
    [72]马涛锋,薛念文,李仲兴,周孔亢.对汽车操纵稳定性的影响因素分析及对操纵稳定性的研究评价.机械设计与制造,2005,(4):122~123
    [73]时培成,陈黎卿.多功能车操纵稳定性的虚拟样机实验研究.汽车科技,2005,(3):45~48
    [74]夏长高,宫镇.刚柔耦合多体车辆操纵稳定性研究.汽车工程,2004,26(5):564~567
    [75]吕红明,陈南,李普.横摆率跟踪控制的4WS汽车闭环操纵稳定性.汽车工程,2005,27(3):337~339,376
    [76]陈黎卿,王启瑞,陈无畏,时培成.基于ADAM S的双横臂扭杆独立悬架操纵稳定性分析.合肥工业大学学报(自然科学版),2005,28(4):341~345
    [77]孙涛,喻凡,邹游.基于Matlab环境下的车辆操纵稳定性仿真研究与计算实例.机械科学与技术,22(Supplement):54~56
    [78]吕振华,常放,杨道华,张天兵.利用ADAMS对双横臂独立悬架进行仿真分析.汽车科技,2005,(5):7~9
    [79]汤东胜,梁骏,吴光强.轮胎侧偏动特性对汽车操纵稳定性的影响.汽车研究与开发,2003,(1):48~50
    [80]钟绍华,肖植雄,黄妙华,钟诗清.4WS汽车二自由度模型操纵稳定性分析.武汉汽车工业大学学报,1998,20(6):13~17
    [81]宋正华,陈南.4WS汽车虚拟模型的闭环控制动力学仿真.机械制造与自动化,2005,34 ( 1) :93~96
    [82]郭天太.基于虚拟现实的汽车操纵稳定性试验技术.机械工程师,2003,(8):31~33
    [83]项乔君.计算机仿真技术在汽车上的应用.汽车研究与开发,1994,(6):31~34
    [84]李世雄,余群.模糊控制理论在驾驶员一汽车一环境闭环系统操纵稳定性研究中的应用.汽车工程,1999, 21(3):140~144
    [85]郭荣,吴宪,万钢.某型燃料电池轿车操纵稳定性虚拟试验.机械设计,2006,23(3):43~45,62
    [86]王国权,王树凤,李世雄,余群.汽车操纵稳定性的虚拟试验技术.上海交通大学学报,2006,40(1):172~176,180
    [87]任卫群,张云清.汽车操纵稳定性的计算机仿真.汽车科技,1998,(2):28~31
    [88]宗长富,刘蕴博,孔繁森.汽车操纵稳定性的模拟器闭环评价与试验方法.汽车工程,2001,23(3):205~208
    [89]尹念东,王树凤,余群.汽车操纵稳定性的虚拟实验.汽车工程,2001,23(4):233~235
    [90]马涛锋,薛念文.汽车操纵稳定性的研究.农机化研究,2005,(3):278~279,282
    [91]张会明.汽车操纵稳定性的研究.华东交通大学学报,2004,21(2):104~106
    [92]刘文苹,巢凯年,李平飞.汽车操纵稳定性试验方法国内外标准对比.四川工业学院学报,2004,23(3):7~9,32
    [93]熊坚,曾纪国,宋健.汽车操纵稳定性虚拟仿真的研究.汽车工程,2002,24(5):430~433
    [94]田佳卿,汤东胜,吴光强.汽车动力学稳定性自适应控制研究.汽车研究与开发,2002,(5):36~38
    [95]魏道高.汽车前轮定位参数研究与展望.合肥工业大学学报(自然科学版),2004,27(12):1594~1598
    [96]游学兵,杨峰,黄红霞.汽车四轮转向操纵稳定性的研究及发展.农机化研究,2005,(3):268~270
    [97]包继华,张建武,于岩.汽车整车多体系统动力学建模和仿真.计算机仿真,2004, 21(1):53~56
    [98]袁凯,陈思忠.四轮独立转向汽车高速行驶时操纵稳定性的研究.机电工程技术,2003,32(1):26~27
    [99]林程.四轮转向车辆多体仿真与试验研究.汽车工程,2005,27(2):212~216
    [100]焦凤,陈南,秦绪柏.四轮转向汽车操纵动力学虚拟仿真分析.汽车工程,2004,26(1):5~8,19
    [101]宋正华,陈南,焦凤,祁永宁.四轮转向汽车虚拟样机闭环控制操纵动力学仿真.汽车技术,2005,(5):6~10
    [102]王彦军,程乐信.微型汽车操纵稳定性问题探讨.汽车技术,1996,(12):16~20
    [103]周均,杜子学,徐进,张林.虚拟样机技术在整车操纵稳定性分析中的应用研究.现代交通技术,2005,(6):67~69
    [104]牟向东,唐新蓬,陶建民.悬架转向特性的汽车操纵稳定性分析.汽车研究与开发,2000,(3):28~31
    [105]刘又午.多体动力学的休斯敦方法及其发展.中国机械工程,2000,11(6):601~807,III
    [106]王琪,陆启韶,黄克累.多体系统动力学Lagrange方法的进展.力学与实践,1997,19(3):1~6
    [107]张越今,宋健,张云清,任卫群.多体系统动力学分析的两大软件——ADAMS和DADS.汽车技术,1997,(3):16~20
    [108]陈潇凯,林逸,施国标,詹文章.多体系统动力学软件在汽车工程中应用的新进展.计算机仿真,2005,22(6):201~204
    [109]于清,洪嘉振.柔性多体系统动力学的若干热点问题.力学进展,1999,29(2):145~154
    [110]覃正,叶尚辉.柔性多体系统动力学研究及存在的问题.力学进展,1994,24(2):248-256
    [111] H. Dugoff.An analysis of tyre traction properties and their infuence on vehicle dynamic performance.SAE Technical Paper700377
    [112] L. Prodko.Analytical analysis of human vibration.SAE Technical Paper 860091
    [113] C.G. Liang, G. M. Lance. Dynamic analysis and control synthesis of integrated mechanical systems. Ph.D. Thesis University of Iowa, 1985
    [114] A. Lotze, J. Schweiger. Application of modern optimization tools for the design of aircraft structures. Presented at the 40th Annual General Meeting of the Aeronautical Society of India, December 19~21, 1988
    [115] A.G. Nalece. Investigation into the stability of four wheel steering vehicles. International Journal of Vehicle Design, 1988, 6(9): 159~178
    [116] A.G. Nalecz, A.C. Bindemann. Analysis of the dynamic response of four wheel steering vehicles at high speed.Int.J.of Vehicle Design, 1998, 9(2) : 179~201
    [117] E. Bakker.Tyre modeling for use in vehicle dynamic studies.SAE Technical Paper 870421
    [118] C. Suh,W. C. Radclffe.Kinematics and Mechanisms Design. John Wiley & Sons Inc., 1978
    [119] G. Gim, P. Nikravesh.An analytical model of pneumatic tyres for vehicle dynamic simulations Part 1: Pure slips. International Journal of Vehicle Design, 1991, 11(6): 589~618
    [120] G. Gim, P. Nikravesh.An analytical model of pneumatic tyres for vehicle dynamic simulations Part 2: Comprehensive slips. International Journal of Vehicle Design, 1991, 12(1): 19~39
    [121] M.V. Blundell. The influence of rubber bush compliance on vehice suspension movement. Materials and Design, 1998, 19(2): 29~37
    [122] D. Rubinstein, R. Hitron.A detailed multi-body model for dynamic simulation of off-road tracked vehicles. Journal of Terramechanics ,2004,(41): 163~173
    [123] M. Ambroz, S. Krasna, I. Prebil.3D road traffic situation simulation system, Advances in Engineering Software, 2005, (36): 77~86
    [124] C.W. Mousseau, T.A. Laursen, M. Lidberg, R.L. Taylor. Vehicle dynamics simulations with coupled multibody and finite element models. Finite Elements in Analysis and Design, 1999, (31): 295~315
    [125] A.F. Naude, J.A. Snyman. Optimization of road vehicle passive suspension systems.Part 2. Qualification and case study. Applied Mathematical Modelling, 2003, (27): 263~274
    [126] Using ADAMS/Solver, 2002(Mechanical Dynamics Inc, Ann Arbor, Michigan)
    [127]胡安生,冯夏勇.世界汽车工业发展变化趋势.中国机电工业,2004,(9):33~35
    [128]吴蒙.世界汽车前沿技术及其市场发展趋势.汽车研究与开发,2004,(10):5~8
    [129]刘希宋,邓立治.培育与发展我国汽车工业自主品牌的对策研究.科技进步与对策,2006,23(3):78~80
    [130]王霄,刘会霞,蔡兰.汽车开发中的虚拟产品开发技术.江苏理工大学学报(自然科学版),2001,22(5):42~46
    [131]郑健燕,欧阳惠芳.现代汽车产品开发技术的分析与研究.机械开发,1997,(4):16~19
    [132]丁祎,尹伟,胡平.应用虚拟技术加快汽车开发进程.吉林大学学报(工学版),2002,32(3):91~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700